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Abstract 
In this study, the sliced functional time series (SFTS) model is applied to the 
Global, Northern and Southern temperature anomalies. We obtained the 
combined land-surface air and sea-surface water temperature from Goddard 
Institute for Space Studies (GISS), NASA. The data are available for Global 
mean, Northern Hemisphere mean and Southern Hemisphere means (monthly, 
quarterly and annual) since 1880 to present (updated through March 2019). 
We analyze the global surface temperature change, compare alternative ana-
lyses, and address the questions about the reality of global warming. We de-
tected the outliers during the last century not only in global temperature se-
ries but also in northern and southern hemisphere series. The forecasts for 
the next twenty years are obtained using SFTS models. These forecasts are 
compared with ARIMA, Random Walk with drift and Exponential Smooth-
ing State Space (ETS) models. The comparison is made on the basis of root 
mean square error (RMSE), mean absolute percentage error (MAPE) and the 
length of prediction intervals. 
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1. Introduction 

The global warming causes changes to the Earth’s climate, or long-term weather 
patterns that vary from place to place. While we think of “Global warming” and 
“Climate change” as synonyms, scientists use the term climate change when de-
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scribing the complex shifts affecting our planet’s weather and climate systems in 
different parts, because some areas actually get cooler in the short term, while 
the others become warmer. 

Climate change encompasses not only rising average temperatures but also 
extreme weather events, shifting wildlife populations and habitats, rising seas 
and a range of other impacts. All of those changes are emerging as humans con-
tinue to add heat-trapping greenhouse gases to the atmosphere, changing the 
rhythms of climate that all living things have come to rely on. It has become 
clear that humans have caused most of the past century’s warming by releasing 
heat-trapping gases called “greenhouse gases”. Their levels are higher now than 
at any time in the last 800,000 years and, as a result, glaciers are melting, sea le-
vels are rising and cloud forests are dying. 

2. Global Temperature and the Greenhouse Effect 

The warming that happens when certain gases in Earth’s atmosphere trap heat is 
considered as the greenhouse effect. These gases let in light but keep heat from 
escaping, just like the glass walls of a greenhouse, hence the name Greenhouse. 
Scientists have known about the greenhouse effect since 1824, when Joseph 
Fourier calculated that the Earth would be much colder if it had no atmosphere 
([1] [2]). This natural green house effect is what keeps the Earth’s climate livable; 
and without it, the Earth’s surface would be an average of about 60˚F (33˚C) 
cooler. 

2.1. Global Average Temperature  

The concept of “global average temperature” is convenient for detecting and 
tracking changes in planet’s energy budget that is how much sunlight Earth ab-
sorbs minus how much it radiates to space as heat over time. The concept of an 
average temperature for the entire globe may sometimes seem odd, as the high-
est and lowest temperatures on Earth are about more than 55˚C or 100˚F apart. 
In the Northern and Southern Hemispheres, temperatures vary from night to 
day and between seasonal extremes, means that some parts of Earth are quite 
cold while other parts are downright hot.  

In order to calculate a global average temperature, scientists begin with tem-
perature measurements taken at various locations around the globe. Because the 
goal is to track changes in temperature, these measurements are converted from 
absolute temperature readings to “temperature anomalies”. These are the differ-
ences between the observed temperature readings and the long-term average 
temperature for each location and time. Multiple independent research groups 
across the world performed their own analysis of the surface temperature data, 
and they all showed a similar trend in upward direction [3].  

2.2. Trends in Northern and Southern Hemisphere Temperature  

From increasing greenhouse gas concentrations, different parts of the world re-
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spond in different ways to warming. For example, high-latitude regions includ-
ing far north or south of the equator become warm faster than the global average 
due to positive feedbacks from the retreat of ice and snow, an increased transfer 
of heat from the tropics to the poles in a warmer world also enhances warming. 

2.3. Warmest Years on the Earth  

According to the American Meteorological Society’s State of the Climate in 
2017, the year brought an end to new record temperatures that were set each 
year from 2014 to 2016. Depending on the data set used, 2017 came in second or 
third warmest, after 2016 (warmest) and 2015 (second or third warmest) [4]. 
The near-record temperatures occurred in the absence of “El Niño” event, which 
is usually a factor in extreme global warmth. For much of 2017, “El Niño-Southern 
Oscillation (ENSO)” conditions were neutral, and October 2017 brought the 
start of “La Niña”, which typically drops global temperatures. Despite this, 2017 
readings were 0.38˚C - 0.48˚C (or 0.68 - 0.86˚F) above the average of 1981-2010. 
Hence 2017 was the warmest non-El Niño year in the instrumental record ([5] 
[6]). 

Figure 1 depicts the Global surface temperature in 2017 compared to the av-
erage temperature during 1981-2010. From this, it is clear that temperatures 
across most of the planet had been warmer than average during 1981-2010 (red 
colors). The high latitudes of the Northern Hemisphere were especially warm. 
Based on NOAA data [7], the 2017 average global temperature across both the 
land and ocean surface areas was 0.84˚C (1.51˚F) above the 1901-2000 average of 
13.9˚C (57.0˚F). This is making 2017 as the third-warmest year on record behind 
2016 (warmest) and 2015 (second warmest). Furthermore, it was the warmest 
non-El-Niño year in the record [7]. It is also noted that since the start of the  
 

 
Figure 1. Global surface temperature in 2017 compared to the average temperature dur-
ing 1981-2010. Source: NOAA Climate.gov map, based on data from NOAA NCEI [7]. 
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twenty-first century, the annual global temperature record has been broken five 
times, The top 10 warmest years on record have all occurred since 1998, and the 
four warmest years on record have all occurred since 2014.  

3. Literature Review 

In this section, we will review some existing literature on different models/methods 
used to measure the climate change.  

[8] used recent advances in time series econometrics to estimate the relation 
among emissions of carbon dioxide and methane, the concentration of these 
gases, and global surface temperature. These models were estimated and speci-
fied to answer two questions; whether the human activity affects global surface 
temperature and whether the global surface temperature affects the atmospheric 
concentration of carbon dioxide and methane. In this study, regression results 
provided direct evidence for a statistically meaningful relation between radioac-
tive forcing and global surface temperature. A simple model based on these re-
sults indicated that greenhouse gases and anthropogenic sulfur emissions were 
largely responsible for the change in temperature over the last 130 years.  

[9] used statistical models consisting of a trend plus serially correlated noise 
fitted to observed climate data, for example global surface temperature, the trend 
and noise representing systematic change and other variations, respectively. 
When such a model was fitted, the estimated character of the noise determined 
the precision of the estimated trend. In this study, the results of fitting such 
models to global temperature implied that there was uncertainty in the amount 
of temperature change over the past century of up to 0.2˚C and that the change 
was significantly different from zero. 

To characterize observed global and hemispheric temperatures, previous stu-
dies have proposed different types of data-generating processes (see e.g. [10] [11] 
[12] [13]). The most common among them are random walk and trend-stationary, 
however, these approaches offering contrasting views regarding how the climate 
system works.  

[14] presented an analysis of the time series properties of global and hemis-
pheric temperatures using modern econometric techniques. Their results showed 
that the temperature series can be better described as trend-stationary processes 
with a one-time permanent shock. They suggested that the climate change has 
affected the mean of the processes but not their variability. During the last cen-
tury, it has manifested in global and Northern Hemisphere temperatures, while a 
second stage is yet possible in the Southern Hemisphere. They argued that sig-
nificant anthropogenic interference with the climate system has already oc-
curred. 

In [15], the authors provided evidence of anthropogenic influence over the 
warming of the 20th century is presented and the debate regarding the time-series 
properties of global temperatures is addressed in depth. The 20th century global 
temperature simulations produced for the Intergovernmental Panel on Climate 
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Change’s Fourth Assessment Report and a set of the radiative forcing series used 
to drive them are analyzed using modern econometric techniques. Results show 
that both temperatures and radiative forcing series share similar time-series 
properties and a common nonlinear secular movement.  

4. Data and Statistical Methodology 

We obtained the Combined Land-Surface Air and Sea-Surface Water Tempera-
ture Anomalies (Land-Ocean Temperature Index, LOTI) from Goddard Insti-
tute for Space Studies (GISS), NASA https://data.giss.nasa.gov/gistemp/. The 
data are available for Global mean, Northern Hemisphere mean and Southern 
Hemisphere means (monthly, quarterly and annual) since 1880 to present, up-
dated through the most recent month [16].   

Functional Time Series (FTS) and Sliced Functional Time Series (SFTS)  
[17] first introduced the functional time series (FTS) models. Using these 

models, the interest lies in forecasting a series of functional data observed over 
time. The functional curves are observed (with error) at time t = 1, … n, and we 
wish to forecast the functions for times t = n + 1, … n + h. Let [ft(xj)] denote the 
observed data, where j = 1, … p. We assume that there are underlying L1 conti-
nuous and smooth functions [st(x)] such that: 

( ) ( ) ( ) .t j t j t j i jf x s x x eδ= +                     (1) 

where [ei.j] are independent and identically distributed variables with zero mean 
and unit variance, and ( )t jxδ  allows for heteroskedasticity. 

The technique in [17] uses non parametric smoothing on each curve ft(x) sep-
arately to obtain estimates of the smooth functions [st(x)]. Panelized regression 
splines are used for smoothing, and then a functional principal component ap-
proach [18] is used to decompose the time series of functional data into a num-
ber of principal components and their scores. The functional time series (FTS) 
model can be written as follows: 

( ) ( ) ( ) ( ),1
K

t k kkt ts x xx e xφµ
=

Ψ= + +∑               (2) 

where Ψk(x) is the kth principal component, the set of coefficients [ 1, ,,k m kφ φ ] 
are the corresponding scores, et(x) denote independent and identically distri-
buted random functions with zero mean, and K is the number of principal 
components to be used. 

To plot a functional time series, [19] proposed three new graphical methods. 
They include the rainbow plot, the “Functional Bagplot” and the functional 
highest density region “(HDR) Boxplot”. Their approach has a side benefit of 
identification of outliers, which may not be obvious from the plot of the original 
data. These outliers are two types, either 1) magnitude outliers (i.e. the curves lie 
outside the range of the vast majority of the data), or 2) they may be the shape 
outliers (the curves that are within the range of the rest of the data but they have 
different shape from other curves). It is also possible that the curves may exhibit 
a combination of these two features. The presence of the outliers may have se-
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rious effect on the modeling and forecasting series. 
To detect the outliers from a functional time series, the first step is to obtain 

the functional curves and the data are transformed into sliced functional time 
series (SFTS). For this, the entire data are sliced for each year as a function of 12 
months. These curves are plotted in rainbow order with red for the earlier years 
and violet for the most recent year. The functional curves are then projected into 
a finite dimensional subspace. The subspace R2 is chosen for simplicity. Each of 
the functional data point in R2 are ordered by 1) data depth and 2) data density, 
based on halfspace Bagplot in [20] and HDR Boxplot in [21]. Those curves with 
lowest depth and/or lowest density are considered to be the outliers (see [19] for 
details).  

Functional Bagplot 
The functional bagplot uses halfspace location depths described in [20] which 

is based on the bivariate bagplot of [22], applied to the first two principal com-
ponent scores. The depth region Rk is the set of all θ, with r(θ, z) ≥ k. Since the 
depth regions form a series of convex hulls, we have 1 2k kR R⊂  for k2 > k1. The 
Tukey bivariate depth median is defined as the value of θ which minimizes r(θ, 
Z) if there is such a unique θ, otherwise it is defined as the center of gravity of 
the deepest region. 

Functional HDR boxplot 
The functional HDR boxplot is based on the bivarate HDR Boxplot [21], 

which is applied to the first two principal component scores. The bivariate HDR 
boxplot is constructed using a bivariate kernel density estimate f(z), which is de-
fined as 

( ) ( )11 n
hi iif z n k z Z

=
= −∑ ,                    (3) 

where Zi represents a set of bivariate points; Khi(⋅) = K(⋅/hi)/hi; K is the kernel 
function; and hi is the bandwidth for the ith dimension. The bandwidths were 
selected using smoothed cross validation. Using the kernel density estimates, a 
HDR is defined as 

( ){ }:R z f z fα α= ≥ ,                       (4) 

where fα is such that ∫Rαf(z)dz = 1 − α; that is, it is the region with probability of 
coverage 1 − α, where all points within the region have a higher density estimate 
than any of the points outside the region, hence the name highest density region. 

5. Results of Statistical Analysis 

Figure 2 represents the average monthly global temperature since 1880 till 2018, 
as compared to the long-term average of twentieth century. Though warming 
has not been uniform across the planet, the upward trend in the globally aver-
aged temperature shows that more areas are warming than cooling, specifically 
after 1980. According to the international State of the Climate in 2017 report, it 
was observed that since 1901, the planet’s surface has warmed by 0.7˚ - 0.9˚ Cel-
sius (1.3˚ - 1.6˚ Fahrenheit) per century, but the rate of warming has nearly 
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doubled since 1975 to 1.5˚ - 1.8˚ Celsius (2.7˚ - 3.2˚ Fahrenheit) per century.  
Figure 3 depicts the mean monthly temperature anomalies of Northern and 

Southern Hemispheres from 1880 to 2018. If we compare the two series, we can 
observe that the northern series is more volatile with increasing trend than the 
southern series. The trend is evident from 1980 in northern and from 1960 in 
the southern hemisphere. The larger values of temperature anomalies in the 
Northern hemisphere may be due to the fact that it comprises of more land areas 
(represented by green color), whereas the southern hemisphere has more ocean/sea 
areas (represented by blue color). The ocean temperatures increase more slowly  
 

 
Figure 2. The graph shows average monthly global temperatures since 1880 compared to 
the long-term average (1901-2000). The zero line represents the long-term average tem-
perature for the whole planet during the twentieth century.  
 

 
Figure 3. Mean monthly temperature anomalies of northern hemisphere (green color) and southern hemisphere (blue color) 
during 1880-2018. The zero line represents the long-term average temperature during 1901-2000.  
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than land temperatures because the oceans lose more heat by evaporation and 
they have a larger heat capacity.   

Next, the data are transformed into sliced functional time series. The first step 
is to obtain the functional curves. For this, the entire data are sliced for each year 
as a function of 12 months, as plotted in Figure 4 and Figure 5. These curves are 
plotted in rainbow order with red for the earlier years and violet for the most 
recent year. We use R package rainbow [19] to construct these plots.  

Figure 4 shows the global temperature anomalies (1880-2018) as sliced func-
tional time series. The corresponding series for northern and southern hemis-
pheres are plotted in Figure 5. The curves are plotted in rainbow order, with 
earlier years as red and most recent years as violet. It confirms that the average 
temperature is continuously rising in recent years. Some of the anomalies in 
Northern hemisphere series are as high as 1.0 - 1.5 (considered to be as outliers). 
 

 
Figure 4. Sliced Functional Time series of Global Temperature Annomalies 1880-2018. 

 

 
Figure 5. (a) Sliced Functional Time series of Northern Hemisphere 1880-2018; (b) Sliced Functional Time series of Southern 
Hemisphere 1880-2018.   
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Variability in Northern series is higher than the variability in southern series due 
to more land areas in Northern Hemisphere.  

Outlier Detection in Temperature Series 
Next, the functional curves are projected into a finite dimensional subspace, 

the subspace R2 is chosen for simplicity. Based on halfspace bagplot [20] and 
HDR boxplot [21], each of the functional data point in R2 are ordered by data 
depth and data density. Those curves that have either lowest depth or lowest 
density are considered to be the outliers. 

1) The Functional Bagplots  
2) The Functional HDR Plots 
3) The Functional Bivariate plots  
Functional bagplots for Global, Northern and Southern Hemisphere series are 

plotted in Figures 6-8. Their respective functional HDR plots are shown in Fig-
ures 9-11; whereas, the functional bivariate plots based on the first two principle  
 

 
Figure 6. Functional Bagplot for Global temperature anomalies (1880-2018). Black 
represents the modal curve, whereas the outliers are represented by different colors. Inner 
and outer regions are plotted with dark grey and light grey colors respectively. 
 

 
Figure 7. Functional bagplot for average monthly temperature anomalies for Northern 
Hemisphere. The Median curve is denoted by black color, along with its confidence in-
terval (blue dotted lines). The outliers are represented by red, green, yellow, blue and 
purple colors. Inner and outer regions are plotted with dark grey and light grey colors re-
spectively.   
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Figure 8. Functional Bagplot for average monthly temperature anomalies for Southern 
Hemisphere. The median curve is denoted by black color, along with its confidence in-
terval (blue dotted lines). Inner and outer regions are plotted with dark grey and light 
grey colors respectively.   
 

 
Figure 9. Functional HDR plot for global temperature anomalies (1880-2018). The black 
line represents the modal curve, whereas the outliers are represented by red, yellow, 
green, blue and purple colors. Inner and outer regions are plotted with dark grey and 
light grey colors respectively. 
 

 
Figure 10. Functional HDR plot for Northern Hemisphere temperature anomalies 
(1880-2018). The black line represents the modal curve, whereas the outliers are 
represented by different colors. Inner and outer regions are plotted with dark grey and 
light grey colors respectively. 
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Figure 11. Functional HDR plot for Southern Hemisphere temperature anomalies 
(1880-2018). The black line represents the modal curve, whereas the outliers are represented 
by different colors. Inner and outer regions are plotted with dark grey and light grey col-
ors respectively. 
 
components are constructed in Figures 12-14 respectively. The outliers depicted 
from these plots are shown in Table 1. In global series, 1916, 2015 and 2016 are 
confirmed outliers from all three methods. The corresponding outlier years in 
the Northern hemisphere are 2015, 2016 and 2017, whereas 1997, 1998 are con-
sistently appeared to be the outliers in Southern series.  

Application of FTS Model  
Next, we apply the functional time series model of [17] and obtain the fore-

casts for next twenty years (2019-2038). The various components of FTS model 
(the mean function, the first two bases functions and corresponding time series 
coefficients) for global and the two hemisphere aeries are plotted in Figures 
15-17 respectively. Figures 18-20 show the forecasts of average temperature in 
the three series; again the years are plotted in rainbow order with earlier year in 
red and most recent year in violet color.  

The forecasts clearly show the warming in the three series. For global series, 
the forecasts values are relatively lower for the months of January and February, 
highest in March and then they are expected to be lower for April-July, slightly 
increase for August and October and relatively lower for the other months 
(Figure 18). The Northern Series shows the similar pattern with highest values 
in the month of March and lowest in July and relatively smaller in the other 
months (Figure 19).  

The Southern hemisphere series forecasts depict a different pattern. The fore-
casts curves show increase in the average temperature in the next twenty years, 
with the maximum temperature in May and August and minimum in the months 
of November and December (Figure 20).  

Forecast Comparison with the other Models  
Finally the forecasting performance of Sliced Functional Time Series (SFTS) 

model will be measured by Mean Error (ME), Mean Absolute Error (MAE), 
Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). 
These measures are described below: 
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Table 1. Outliers in global, Northern and Southern Hemisphere temperature series 
(1880-2018) using different methods of outlier detection. 

Method Global Series 
Northern Hemisphere 

Series 
Southern Hemisphere 

Series 

Functional Bagplot 
1903, 1912, 1916, 

2015, 2016 
1903, 1912, 1916, 
2015, 2016, 2017 

1911, 1924, 1997, 1998 

Functional HDR plot 
1911, 1916, 1997, 

2015, 2016, 2017, 2018 
1997, 2002, 2006, 2007, 

2015, 2016, 2017 
1911, 1976, 1977, 

1997, 2015, 2016, 2017 

Functional Bivariate 
plot 

1902, 1903, 1916, 
2015, 2016, 2017 

1889, 1903, 1935, 2000 
2015, 2016, 2017 

1911, 1924, 1997, 1998 

*The years in bold are magnitude outliers with high values and beyond the outer region. 

 

 
Figure 12. Functional Bivariate plot for global average temperature series with first two 
principal components are plotted. The Red asterisk is the sample median, whereas the 
inner and outer regions are plotted with dark grey and light grey colors respectively.  
 

 
Figure 13. Functional bivariate plot for Southern Hemisphere data with first two prin-
cipal components are plotted. The Red asterisk is the sample median, whereas the inner 
and outer regions are plotted with dark grey and light grey colors respectively. 
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Figure 14. Functional bivariate plot for Southern Hemisphere data with first two princip-
al components are plotted. The Red asterisk is the sample median, whereas the inner and 
outer regions are plotted with dark grey and light grey colors respectively. 
 

 
Figure 15. Different components of FTS models applied to the global average temperature during 1880-2018, along with 10-year 
forecasts and 80% prediction intervals of the time series coefficients.  

 

 
Figure 16. Different components of FTS models applied to the Northern Hemisphere average temperature dur-
ing 1880-2018, along with 10-year forecasts and 80% prediction intervals of the time series coefficients.  
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Figure 17. Different components of FTS models applied to Southern Hemisphere average temperature dur-
ing 1880-2018, along with 10-year forecasts and 80% prediction intervals of the time series coefficients.  

 

 
Figure 18. 20-year Forecasts (2019-2038) of Global Average Temperature Anomalies us-
ing Sliced Functional Time Series Model. The forecast years are plotted in rainbow order 
with red color for the initial year (2019) and violet for the latest year (2038).  
 

 
Figure 19. Twenty-year Forecasts (2019-2038) of Northern Hemisphere Temperature 
Anomalies using Sliced Functional Time Series Model. The forecast years are plotted in 
rainbow order with red color for the initial year (2019) and violet for the latest year (2038).  
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Figure 20. Twenty-year Forecasts (2019-2038) of Southern Hemisphere Temperature 
Anomalies using Sliced Functional Time Series Model. The forecast years are plotted in 
rainbow order with red color for the initial year (2019) and violet for the latest year 
(2038). 
 

1) ( )1ME N
i ii Y F N

=
= −∑  

2) ( )2
1RMSE N

i ii Y F N
=

= −∑  

3) 1MAE N
i ii Y F N

=
= −∑  

4) 1MAPE 100N i i
i

i

Y F
Y=

−
= ×∑  

where Yi denotes the observed value and Fi denotes the corresponding forecast 
value. These measures of forecast accuracy are also computed for ARIMA/SARIMA 
models of Box and Jenkins [23], exponential smoothing state space models [24] 
and random walk with drift models. For this, the global temperature series was 
divided into two sets: the training set 1880-1988 (109 years) and the test set 
1989-2018 (30-years). The out-of-sample forecasts accuracy is measured and the 
results are summarized in Table 2.  

Forecasts from these models are plotted in Figures 21-23 respectively. From 
these figures and Table 2, it is clear that the forecasts obtained by SFTS models 
have smaller values of error measures with relatively narrow prediction intervals.  

6. Discussion 

As part of the Paris Agreement on climate change [25], the international com-
munity committed in 2015 to limit rising global temperatures to well below 2˚C 
by the end of the 21st century and to pursue efforts to limit the temperature in-
crease even further to 1.5˚C. However, these global temperature targets mask a 
lot of regional variation that occurs as the Earth warms. For example, land 
warms faster than oceans, high-latitude areas faster than the tropics, and inland 
areas faster than coastal regions. 

In this paper, the global temperature data are analyzed through sliced func-
tional time series (SFTS) model, a relatively new method of forecasting, and the  

https://doi.org/10.4236/ojapps.2019.95026


F. Yasmeen 
 

 

DOI: 10.4236/ojapps.2019.95026 331 Open Journal of Applied Sciences 
 

 
Figure 21. 10-year Forecasts (2019-2028) of global average temperature using ARIMA 
model, along with 80% prediction intervals.  
 

 
Figure 22. 10-year Forecasts (2019-2028) of global average temperature using ETS model, 
along with 80% prediction intervals. 
 

 
Figure 23. 10-year Forecasts (2019-2028) of global average temperature using Random 
walk with drift model, along with 80% prediction intervals. 
 
monthly forecasts for the next twenty years (2019-2038) are obtained along with 
80% prediction intervals. These forecasts are also compared with the forecasts  
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Table 2. Out of sample forecasting performance of different models. 

Models ME RMSE MAE MAPE 

ARIMA/SARIMA 0.2238 0.2954 0.2451 55.8238 

ETS 0.2616 0.3416 0.2835 62.3048 

RW with Drift 0.2348 0.3340 0.2863 52.3225 

Sliced FTS −0.1875 0.2834 0.2047 48.3212 

 
obtained from Autoregressive Integrated Moving Average (ARIMA), exponen-
tial smoothing state space (ETS) and random walk with drift (RWD) models. It 
is found that the Sliced Functional Time Series models performed better than 
standard ARIMA, ETS and RWD models and the forecasts obtained from SFTS 
models are not only more accurate and reliable, but also they have narrow pre-
diction intervals as compared to other models. 

By 2038, the SFTS model projects that the average global surface temperature 
is expected to be 1.05 degree Celsius warmer than 1901-2000 average in the 
month of March, 0.95 degrees warmer in the months of January and February 
and about 0.85 degrees warmer in other months (see Figure 18). This similarity 
in temperatures regardless of total emissions is a short-term phenomenon: it re-
flects the tremendous inertia of Earth’s vast oceans. The high heat capacity of 
water means that ocean temperature doesn’t react instantly to the increased heat 
being trapped by greenhouse gases.  

Given the size and tremendous heat capacity of the global oceans, it takes a 
massive amount of accumulated heat energy to raise Earth’s average yearly sur-
face temperature, even a small amount. Behind the seemingly small increase in 
global average surface temperature over the past century is a significant increase 
in accumulated heat. That extra heat is driving regional and seasonal tempera-
ture extremes, reducing snow cover and sea ice, intensifying heavy rainfall, and 
changing habitat ranges for plants and animals by expanding some and shrink-
ing others.   
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