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Abstract 
The penetration depth in the electromagnetic heating could be a crucial factor 
of its application, when the deep heating is the goal. The capacitive coupling is 
one of the most popular heating techniques in radiofrequency (RF) heating 
applications. The matching of the target defines the penetration possibilities. 
The current matched solution has deeper mathematically defined penetration 
in RF region than the capacitive plane-wave solution. The same power of ap-
plication request high voltage with relatively low current for plane-wave in-
ducing, while in current matching it has low voltage with high current. The 
effective depth of the action in the two solutions do not identical, the penetra-
tion defined by the intensity of 1/e portion of the incident beam is higher in 
the current-matched techniques. 
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1. Introduction 

Despite its long history and some sophisticated electromagnetic energy transfer, 
hyperthermia remained a heavily debated topic in oncology. The fairly straight- 
forward heating idea is realized with complicated machinery delivering the 
energy with hope to selectively eliminate or at least inactivate the malignant 
processes. The selection is one of the key-points, rock-build on the special heat 
sensitivity of cancerous cells.  

However, the reality is more complex than could be solved by a simply fo-
cused heating on the tumor. Results are controversial despite the significant 
peaks of enthusiastic periods. Numerous phase II and phase III studies prove the 
positive effects of hyperthermia in combination with gold-standard therapies 
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mostly with chemo- and/or radiotherapies [1] [2] [3]. The highest peak of suc-
cess was the complementary hyperthermia plus radiotherapy Phase III trial for 
pelvic tumors, published in The Lancet [4]. The effective doubling of four-year 
survival by the combined therapy was exciting. However, the repeated study was 
unsuccessful [5]. A recent interim report of the newest cervix study shows no 
benefit of the radio-thermotherapy compared to the standard radiochemothera-
py combination [6]. Problems counterwork the acceptance of hyperthermia even 
in its strongest field, the cervix cancer too.  

The shadow of the actual problems appeared much earlier. The complemen-
tary radio-thermotherapy produced excellent local control for breast [7] and su-
perficial tumors [8]. However, the overall survival significantly contradicted to 
the local control; it was worst when hyperthermia was involved in the treat-
ments. Skepticism and refusing of hyperthermia was supported by the problem 
of toxicity when hyperthermia is complementary applied to radiotherapy [9].  

The reason of the controversies looks simple: the thermal homeostatic feed-
back mechanisms induce higher blood flow to cool down the overheated vo-
lume. The effect of this could hamper the intended elimination of malignant 
cells because of the blood-stream supplies new, extra glucose for their support. 
Starts a non-controlled competition of the eliminative and supportive effects, 
and the result becomes accidental, but this is not all the challenges. The high 
blood flow significantly increases the risk of malignant invasion of cancer cells 
and the gain of metastases by their dissemination.    

The robust number of positive results of hyperthermia in oncology need stabi-
lization, must not be hindered by also many controversial experiences. One of 
the first explanations of the failure in cervix was the missing reference point 
[10], which in simple meaning is the unfixed technical background of the treat-
ments. The well-focused heat-absorption on the tumor volume does not keep 
the temperature rise locally there. The temperature is naturally spreading by 
heat-conduction, and the heat is distributed very efficiently with convective 
transport through such a good heat-exchanger like the blood-stream. Profes-
sionals expect such technical solution, which heats the cancer cells alone by a 
large preciosity but does induce only moderate growth of the blood-flow, avoid 
its adverse effect. They would like to see however some increase of blood flow to 
the tumor, which gains the drug perfusion and increases its efficacy locally, to-
gether with the higher oxygen content for the sensitizing the radiotherapy in 
adjunct combination. These demands look contradictory, but it has realistic so-
lution [11]. The conventional hyperthermia focuses on the tumor mass, which 
will heat up the tumor cells anywhere inside. We should make different heating 
philosophy. The trick is the accurate selection of the cancerous cells alone, heat 
them up, and their heat will raise the temperature of the entire tumor mass, 
Figure 1. The trick allows high enough temperature on the chosen cells while 
the temperature would be moderate in the whole mass of tumor. This type of 
treatment exists in research [12] and clinical applications [13]. It is named  
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(a)                                        (b) 

Figure 1. (a) Tumor-mass heat intensive blood flow around; (b) Tumor-cell heat- 
blood-flow medium. The nano-targets are the membrane rafts of malignant cells. 
 
“nanothermia” [14], due to its particular effect a membrane rafts of malignant 
cells which are in size of nanoscopic range [15]. 

The newest achievements of oncological hyperthermia are connected to the 
immune effects. The local hyperthermia acts of course locally when it is not 
combined with other methods. The malignancy however only looks local, but it 
is not such. It is malignant producing numerous systemic effects by the free cir-
culation malignant cells in the blood stream. The consequences are micro- 
metastases which represent the most of the fatalities when growing to recogniza-
ble size. The solution of extension the local treatment to systemic has an exam-
ple in radiation therapy, where the abscopal effect (effect far away from the 
treatment area) was observed more than half century ago, [16]. Intensive re-
search on the systemic effects started later [17]. This trend continues, and its 
connection with the immune system became the central task of the research, 
[18] [19].  

The similar examination also started in various applications of hyperthermia 
research. Observations with the radiofrequency ablation [20] were promising, 
and at the end, a complete book was devoted to the topic [21].  

This abscopal effect has a close attention presently in the oncologic hyper-
thermia too, [22]. The expected mechanism starts with apoptosis, [23]; which 
happens through immunogenic cell death [24], probably responsible for tu-
mor-specific immune reaction, [25].  

2. Methods 

Local-regional hyperthermia has various technical solutions. These solutions 
mostly work on electromagnetic principles in four main categories: e.g. magnet-
ic, electric, radiative and galvanic [26], Figure 2.  

The coupling strength, which is the efficacy of the absorption of electromag-
netic energy in the target increases from magnetic to galvanic, Figure 3. The  
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Figure 2. The four basic technical solutions for deep heating with electromagnetic ef-
fects. The inductive (a), capacitive (b), radiative (c) and galvanic (d). 
 

 
Figure 3. The strength of coupling of various energy transfer methods in the radiofre-
quency range of 1 - 15 MHz frequency. Comparison is with the same output power at 
same frequency in biological materials. The weak interaction is Eddy current and 
spin-interactions due to the missing ferromagnetic materials, the medium is the ener-
gy-loss of the absorbed waves, the strong uses dielectric loss with electric field, while 
the extra-strong is a compulsory current by galvanic contacts, producing Joule-heat.  
 
direction of technical development was from strong to weak couplings, starting 
with galvanic (direct galvanic contact with the target [27]), and it rapidly devel-
oped the new methods by growing frequencies [28] [29]. The new considerations 
developed the concept of biologically closed electric circuits, [30] [31]. This 
theory triggered multiple applications in strong coupling procedures [32] [33], 
[34]. This strong energy-absorption developed such invasive hyperthermia me-
thods like interstitial hyperthermia [35] and also the application of direct abla-
tion [36] [37].  

Weak coupling like the magnetic field needs additional, artificial absorbers for 
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ingestion. Ferromagnetic materials, seeds, nanoparticles, etc. help the adequate 
energy intake.  

The strength of coupling affects the applied dose and control of the process. 
When the coupling is strong, we may approximate the complete absorption of 
the provided energy by the actual device which output power can control the 
dosing. However, in the weak coupling, this assumption of full absorption does 
not work. The provided energy dose should be monitored independently. The 
independent control needs extra information from the target, which is usually 
real-time temperature measurement.  

The temperature control has enormous technical complications. The correct 
temperature measurement is invasive but gives information only to a point 
where the sensor is located. Having spatial distribution has to be inserted many 
invasive sensors into the target, which is a too high risk in the medical practice. 
The non-invasive temperature measurement has numerous drawbacks. The 
most common non-invasive method is the application of infrared thermometers 
or cameras, which can control the temperature precisely, but only on the surface 
of the target. The noninvasive radiometry methods need a multi frequency solu-
tion to deep-scanning, which is a great technical challenge. The specialized MRI 
techniques measure the temperature inaccurately, mix the changes complexly by 
chemical rearrangements with the effects of temperature in the measured vo-
lume.  

Avoid the complications of the temperature measurement choose the strong 
coupling offers an ideal solution to measure the absorbed energy. Unfortunately, 
it also has a disadvantage; the absorbed heat energy does not remain there where 
we initially intended it. The intensified blood-flow takes away the majority of the 
heat, and so the energy-absorption and the temperature do not correlate in the 
target. The solution of it is the right and selective nanoheating like we discussed 
it above.  

Consequently, the perfect dose concept has to contain the strong coupling and 
the precise nanoscopic selection. Technically it is not a simple task. For strong 
coupling, we need a galvanic arrangement, but its direct use when the energy is 
high enough to heat up the target causes particular risk of burn directly on the 
top of the skin, or deeper in adipose layers. Avoid this disadvantage a combina-
tion of capacitive and galvanic coupling offers the ideal solution.  

The precise impedance matching arrangement involves special structure and 
well-chosen materials of the electrodes as well as high accuracy tuning with 
proper compensation of the capacitive factor of the actual loading impedance. 
This situation allows approaching the radio-frequency (RF) current density cal-
culations instead of the plane wave approximation. Nevertheless, the certainly 
near-field situation does not permit waves in the applied tight electrode connec-
tion Figure 4.  

The calculation of the current flow points the same current in the entire serial 
circuit, including the load, which is the treated local volume of a patient, Figure 
5.  
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Figure 4. Schematic view of the current flow in the 
treated body (a) homogenous assumption, no selec-
tion of the tumor-tissue (the frequency of the current 
is higher than 15 MHz), (b), automatic focusing by 
electric conductivity, the frequency is lower than 15 
MHz (c). 

 
The size of an arbitrary area in depth ( )h x−  is: 

( ) ( )
2 2

π tg π
2 2
D DA x y h x α   = + = + − ⋅      

             (1) 

Moreover, we know, that the total sum of the current in every depth is equal,  
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Figure 5. h = distance between the electrodes; x = ar-
bitrary depth in the target; ∆x = thickness of a slide in 
the target (homogeneous approximation). 

 
which electric current starts on the top, arrives at the bottom. However, only the 
density of the current will be less due to the widening of its distribution. The 
value of the integral of the actual current density in the investigated slide of the 
target must be the same as the input current is. When the input current is I , 
the electric current density in arbitrary depth is:  

( ) ( ) ( )
2

tg π
2

I Ij x
A x D h xα

= =
 + − 
 

                (2) 

The integral of the current density is any parallel areas with the electrodes in 
plane-parallel capacitive coupling has a stationer situation, constant in any 
depth:  

parallel

d stationeryI j S= =∫  

With this, the value of SAR for an arbitrary x location in the homogeneous 
media with specific resistance of ρ  (reciprocal value of conductivity σ ) is 

( ) ( )
( )

2
2

22

1 1
2 2

tg π
2

m

I
SAR x j x

D h x

ρ ρ ρ

α

= =
  + −  
   

        (3) 
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where mρ  is the mass density. For calculation of the current, we introduce the 
substitution of the layer with the discrete electric circuit Figure 6.  

The impedance of the equivalent circuit can be expressed as 

( ) ( ) ( )

( ) ( )

( )
( )

( )
( )

( )

( ) ( ) ( )

2

1

1 1

1 d ,
1

tg π
2

R x
i C x R x

Z x
i xR x

i C x

x
x

i x D h x

x R C x x

ω
ωτ

ω

ρ
ωτ

α

τ ρ ε

∆
∆ ∆

∆ = =
++ ∆

∆

=
+  + − 

 
= ∆ ∆ =

           (4) 

where ( ) ( )1x xρ σ=  is the specific resistance and ( )xε  is the permittivity of 
dielectric material in depth x. The function ( )xτ  is the time-constant in this 
depth.  

The impedance hZ�  of the arrangement is: 

( )

( ) ( )( )
2

0

d
tg 1 π

2

h

h
x

Z x
D h x i x

ρ

α ωτ
=

 + − + 
 

∫�             (5) 

Consequently, the voltage of the RF source 0U  determines the electrode  

current, like 0

h

UI
Z

= � . 

The impedance when the target is homogeneous: 

( ) ( )

( )
( )( )( )2 2

0

4 11 d
1 π π 1 2tg

2

h

h
htg i

Z x
i D D D htgh x

ρ α ωτρ
ωτ ωτ αα

−
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+   + ++ − 
 

∫   (6) 

and the current is 

( ) ( )0
0

π 2
1

4h

D D htgUI U i
Z htg

α
ωτ

ρ α
+

= = +               (7) 

 

 
Figure 6. The equivalent circuit of a layer with ∆x 
thickness (discrete substitution). 
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From where the phase (δ) angle between the voltage and current is  

tgδ ωτ= −                              (8) 

The impedance has also a stationery behavior, due to its Fermat principle re-
fraction on internal boundary change.  

1 2

1 1 2 2

1 2 2 2

2 1 1 1

tg tg
tg
tg

t t

n n

n

n

E E
E E
E j
E j

σ ωε
σ ωε

=

Θ = Θ

Θ +
= =

Θ +

                       (9) 

So  

( ) ( )1 1 1 2 2 2tg tgj j Cσ ωε σ ωε+ Θ = + Θ =                 (10) 

OR  

1
2 1

2

tg
tg

ρ ρ
Θ

=
Θ

                           (11) 

The impedance in a branch has similar behavior, having cross-sectional sur-
face 1A  have refraction and turns into a branch cross-section. The lengths of 
the branches are 1l  and 2l , and their angles to the surface normal-vector are 

1Θ  and 2Θ , Figure 7. The average specific impedances in the branches are 
( ) 1

1 1 1iρ σ ωε −= +  and ( ) 1
2 2 2iρ σ ωε −= + .  

Than the impedance of the refracted branch is  

1 2 1 2
1 2 1 2

1 2 1 2cos cos
l l l lZ
A A A A

ρ ρ ρ ρ= + = +
Θ Θ

             (12) 

From the Figure 7: 

( )
1 1

2 2

sin
sin

l x
l l x
= Θ

= − Θ
                         (13) 

 

 
Figure 7. (a) Vectorial refraction of the electric-field vector; (b) The impedance refraction 
at the boundary of media shown in electric field “branch”. 
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Hence 

1
1tg CZ l l

A A
ρ

= Θ =                         (14) 

This means, that the integral of Z  is constant, the impedance is stationery 
like the current is.  

d stationeryZ l
A
ρ

= =∫                       (15) 

Which works like a Fermat-principle: 

d stationery whereZ n l n
A
ρ

= = =∫                 (16) 

When the conductive effect dominant we have simple conditions from (10),  

1 1 2 2tg tg Cσ σ ′Θ = Θ =                       (17) 

From the stationery behavior of the RF-current flowing through the patient 
the spreading of electric field and depends on the starting angle of the complete 
line of the field. This is formulated with a difference equation we get:  

( )
( )

0 0, 0 tg
,

r z
r z

r z
σ

σ
= Θ

∆ = ∆                      (18) 

where ( )0 , 0r zσ =  is the conductivity at the place of input, and 0tgΘ  is the 
slope of the input.   

The spreading in homogeneous media is less than one radius of the upper 
electrode when the starting input angle is limited to the well-arranged plan-pa- 
rallel capacitive coupling. So  

tg
2
D
h

α ≤                           (19) 

3. Results 

The matching quality of the system depends on the real energy-absorption in the 
load (patients), so the admittance would be as much as possible clean conduc-
tance., Inductivity ( hL ) is used in serial circuit to compensate of the system sus-  

ceptance creating resonance at frequency 
2π

f ω
= : 

( )( )( )2

4 tg

1 2 tg
h

hL
D D h

τρ α

ωτ α
= −

π + +
               (20) 

The penetration depth by its definition is when the original incident field de-
cays to 1/e (~37%) and the energy decreases to 1/e2 (~13%). Due to the electric 
field is proportional with the current-density ( j ) and the energy is with the 
square of it, the penetration depth of the current density when the system is well 
matched in resonance with the load will be when the j  decreases to 13%, 
(1/e2), which corresponds to the decrease of SAR to 13%. The input current den-
sity from (2) is 24 πI D , and the input and the value at the penetration depth of 
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SAR from (3) is  
2

0 22

41
2 π

I
SAR

D
ρ=
  

 and 
2

2 22

21

π
p

I
SAR

e D
ρ=
  

            (21) 

The penetration depth is counted from the top of the body, so h xδ = − . 
Consequently, the penetration depth of energy by definition using (3) is  

1 0.67
tg 2 2 tgSAR
D e D

δ
α α
 

= − ≅  
 

                    (22) 

while the penetration for the current density using (2) is  

( ) 0.321
2tg tgj

D Deδ
α α

= − ≅                     (23) 

The penetration does not depend on the size of the electrode. Using the limit 
of (19), we get:  

1.34SAR hδ ≥                            (24) 

0.64j hδ ≥                             (25) 

This penetration depends on the thickness of the patient instead of the size of 
the electrode. A calculation of the E-field lines by realistic inhomogeneous case 
shows a spreading less than the limit in (19), Figure 8.  
 

 
Figure 8. Spreading of current in depth of the body. The chosen parameters are: 
Body-thickness (average of adipose Caucasian) is 32 cm, electrode diameters of usual ap-
plications are 10 cm (——), 20 cm (•••••) and 30 cm (- - - - ). The dry skin on the top and 
bottom is 1 cm with 0.1 S/m conductivity, the tumor is at 11 cm depth, and 5 cm thick, 
and has 1.5 S/m conductivity average healthy tissue conductivity is 0.5 and 0.4 S/m above 
and below the tumor, respectively (Data are averages from [38]). 
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The radiative penetration depth defined by the planar-wave absorption [26] 
[39] is  

1 2
2

1

1 1
2

pwδ
εµ σω

ωε

=
     + −      

                (26) 

Does not depend on the thickness of the patients, but rely on the frequency 
and the material dielectric constant, as well as its conductivity. These parameters 
are irrelevant in RF-current-matching conduction only the focusing and the 
original energy deposit has importance.  

4. Discussion 

Hyperthermia treatment defined by the power and its efficacy to be absorbed in 
the target. Assuming the same effectiveness, the penetration depth varies by the 
size of electrodes in current matched capacitive coupling. The reason is, when 
the electrode has a larger surface, the impedance below it decreases, and so the 
same power has higher current and lower voltage in the ideal case. Due to the 
Ohm-law the current linearly depends on the electrode area as impedance 
changes according to (12); so the current density does not depend on the size of 
the electrode when the applied voltage is constant: 

soU U I UI A j
Z l A l

σ σ= = = =                  (27) 

Consequently, from (27) and (3) the SAR also does not depend from the sur-
face of the electrode. Using the values of tgα  from Figure 8. the penetration 
shows 53.6 cmSARδ =  and 25.6 cmjδ =  independent of the size of the elec-
trode, indeed.  

Compare the penetration depths of the two kinds of capacitive coupling we 
have certain differences, Figure 9. 

The current-matching 1/e penetration is superior on the plane-wave match-
ing, while both are capacitive coupling arrangements. The 1/e2 penetration 
(energy scheme) has longer penetration in current-matching than the thickness 
of any patients with more than 50 cm, which corresponds to 314 cm waist cir-
cumflex of the patient, which is not realistic.  

The penetration depth defines a loss of the absorbed specific energy or field in 
the body. The 1/e or the 1/e2 means that below this penetration 37% or 13% of 
the field or energy remains and goes deeper. This penetration is a mathematical 
construction and does not determine the biological effects. The remained values 
of the acting field or absorbed energy could be enough to be effective for the ex-
pected actions. In biological point of view, this action defined depth describes 
the real penetration and not the mathematical one. A good example for this is 
the effect of X-rays causing apoptosis [40]. The mathematically defined penetra-
tion depth of the applied X-ray was around 10 cm, but the apoptosis effect was 
growing afterward and was active even over 25 cm depths too. In the case of  
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Figure 9. Comparison of penetration by current matching and plane-wave absorption. 
The definition is the 1/e loss (34% remains) of the initial energy. Vertical lines show 
the certified frequencies for medical use. The average conductivity is 0.6 S/m in every 
case; the patient width is 32 cm. The average penetration of current-matching is inde-
pendent of the frequency. 
 
capacitive coupling hyperthermia, two different concepts of effects are intro-
duced. In the planar-wave matching, the direct heating and the necrotic 
cell-death (CEM43˚CTx dose) is expected. In temperature scale, the aim in this 
matching technology is to reach at least 43˚C temperature in the Tx effective 
percentages of the tumor treatment. In the current-matching case, the goal is 
apoptosis and excitation of the actual membrane rafts [41] [42], initialize im-
munogenic cells death, [43]. The difference between the two matching methods 
in capacitive coupling techniques well observable and proven [44]. The apoptot-
ic signal can be induced with much smaller energy (and field) than the necrotic 
[45], which is shown in the strict synergy of the heat and field effects [46].  

The deep heating of the current density is proven by phantom measurements 
[47] as well as in the liver of living, anesthetized pig [48]. The efficacy in deep 
heating of the RF-current coupled hyperthermia is well applicable in the human 
medicine [49] [50], even in metastatic cases too [51], the technique of mEHT is 
highly efficient [26] [52], user-friendly, easy to operate and relatively cheap in 
comparison to other hyperthermia units [53] [54] [55]. 

5. Conclusion 

The penetration depth in the capacitively coupled systems depends on the 
matching technique, [56]. It is a new paradigm in oncologic hyperthermia [57]. 
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The RF-current matched solution has deeper mathematically defined penetra-
tion over the MHz frequency region than the plane-wave solution [14]. This last 
does not rely on the thickness of the patients, which the current matching does. 
The expected action in the body is also different in the two capacitive matching 
solutions. The current matching targets the apoptotic processes by immunogenic 
cell-death, while the plane-wave expects high temperature is causing necrosis of 
the heat-sensitive malignant cells. This method is well applied as complementary 
therapy [58], having special cellular effects [54], The electric field excites extrin-
sic apoptosis [59] [60] on the pathway starting at TRIAL-R2 (FADD-FAS) com-
plex inducing cleaved caspase-8 and the executor caspase-3 makes the apoptosis 
[23]. The proapoptotic cell-death-related gene network (EGR1, JUN, CDKN1A) 
is elevated which is available only in mEHT [44]. The complete MAPK pathway 
(RAS → RAF → MEK → ERK), is also excited to the apoptotic processes [61]. The 
effective depth of the action does not look identical to the mathematical defini-
tion of the penetration. For apoptosis, the sufficient depth could be much deeper 
than for necrosis. 
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