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Abstract 
As the demand for wind energy continues to grow at exponential rate, reduc-
ing operation and maintenance (O & M) costs and improving reliability have 
become top priorities in wind turbine maintenance strategies. Prediction of 
wind turbine failures before they reach a catastrophic stage is critical to reduce 
the O & M cost due to unnecessary scheduled maintenance. A SCADA-data 
based condition monitoring system, which takes advantage of data already 
collected at the wind turbine controller, is a cost-effective way to monitor 
wind turbines for early warning of failures. This article proposes a methodol-
ogy of fault prediction and automatically generating warning and alarm for 
wind turbine main bearings based on stored SCADA data using Artificial 
Neural Network (ANN). The ANN model of turbine main bearing normal 
behavior is established and then the deviation between estimated and actual 
values of the parameter is calculated. Furthermore, a method has been devel-
oped to generate early warning and alarm and avoid false warnings and 
alarms based on the deviation. In this way, wind farm operators are able to 
have enough time to plan maintenance, and thus, unanticipated downtime 
can be avoided and O & M costs can be reduced. 
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1. Introduction 

Power production from renewable sources becomes more and more important 
globally to meet the increasing demand of power and reduce the effect of the 
energy production on the environments, such as water and air, ecological system 
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and climate change. Wind power is one of the most developed renewable energy 
technologies worldwide with 432.491 GW installed capacity at the end of 2015 
[1]. It has overtaken hydro as the third largest source of power generation in the 
EU with a 15.6% share of total power capacity as seen in Figure 1 which has 
been increased remarkably from just tiny 2.4% in 2000 [2]. If the trend remains, 
it is no doubt that the target of 20% wind energy share of energy production in 
Europe will be met in 2020 [3] [4]. However, to achieve this target, the Levelised 
cost of wind energy still should be reduced further. Today, large wind turbines 
(2 - 10 MW) for both onshore and offshore from some wind equipment OEMs, 
such as Siemens and Vestas, are designed, tested and manufactured as economi-
cally viable alternatives to traditional fossil-fueled power generation. At the same 
time, the cost of wind energy has decreased sharply in last two decades which 
makes both onshore and offshore wind power more competitive than conven-
tional power generation sources, such as coal and gas, and other renewable 
energy [5]. Even though, the cost of wind power production, especially for off-
shore wind power, need to be reduced further to make it more competitive to 
other resources. Operations and Maintenance (O & M) has been estimated at up 
to 20% - 30% of overall lifetime costs for energy [6] [7]. It is really making sense 
to reduce the O & M cost by reducing unanticipated downtime through an au-
tomatic condition monitoring system. 

The best way to reduce the O & M cost of wind energy is to reduce downtime 
through online condition monitoring to enable the operators to plan mainten-
ance action when and only when it needed. Wind turbines often operate in se-
vere and remote environments which make the limitation of accessibility when 
the maintenance actions are needed. Therefore, unscheduled maintenance due 
to unexpected failures, even just small issues, can be very costly, not only for 
maintenance actions but also for lost production time. From the operators’ view, it  
 

 
Figure 1. Comparison of EU Power Mix in 2000 and 2015 [2]. 
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is, therefore, worth increasing effort spent to monitor the wind turbine condition 
in order to reduce unanticipated downtime and thus reduce the maintenance 
cost and production time loss. Therefore, prediction of faults of wind turbines as 
early as possible becomes the key part of condition monitoring. In the other 
hand, false critical alarms may cause even more cost due to lots of resources 
maybe used for the maintenance that is not needed.  

SCADA system, which is installed with almost all wind turbines, mainly logs 
the performance parameters of wind turbines. It would be beneficial for the 
wind farm owners if the SCADA data can be analysed and interpreted auto-
matically to predict faults early enough to help them to do the maintenance ac-
tions just when it is needed.  

There are mainly two methodologies for fault prediction of wind turbines: 
model-based or data-based. The model-based methods require a comprehensive 
physical or mathematical model which is usually unavailable. Data-based methods 
are based on the history data and data mining technologies are used to find the 
relations among variables in the data. Wind turbine mathematical/physical 
models are normally unavailable but the data has been collected and stored via 
SCADA system, and thus data-based technologies are preferred [8]. There are 
some works in literature to use SCADA data analysis to detect faults of wind 
turbine components with model-based or data-driven methodologies [9] [10] 
[11] [12] [13], however, none of them consider to design a mechanism to avoid 
false warning and false alarms due to sudden changes of wind turbine running 
condition which the model may be not fast enough to capture these changes. 

This paper describes the methodology to automatically predict incipient faults 
of wind turbine main bearings by analyzing SCADA data based on Artificial 
Neural Network (ANN), which has been implemented in EmPower® developed 
by Kongsberg Digital AS. The ANN model of turbine main bearing normal be-
haviour is established firstly and then the deviation between estimated and ac-
tual values of the parameter is calculated.The deviation is used to be an indicator 
of abnormal behavior of main bearing. To avoid the false warning/alarm, a time 
interval (i.e. a week) is used to calculate the percentage of time that the deviation 
is above warning/alarm threshold. In this way, incipient faults are detected in 
advance and false warning/alarm is avoided, and thus, only actual warn-
ings/alarms are sent to the operator. 

The remaining sections of this paper are organized as follows. Section 2 de-
scribes the principle of Artificial Neural Network (ANN). Section 3 proposes the 
procedure of fault prediction and warning/alarm generation. Section 4 describes 
how the normal behavior ANN model is established based on SCADA data. Sec-
tion 5 proposes how the warning and alarm can be generated automatically 
based on established normal behavior ANN model. Section 6 describes how the 
proposed procedure to be applied in online monitoring for wind turbines and 
some cases are shown. Section 7 gives the conclusions and indicates some future 
works. 
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2. Artificial Neural Network 

ANN is a type of massively parallel computer architecture based on brain-like 
information encoding and processing models which exhibit brain like behaviors 
such as learning, association, categorization, generalization, feature extraction 
and optimization. It is used in cases where rules or criteria for searching an an-
swer is not clear that is why ANN is often called black box due to that it can 
solve the problem but at times it is hard to explain how the problem is solved. 
For engineering purposes, the ANN can be thought of as a black box model 
which accepts inputs, processes them and produces outputs according to some 
non-linear transfer function [14]. There are lots of advantages of using ANN to 
model the multi-inputs, multi-outputs, non-linear system in literature in general 
[15] [16]. But for fault prediction, the most important characters are that it can 
deal with complicated non-linear problems effectively without the sophisticated 
and specialized knowledge of the real word.  

In the past decades, Artificial Neural Network (ANN) has successfully been 
applied to both classification and regression problems. There are some works in 
literature applied ANN for fault classification [17] [18] in which the method can 
detect if the monitored component is in fault or not. In this way, the operator can 
only know whether the component has already been failed or not, but cannot ei-
ther track the fault development or predict the fault. This paper looks the fault 
detection as a regression problem to estimate the relationships between key con-
dition indicator and other performance parameters, i.e. calculating the theoretical 
(estimated) value of relevant parameter and deviations between measurement 
and this estimated value, and thus the fault can be tracked and predicted.  

The learning methods of ANN can be generally classified as three categories 
based on that if the targets of the data are provided during the learning process, 
i.e. supervised learning, semi-supervised learning and unsupervised learning 
[15] [19]. The feed-forward neural network trained by the Levenberg-Marquardt 
back propagation algorithm is one of the most widely used which was proposed 
by Rumelhart and McCelland in 1986 [20]. A feed-forward neural network is an 
artificial neural network wherein connections between the units do not form a 
cycle. Figure 2 shows the architecture of the feed-forward network with one 
hidden layer trained by back propagation mechanism. The process of this net-
work learning can be found at the literature of [15] [21] [22]. The biggest ad-
vantage is that it does not require any special mention of the features of the 
function to be learned which is very suitable to be applied in wind turbine fault 
prediction due to the unknown of function features between inputs and outputs. 
It has been proved that three-layer feed-forward neural network model can ap-
proach any continuous functions at any precision [23] and thus it has been se-
lected to be implemented in Kongsberg EmPower® for automatic fault detection 
and prediction. 

3. Proposed Procedure of Fault Prediction 

This section describes the procedure of fault prediction based on SCADA data 
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analysis and ANN, and the way to generate warning/alarm to the customer as 
seen in Figure 3. There are mainly four steps of proposed methodology: estab-
lishing ANN normal behaviour of monitored variable, determining the warning 
and alarm level based on the SCADA data with faults and trained ANN normal 
behaviour model, online monitoring, and determining if the warning or alarm is 
generated to operators for planning the maintenance actions. 

Currently, the procedure is shown in Figure 3, which is integrated in Em-
Power®, has already applied in some wind farms (Hundhammerfjellet, Havøy-
gavlen and Smøla, etc.) for components of main bearings, gearboxes and gene-
rators bearings [24] [25] [26] [27], and the system can give early enough warn-
ing of failures to enable operators to schedule the maintenance actions.The fol-
lowing sections will show how this procedure works by taking main bearings as 
an example.  
 

 

Figure 2. Feed-forward Neural Network with Single Hidden 
Layer [15]. 

 

 

Figure 3. Procedure of fault prediction based on SCADA and ANN. 
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4. Establishing Normal Behavior Model 

SCADA data from the wind farm of Hundhammerfjellet owned by 
NTE—Nord-Trøndelag Elektrisitetsverk are used in this paper. Hundhammerf-
jellet Wind Farm is located in Nærøy, Norway and has been completed in De-
cember 2009. It has 17 wind turbines with output between 1.66 and 3.5 MW, de-
livered from Norwegian manufacturer Scanwind (14 turbines), Vestas (one V66) 
and Enercon (one E-70 2.0 MW and one E-70 2.3 MW). All SCADA data are 
logged in 10 minutes average. The turbines in this wind farms are direct-driven 
turbines (14 Scanwind turbines) without gearbox which makes the main bear-
ings suffer most of the torque which supposed to be suffered by the gearbox, and 
thus, the two main bearings, especially the rear one (generator side), become the 
vulnerable mechanical components. Therefore, the main shaft rear bearing is 
taken as an example to show how the methodology works.  

The temperature of main shaft rear bearing logged in SCDA system has been 
used as an indication of bearing condition (overheating) with fixed threshold of 
alarm which might be too late to avoid significant damage to the bearings. For 
instance, the temperature of slightly damaged bearing in winter time may not 
exceed the warning/alarm level just because the ambient surroundings cool the 
temperature down. This kind of variations of aspects makes the problem to 
detect the fault in time. Therefore, all relevant aspects of turbine operation 
should be considered to allow the abnormal condition of bearing temperatures 
to be detected in the context of the concurrent level of power generation, am-
bient temperature and so on leading to a quicker and more effective identifica-
tion of abnormal behavior. 

4.1. Parameter Selection 

There are lots of variables relevant to wind turbine conditions and performance 
have been logged by SCADA data. Only small part of them influence the tem-
perature of main shaft rear bearing which should be used to build the model. 
There is some literature to build the normal behavior model of gearbox using the 
relevant variables of power, nacelle temperature, cooling fan run status [9] [28] 
[29]. There are no works in the literature specifically for direct-driven wind tur-
bine main shaft bearings. We, Kongsberg Renewables Technology AS, have 
closely cooperated with the owner of wind farms. After careful analysis of rele-
vant parameters and discussion with the O & M operators, variables in Table 1 
have been selected as the variables to be used to build ANN normal behavior 
model. We have tested the wind speed as an additional input to the model, but 
the result has not been improved. Therefore, the inputs and output of the model 
are just as Table 1. 

4.2. Training and Testing ANN Model 

The variables to be used for ANN normal behavior model learning is shown in 
Table 1. The values of the variables should be as varied as possible in the learning  
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Table 1. Input and Outputs of ANN Model. 

Model Output Input 

Rear Bearing Temperature (t) 

Rear bearing temperature (t − 1) 
Active power output (t − 1, t) 

Ambient Temperature (t − 1, t) 
Turbine speed (t − 1, t) 

 
process which is obtained by using long enough period data with different run-
ning situations of the wind turbines. Therefore, six months from 01.01.2009 to 
01.07.2009 SCADA roughly 25,920 datasets as in Figure 4 are selected with dif-
ferent situations of stop-restarts, high and low power production and from win-
ter to summer time. Referring to the structure of ANN, the number of nodes in 
the input layer is the same as the number of inputs, i.e. 7, while the number of 
nodes of outputs layer is the same as the number of outputs, i.e. 1. There is no 
analytical algorithm to determine the number of nodes of hidden layer but the 
empirical number is between one and two times of sum of numbers of inputs 
and outs [30]. The trial and error method is also used to find the ANN topology 
with the smallest mean square error and finally the structure 7-10-1 is selected. 

The trained ANN model has been tested with new data together with trained 
data from the same healthy wind turbine. Figure 5 shows the data of inputs to 
the trained ANN model from 01.01.2009 to 01.07.2010 which contains both 
training data and new data. The turbine was stopped during the period of 
15.10.2009-15.04.2010 which can be seen in the figure. In the test process, it is 
not as the same as training process that the measurement of turbine rear bearing 
temperature (t − 1) is not used as an input but uses previous estimated tempera-
ture (t − 1) instead. In this way, the abnormal temperature affecting to ANN 
model has been avoided, and thus, the output of ANN model, which is always 
normal behavior model, is theoretical temperature. 

Figure 6 shows the output of rear bearing ANN model (EstimatedTemp), tur-
bine rear bearing temperature and the deviation between these two values. The 
mean deviation is 0.03˚C, and the root mean square error of the deviation is 
0.35˚C, which means that the model is good enough to simulate the normal be-
havior of turbine rear main bearing. The trend of deviation can be used to detect 
the development of bearing faults.  

The ANN model may not be able to follow the rapid changing of the turbine 
running condition such as the start of the turbine. Therefore, it is normal that 
the deviation will increase to a high level and goes back to normal with a short 
time. If the warnings/alarms are generated based on the single value of deviation, 
there would be lots of false warnings and alarms. Therefore, long time big devia-
tion would be better to be used to generate the warnings and alarms. The me-
chanism of how this work is described in Section 5. 

5. Warning/Alarm Setting 

To set the right warning and/or alarm level based on the deviation between actual 
 

DOI: 10.4236/ojapps.2018.86018 217 Open Journal of Applied Sciences 
 

https://doi.org/10.4236/ojapps.2018.86018


Z. Y. Zhang 
 

measurement and estimated temperature, data with faults must be used. Figure 7 
shows the inputs to the Normal behaviour ANN model which are SCADA data 
with fault component, i.e. turbine rear bearing. We, of course, cannot see any 
problem from the inputs variables in this figure and the expected output of the 
model should be the temperature without any fault. Figure 8(a) shows the esti-
mated temperature and turbine rear bearing temperature measurement while  
 

 
Figure 4. Neural network turbine rear bearing temperature model training data. 
 

 
Figure 5. Rear bearing test input data. 
 

 
Figure 6. Rear bearing test results. 
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Figure 7. Warning/Alarm setting data input. 
 

 
Figure 8. Warning/Alarm setting result. (a) Actual measurement and estimated 
temperature; (b) Deviation between estimated temperature and measurement; (c) 
Warn/Alarm percentage. 
 
Figure 8(b) shows the deviation between these two. The first important devia-
tion (3˚C) started at October 2010, i.e. point ①. The deviation kept in the higher 
level for approximately three months and increased further to 8˚C at point ② 

where the alarm should be generated. Approximately 2 weeks later, the wind 
turbine was stopped due to overheat of the bearing in point ③. There are two 

times at point ③ and point ④ trying to fix the problem, but not successfully, 
and finally the wind turbine was absolutely down at point ⑤. 
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From above analysis, the proposed methodology can provide an early warning 
of problems developing in the bearing before the absolute temperature becomes 
apparently high. However, if the 3˚C and 8˚C are set as fixed thresholds of the 
warning and alarm to generate warning and/or alarm to the operators automat-
ically, which is the expected function from operators of the wind farms, there 
will be many false warnings and false alarms. Red and green circles in Figure 8(b) 
show the false warnings and false alarms respectively. This phenomenon is very 
commonly happening due to the suddenly changing of running conditions of 
wind turbines. 

To avoid false warnings and false alarms, fixed warning/alarm thresholds 
cannot be used directly. Instead of setting warning/alarm at each data point, a 
time interval with sliding window is used to judge if the warning or alarm will be 
generated. The process can be described as following: 
• Selecting time an interval totalT  from beginning, i.e. one week or other spe-

cific time interval. 
• Finding the time with power production prodT  in the time interval totalT . 
• Finding all time when the deviation over the warning level ( warnT ) and alarm 

level alarmT . The fixed warning and alarm levels are 3˚C and alarm level 8˚C 
respectively in this case. 

• Calculating percentages of warning time and alarm time as following two 
formulas. 

Warning percentage: warn
warn

prod

100%
T

P
T

= ∗                    (1.1) 

Alarm Percentage: alarm
alarm

prod

100%
T

P
T

= ∗                    (1.2) 

If there are 25% production time with deviation over fixed warning/alarm lev-
el, the system will generate warning/alarm to operator automatically. In this way, 
the false warning and false alarms can be completely avoided.  

Figure 8(c) shows the warning/alarm settings with the above-mentioned 
mechanism. One week interval is selected as time duration to calculate the per-
centages of time over the warning and alarm level. The figure shows that all false 
warnings and alarms are avoided as seen in red and blue circles. Even the warn-
ing and alarm time is a little bit late compared with Figure 8(b) in point ① and 

② (approximately 2 - 3 days), the methodology still makes sense because it 
avoids lots of annoying disturbance due to the false alarm or false warning which 
the operator must take care of. Comparing with 4 - 5 months warning before the 
failure happens, 2 - 3 days delay is acceptable.  

6. Online Monitoring and Warning/Alarm Determination 

Once the normal behavior ANN model is trained and the warning/alarm is set, 
the proposed methodology can detect the corresponding fault of turbine rear 
bearing by comparing estimated and actual temperature, and furthermore, the 

 

DOI: 10.4236/ojapps.2018.86018 220 Open Journal of Applied Sciences 
 

https://doi.org/10.4236/ojapps.2018.86018


Z. Y. Zhang 
 

warning and/or alarm can be automatically generated to the operators to enable 
them to have enough time to plan the maintenance actions. The EmPower® has 
successfully predicted the faults of wind turbine rear bearings and generated 
warning and alarm signals automatically to the operator. Figure 9, Figure 10 
and Figure 11 show the faults predicted in three different turbines during the 
online condition monitoring.  
 

 
Figure 9. Online condition monitoring of turbine 3. (a) Estimated temperature, actual measurement, 
deviation and ambient temperature; (b) Warn/Alarm percentage. 

 

 
Figure 10. Online condition monitoring of turbine 15. (a) Estimated temperature, actual 
measurement, deviation and ambient temperature; (b) Warn/Alarm percentage. 
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Figure 11. Online condition monitoring of turbine 10. (a) Estimated temperature, actual 
measurement, deviation and ambient temperature; (b) Warn/Alarm percentage. 

 
Figure 9 shows the online condition monitoring result of turbine 3. It indi-

cates that the warning was generated as early as 10 months, and the alarm was 
generated 2.5 months before failure.  

Figure 10 shows the online condition monitoring result of turbine 15. It indi-
cates that the warning was generated 4.5 months, and the alarm was generated 
2.5 months before failure. 

Figure 11 shows the online condition monitoring result of turbine 10. It indi-
cates that the warning was generated 3.5 months, and the alarm was generated 
just 3 days before failure. We can see that the turbine rear bearing temperature 
increase extremely fast to very high level in very short time. ANN normal beha-
vior model can capture this trend, but of course, can only generate a short time 
alarm signal. 

These figures show that the time that the early warnings and alarms can be 
generated is varied. The expected mean values of these times should be set with a 
confidence level. However, the wind farms, which EmPower® applied in, just 
have these four cases of the rear bearing faults that are not enough for statistics. 
To set these expected times and their confidence level is a future work when 
more cases appear in these wind farms. 

7. Conclusions and Future Work 

This article proposed a methodology for fault prediction based on ANN and ex-
isting SCADA data for wind turbine components. After training, the previous 
output of the model becomes one of the inputs to ANN to calculate esti-
mated/theoretical values without the effect of abnormal situations of monitored 
parameters and thus the deviation between estimated and actual values can be 
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calculated which is used for to generate warnings and alarms. Furthermore, the 
mechanism of generating warning and alarm automatically to the operator has 
been proposed based on the deviation. A way to avoid false warning and alarm 
caused by sudden changing of wind turbine running condition has been also 
proposed. The results of online condition monitoring show that it can success-
fully predict the fault of wind turbine components and generate warnings and 
alarms in proper time before failure. In addition, the false warnings/alarms are 
also avoided by proposed mechanism. In this way, the operators can plan the 
maintenance actions when and just when they are needed in advance. Therefore, 
the unnecessary maintenance can be avoided and the O & M cost can be dra-
matically reduced. At the same time, downtime for maintenance has been dra-
matically reduced by preparation of everything before failure happen, and thus 
reduces the production loss.  

There are some directions for future work: 
EmPower® has also established the ANN normal behavior model for other 

components, i.e. turbine front bearings, generator bearings and gearboxes if the 
turbine is with a gearbox. However, no issue has founded yet for these compo-
nents since the system installed. Therefore, we should keep eyes on the online 
condition monitoring system based on proposed methodology to see if proposed 
procedures can be also functioning for these components. 

Currently, the percentage of time that the deviation is over warning, or alarm 
level is just based on the observation of the data. The systematic way should be 
developed in the future to find these percentage levels. 

The warnings can be given 3 - 10 months before failure while the alarms can 
be given from some days to 2 months before failure from the cases we have so 
far. In the future, the expected mean time the warning and alarm can be given 
should be used and the standard deviation should also be given based on a statis-
tical result. Since only four cases available, the statistical result cannot be con-
cluded. We should keep the system running and keep eyes on it to have enough 
cases to be able to have the statistical conclusion. 
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