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Abstract 
This paper is concerned with the steady flow of a second-grade fluid between 
two porous disks rotating eccentrically under the effect of a magnetic field. A 
perturbation solution for the velocity field is presented under the assumption 
that the second-grade fluid parameter β is small. It is also studied the effect of 
all the parameters on the horizontal force per unit area exerted by the fluid on 
the disks. It is found that the x- and y-components of the force increase and 
decrease, respectively, when the second-grade fluid parameter β and the 
Hartmann number M increase. It is seen that the forces in the x- and 
y-directions on the top disk increase with the increase of the suction/injection 
velocity parameter P but those on the bottom disk decrease. It is shown that 
the force acting on the top disk is greater than that acting on the bottom disk 
in view of the axial velocity in the positive z-direction. It is observed that the 
increase in the Reynolds number R leads to a rise in the horizontal force. 
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1. Introduction 

The orthogonal rheometer consisting of two parallel disks rotating with the same 
angular velocity about distinct axes was developed by Maxwell and Chartoff [1]. 
An exact solution corresponding to the flow of a Newtonian fluid in this instru-
ment was obtained by Abbott and Walters [2]. Rajagopal and Gupta [3] were the 
first to obtain an exact solution for a second-grade fluid and also studied the sta-
bility of the flow. Rajagopal [4] also studied the problem for a second order fluid 
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whose normal stress moduli do not obey the relations 1 0α ≥  and 1 2 0α α+ = . 
Rajagopal [5] showed that this motion is one with constant principal relative 
stretch history. 

The steady flow between eccentric rotating disks under the effect of a magnet-
ic field has been studied by many researchers. Mohanty [6] was the first to ob-
tain an exact solution to the MHD flow for a Newtonian fluid. Rao and Rao [7] 
investigated the MHD flow for a second-grade fluid. Ersoy [8] studied the MHD 
flow in the case of an Oldroyd-B fluid. Guria et al. [9] examined the effect of the 
heat transfer for a Newtonian fluid in the presence of a magnetic field for porous 
disks. Siddiqui et al. [10] investigated the MHD flow of a Burger’s fluid. Ersoy 
[11] studied the flow of a Maxwell fluid under the effect of a magnetic field when 
the disks are porous. 

The aim of this paper is to study the steady flow of an incompressible 
second-grade fluid between two insulated and porous disks rotating with the 
same angular velocity about two parallel axes under the effect of a magnetic 
field. It is a well-known fact that the governing equations of non-Newtonian 
fluids are in general of higher order than the Navier-Stokes equations. Even so, it 
is possible to find an exact solution for a second-grade fluid in this geometry 
when the disks are non-porous [7]. However, the order of the governing equa-
tion for porous disks exceeds the number of boundary conditions. The perturba-
tion solution is obtained by taking the second-grade fluid parameter β as the 
perturbation parameter. The velocity field and the horizontal components of the 
dimensionless force per unit area exerted by the fluid on the top and bottom 
disks are constructed for small values of the second-grade fluid parameter. 

2. Description of the Problem 

Let us consider an incompressible second-grade fluid between two porous and 
insulated disks located at = ±z h . The top and bottom disks rotate about the ′z - 
and ′′z -axes with the same angular velocity Ω , respectively. The distance be-
tween the axes of rotation is defined by 2ℓ in the y-direction. A uniform magnetic 
induction 0B  is applied in the positive z-direction. It is assumed that the mag-
netic Reynolds number for the flow is very small so that the induced magnetic 
field is negligible in comparison with the applied magnetic field. A uniform suc-
tion and injection are applied perpendicular to the top and bottom disks, respec-
tively. The schematic configuration of the problem is illustrated in Figure 1. 
Therefore, the appropriate boundary conditions for the velocity field are 

( )= −Ω − u y , = Ωv x , 0=w w  at =z h ,            (1) 

( )= −Ω + u y , = Ωv x , 0=w w  at = −z h ,           (2) 

= −Ωu y , = Ωv x , 0w w=  at 0=z ,              (3) 

where u, v, w denote the velocity components along the x, y, z-directions, re-
spectively. We look for a solution of the velocity field of the form 

( )= −Ω +u y f z , ( )= Ω +v x g z , 0=w w .            (4) 
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Figure 1. Flow geometry. 

3. Solution of the Problem 

The equations governing the flow are 

ρ = ∇ ⋅ + ×v T J B ,                       (5) 

0∇ ⋅ =v ,                           (6) 

where ρ is the density, v  the velocity vector, ( ), ,= x y zJ J JJ  the current den-
sity, B  the magnetic induction and the overdot denotes material time differen-
tiation. The velocity field in Equation (4) is compatible with the continuity Equ-
ation (6). 

The stress T  in a homogeneous second-grade fluid is given by [12] 
2

1 1 2 2 1µ α α= − + + +pT I A A A ,                  (7) 

where p is the pressure, I  the identity tensor, μ the dynamic viscosity coeffi-
cient, 1α  and 2α  the normal stress moduli. 1A  and 2A  stand for the first 
two Rivlin-Ericksen tensors defined through 

( )T
1 grad grad= +A v v ,                    (8) 

and 

( ) ( )T
2 1 1 1grad grad= + +A A A v v A .               (9) 

The coefficients μ, 1α , and 2α  must satisfy 

0µ ≥ , 1 0α ≥ , 1 2 0α α+ = .                (10) 

We refer the reader to [13] [14] [15] for more information about 
second-grade fluids. 

Inserting Equation (4) into Equations (5), (7)-(9), we obtain 

( ) ( )1 0 0 0α µ ρ ρ
∂ ′′′ ′′ ′′ ′= +Ω + − + Ω Ω + +
∂ y
p w f g f w f x g B J
x

,     (11) 

( ) ( )1 0 0 0α µ ρ ρ
∂ ′′′ ′′ ′′ ′= −Ω + − + Ω Ω − −
∂ x
p w g f g w g y f B J
y

,     (12) 

( )( )1 22 2 2α α
∂ ′ ′′ ′ ′′= + +
∂
p f f g g
z

,                (13) 
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where a prime denotes differentiation with respect to z. Using ( )σ= + ×J E v B , 
we have 

( )0σ= +x xJ E vB , ( )0σ= −y yJ E uB , σ=z zJ E ,         (14) 

where σ is the electrical conductivity of the fluid, ( ), ,= x y zE E EE  the electric  

field and 0B  the magnitude of the applied magnetic induction 0B . Since the 
disks are insulated, we obtain 0=zJ  and 0=zE . Using ∇× = 0E , we have 

( ) 2
1 0 0 0 1α µ ρ ρ σ′′′ ′′ ′′ ′+ Ω + − + Ω − =w f g f w f g B f C ,        (15) 

( ) 2
1 0 0 0 2α µ ρ ρ σ′′′ ′′ ′′ ′−Ω + − − Ω − =w g f g w g f B g C ,        (16) 

where 1C  and 2C  are constants. Combining Equations (15)-(16) and using
( ) ( ) ( )= +F z f z ig z , we get 

( ) ( )2
1 0 1 0 0α µ α ρ σ ρ′′′ ′′ ′+ − Ω − − + Ω =w F i F w F B i F C ,      (17) 

where C is a constant. The boundary conditions for ( )F z  are as follows: 

( ) = ΩF h , ( )− = −ΩF h , ( )0 0=F .              (18) 

Introducing the dimensionless quantities, 

( ) ( )
ζ =

Ω
F z

F , ζ =
z
h

, 0
σ
µ

=M B h , 1αβ
µ
Ω

= , 

0ρ
µ

=
w hP , 

2ρ
µ
Ω

=
hR ,                     (19) 

the governing Equation (17) and the conditions (18) reduce to the following di-
mensionless forms: 

( ) ( )21β β′′′ ′′ ′+ − − − + =PF i RF PRF M iR RF K ,        (20) 

( )1 1=F , ( )0 0=F , ( )1 1− = −F ,              (21) 

where a prime denotes differentiation with respect to ζ, and K  is a constant. 
We look for a perturbation solution for small values of the second-grade fluid 

parameter β as follows: 

( ) ( ) ( ) ( ) ( )2 3
0 1 2ζ ζ β ζ β ζ β= + + +F F F F O ,        (22) 

( )2 3
0 1 2β β β= + + +K K K K O ,                (23) 

where 0K , 1K  and 2K  are constants. Substituting Equations (22)-(23) into 
Equations (20)-(21) and equating the coefficients of different powers of β, we 
obtain 

( )2
0 0 0 0′′ ′− − + =RF PRF M iR RF K ,              (24) 

( )2
0 1 0 1 1 1′′′ ′′ ′′ ′+ − − − + =PF RF iRF PRF M iR RF K ,          (25) 

( )2
1 2 1 2 2 2′′′ ′′ ′′ ′+ − − − + =PF RF iRF PRF M iR RF K ,          (26) 

and 

( )0 1 1=F , ( )0 0 0=F , ( )0 1 1− = −F ,            (27) 
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( )1 1 0=F , ( )1 0 0=F , ( )1 1 0− =F ,              (28) 

( )2 1 0=F , ( )2 0 0=F , ( )2 1 0− =F .              (29) 

The solution of Equation (24) with Equation (27) is 

( ) ( ) ( )0 0 0 0exp expζ ζ ζ= + +F A a B b C ,           (30) 

where 

( )2 24

2

+ + +
=

P P M iR
a , 

( )2 24

2

− + +
=

P P M iR
b , 

( )0
1 cosh

sinh sinh sinh
−

=
− − −

bA
a b a b

, 
( )0

cosh 1
sinh sinh sinh

−
=

− − −
aB

a b a b
, 

( )0
cosh cosh

sinh sinh sinh
−

=
− − −

b aC
a b a b

.             (31) 

The solution of Equation (25) with Equation (28) is 

( ) ( ) ( ) ( )1 1 1 1 1 1exp expζ ζ ζ ζ= + + + +F A B a C D b E ,          (32) 

where 

1 0 1 0 1= +A A D E B , ( )
( )0

cosh cosh
sinh sinh sinh

− −
=

− − −
a b a

E
a b a b

, 

2
0

1 2
 = − −  

a A PaB i
P a R

, 1 0 1 0 1= +C B B H D , 

( )
( )0

cosh cosh
sinh sinh sinh

− −
=

− − −
b a b

H
a b a b

, 
2

0
1 2

 = − −  

b B PbD i
P b R

, 

( )1 0 1 1= −E I B D , ( )
( )0

1 cosh
sinh sinh sinh

− −
=

− − −
a b

I
a b a b

.        (33) 

Finally, the solution of Equation (26) subject to Equation (29) is 

( ) ( ) ( ) ( )2 2
2 2 2 2 2 2 2 2exp expζ ζ ζ ζ ζ ζ= + + + + + +F A B C a D E H b I ,   (34) 

where 

2 0 2 0 2 0 2 0 2= + + −A A E E B N C P H , ( )
( )0

sinh sinh
sinh sinh sinh

− −
=

− − −
a b a

N
a b a b

, 

( )0
sinh

sinh sinh sinh
=

− − −
bP

a b a b
, 

( )
1 2

2 22 2
= +

− −

L LB
P a P a

, 

( ) ( )
2

1 1 1 1 13 2= + − +
PaL aA B ia aA B
R

, 2
2 1

 = − 
 

PaL a B i
R

, 

( )
2

2 2 2
=

−
LC

P a
, 2 0 2 0 2 0 2 0 2= + + +D B B H E R H V C , 

( )
( )0

sinh sinh
sinh sinh sinh

+ −
=

− − −
b a b

R
a b a b

, 
( )0

sinh
sinh sinh sinh

=
− − −

aV
a b a b

, 
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( )
3 4

2 22 2
= +

− −

L LE
P b P b

, ( ) ( )
2

3 1 1 1 13 2= + − +
PbL bC D ib bC D
R

, 

2
4 1

 = − 
 

PbL b D i
R

, 
( )

4
2 2 2
=

−
LH

P b
, 

( ) ( )2 0 2 2 0 2 2= − − +I I B E U C H , ( )
( )0

sinh
sinh sinh sinh

−
=

− − −
a b

U
a b a b

.  (35) 

The shear stress components xzT  and yzT  in the fluid are presented in the 
dimensionless complex form as follows: 

( )1 β
β ′ ′′+ = − +xz yz

PT iT i F F
R

,                  (36) 

where 

µ
=

Ω
xz

xz
TT

h
, 

µ
=

Ω
yz

yz

T
T

h
.                  (37) 

For the small values of the second-grade fluid parameter, we obtain 

( ) ( ) ( ) ( )2 3
0 1 2ζ β ζ β ζ β+ = + + +xz yzT iT G G G O ,          (38) 

where 

( ) ( ) ( )0 0 0exp expζ ζ ζ= +G aA a bB b ,

( ) ( ) ( )1 11 12 13 14exp expζ ζ ζ ζ ζ   = + + +   G G G a G G b , 

2

11 0 1 1
 

= − + + 
 

PaG ia A aA B
R

, 

12 1=G aB , 

2

13 0 1 1
 

= − + + 
 

PbG ib B bC D
R

, 

14 1=G bD , 

( ) ( ) ( )2 2
2 21 22 23 24 25 26exp expζ ζ ζ ζ ζ ζ ζ   = + + + + +   G G G G a G G G b , 

2

21 1 1 2 2
2   = − + − + +   

  

Pa PaG ia A i B aA B
R R

, 

2

22 1 2 22
 

= − + + 
 

PaG ia B aB C
R

, 

23 2=G aC , 

2

24 1 1 2 2
2   = − + − + +   

  

Pb PbG ib C i D bD E
R R

, 

2

25 1 2 22
 

= − + + 
 

PbG ib D bE H
R

, 

26 2=G bH .                           (39) 
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4. Results and Discussions 

The present flow is defined by the superposition of a helical motion and a rigid 
body translation that is different from plane to plane in each z = constant plane. 
The axial component of velocity chosen in the positive 𝑧𝑧-direction is constant as 
a result of the continuity equation. Thus, the top and bottom disks are subjected 
to uniform suction and injection, respectively. The velocity field is presented by 
obtaining the functions ( )ζf  and ( )ζg  that represent the dimensionless x- 
and y-components of the translational velocity. The variations of ( )ζf  and 

( )ζg  with the Hartmann number M, the second-grade fluid parameter β, the 
suction/injection velocity parameter P, the Reynolds number R are drawn in 
Figures 2-5. 
 

 

Figure 2. Variations of ( )f ζ  and ( )ζg  for 0, 2, 4=M  

( 0.1, 0.1, 10β = = =P R ). 
 

 

Figure 3. Variations of ( )ζf  and ( )ζg  for 0, 0.2, 0.4β =  

( 1, 0.1, 10= = =M P R ). 
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Figure 4. Variations of ( )ζf  and ( )ζg  for 0,1, 2=P  

( 1, 0.1, 10β= = =M R ). 
 

 
Figure 5. Variations of ( )ζf  and ( )ζg  for 10, 20,30=R  

( 1, 0.1, 0.5β= = =M P ). 
 

The determination of the horizontal force acting on the disks is also important. 

1( )xzT ζ =±  and ( ) 1ζ =±yzT  represent the x- and y-components of the dimensionless  

force per unit area exerted by the top and bottom disks on the fluid, respectively. 
When the disks are non-porous, it is clear that the x- and y-components of the  
force on the top disk are equal to those on the bottom disk (i.e., ( ) ( )1 1ζ ζ= =−

=xz xzT T  

and ( ) ( )1 1ζ ζ= =−
=yz yzT T ). In view of the fact that the axial velocity of the fluid is 

chosen in the pozitive 𝑧𝑧-direction, the components of the horizontal force on the 
top disk are larger than those on the bottom disk (i.e., ( ) ( )1 1ζ ζ= =−

>xz xzT T  and 

( ) ( )1 1ζ ζ= =−
>yz yzT T ). The effects of all the parameters on ( ) 1ζ =±xzT  and ( ) 1ζ =±yzT  

are illustrated in Figures 6-9. 
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Figure 6. Variations of ( ) 1ζ =±xzT  and ( )
1ζ =±yzT  with 

M ( 0.1, 0.1, 10β = = =P R ). 
 

 

Figure 7. Variations of ( ) 1ζ =±xzT  and ( )
1ζ =±yzT  with 

β ( 1, 0.1, 10= = =M P R ). 
 

 

Figure 8. Variations of ( ) 1ζ =±xzT  and ( )
1ζ =±yzT  with 

P ( 1, 0.1, 10β= = =M R ). 
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Figure 9. Variations of ( ) 1ζ =±xzT  and ( )
1ζ =±yzT  with R 

( 1, 0.1, 0.5M Pβ= = = ). 

5. Conclusions 

The conclusions that can be drawn from the performed analysis are pointed out 
as follows: 
• When the Hartmann number M increases, the curves about which the fluid 

layers rotate start to get closer to the z-axis. These curves are closer to the 
plane 0=x  than the plane 0=y . The dimensionless force in the 
x-direction increases but that in the y-direction decreases. 

• When the second-grade fluid parameter β increases, the curves mentioned 
tend to move away from the z-axis. The effect of β on the translational veloc-
ity in the y-direction is greater than that in the x-direction. The x-component 
of the dimensionless force increases but the y-component decreases. It may 
be noticed that the change is almost linear. 

• The functions ( )ζf  and ( )ζg  representing the dimensionless x- and 
y-components of the translational velocity vector are anti-symmetric for 
non-porous disks; however, they are not anti-symmetric for porous disks. 
When the suction/injection velocity parameter P increases, the space curves 
get closer to the plane 0=y  in the region between the top disk and the 
plane 0=z , but move away from the plane 0=x . An adverse effect is ob-
served in the region between the bottom disk and the plane 0=z . Both the 
x- and y-components of the force on the top disk increase but those on the 
bottom disk decrease. It is observed that the change is almost linear. 

• When the Reynolds number R increases, the space curves in the core region 
become closer to the z-axis, and thus the boundary layers developing on the 
disks lead to an increase in the horizontal force on the top and bottom disks. 
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