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Abstract 
In this article, variational iteration method (VIM) and homotopy perturbation 
method (HPM) solve the nonlinear initial value problems of first-order frac-
tional quadratic integro-differential equations (FQIDEs). We use the Caputo 
sense in this article to describe the fractional derivatives. The solutions of the 
problems are derived by infinite convergent series, and the results show that 
both methods are most convenient and effective. 
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1. Introduction 

The fractional calculus has appeared in many areas during the recent decades. 
Some scientists use approximation and numerical methods because there are 
almost no exact solutions of the fractional differential equations. He has pro- 
posed the VIM and HPM to solve the problems of linear and nonlinear [1] [2] [3] 
[4]. VIM is based on Lagrange multiplier. The another method is HPM which 
defines as a coupling of the traditional perturbation method and homotopy in 
topology. Many authors successfully apply these methods to find the solutions of 
functional equations which arise in scientific and engineering problems [1] [5] 
[6] [7] [8] [9]. The Adomian decomposition method presents solution of 
functional equations but perhaps we find some difficulties that will arise during 
the computation of Adomian polynomials, the VIM and HPM overcome it is 
difficulties [7]. Fractional differential equations have diverse applications of 
physical phenomena [10] [11] [12] [13], for instance, acoustics, electromag- 
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netism, control theory, robotics, viscoelastic materials, diffusion, edge detection, 
turbulence, signal processing, anomalous diffusion and fractured media [14]. In 
literature, Momani and Noor [15] used the Adomian decomposition method for 
solving the fourth order fractional integro-differential Equation. Elbeleze et al. 
[16] [17], Kadem and Kilicman [18] applied the HPM and VIM methods for 
integro-differential Equation of fractional order with initial-boundary con- 
ditions. Recently, Gaafar [19] studied the existence and nondecreasing solution 
for the initial value problem of a quadratic integro-differential equations. How- 
ever, there is little work on nonlinear fractional quadratic integro-differential 
equations. 

Our goal for this article is extending the analysis of VIM and HPM to 
construct the approximate solutions of the following nonlinear initial value 
problems for first-order fractional quadratic integro-differential equations. 

( ) ( ) ( ) ( ) ( )( )
0 0

y y , y d , 0 1,
x

k
k

b D x g x x H x t F t tα λ α
∞

=

= + < ≤∑ ∫      (1) 

subject to the following initial condition: 

( ) 0y 0 ,γ=                               (2) 

Dα  is the fractional derivative in the caputo sense, ( )( )yF x  is any 
nonlinear function, 0γ  is real constant and g is given and can be approximated 
by taylor polynomials. 

2. Basic Definitions 

In this section, we intend to present some basic definitions and properties of 
fractional calculus theory which are further used in this article. 

Definition 1. 
Areal function ( ) , 0f x x >  is said to be in space Cµ , Rµ ∈  if there exists 

a real number p µ> , such that ( ) ( )1
pf t t f t= , where ( ) ( )1 0,f t C∈ ∞ , and it 

is said to be in the space nCµ  if and only if nf Cµ∈ , n N∈ . 
Definition 2. 
The Riemann-Liouville fractional integral operator of order 0α >  of a 

function , 1f Cµ µ∈ ≥ − , is defined as 

( ) ( ) ( ) ( )1

0

1 d , 0,
t

f t t s f s sαα α
α

−= − >
Γ ∫              (3) 

( ) ( )0 .f t f t=  

Some properties of the operator α  can be found in [11], which are needed 
here, as follows: 

for , 1, , 0f Cµ µ α β∈ ≥ − ≥  and 1γ ≥ − : 

1. ( ) ( ) ,f t f tα β α β+=    

2. ( ) ( ) ,f t f tα β β α=     

3. ( )
( )

1
.

1
t tα γ α γγ

α γ
+Γ +

=
Γ + +

  

Definition 3. The fractional derivative of ( )f t  in the caputo sense is defined as 
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( ) ( ) ( ) ( )1

0

1 d ,
t

m mD f t t s f s s
m

αα

α
− −= −

Γ − ∫               (4) 

for 11 , , 0, mm m m N t f Cα −− < ≤ ∈ > ∈ . 
Lemma 1. 
If 1 , , , 1,mm m m N f Cµα µ− < ≤ ∈ ∈ ≥ −  the the following two properties 

hold: 
1. ( ) ( ) ,D f t f tα α =  

2. ( ) ( ) ( ) ( ) ( )1
0 0 .

!

k
m k
k

tD f t f t f
k

α α −

=
= −∑  

3. Analysis of VIM 

The basic concept of the VIM is constructing the correction functional for the 
fractional quadratic integro-differential equation sees Equation (1) with initial 
conditions, 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

1
0

0

y y y

y , y d ,

k k k k
k

a

k k

x x x b D x g x

x H x s F s s

β αµ

λ

∞

+
=

 = + − 



− 



∑

∫







            (5) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

1
1

00

0

1y y y

y , y d d ,

x

k k k k
k

a

k k

x x x s s b D s g s

s H s p F p p s

β αµ
β

λ

∞
−

+
=

= + − −Γ 


− 



∑∫

∫





        (6) 

β  is the Rieman-Liouville fractional integral operator of order 
1 mβ α= + − , µ  is a general Lagrange multiplier and ( )y ,k g s   refers to the 

restricted variation (i.e.) ( )y 0, 0,k g sδ δ= =   to identify the approximate 
Lagrange multiplier, construct the correctional function (6) which can be 
approximately expressed as: 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

1

1

00 0

y y

y y , y d d ,

k k

x a

k k k k
k

x x

s b D s g s s H s p F p p sµ λ

+

∞

=

=

 
+ − − 

 
∑∫ ∫ 

 (7) 

taking the variation of Equation (7) to the independent variable yk  we find 

( ) ( ) ( ) ( )1
1

00

y y y d ,
x

k k k k
k

x x s b D s sδ δ δ µ
∞

+
=

 = +  
 
∑∫                  (8) 

to make the previous equation stationary, we gain the following stationary 
conditions: 

( ) ( )1 0, 0,
s x s x

s sµ µ
= =

′+ = =                       (9) 

finally, the Lagrange multiplier is: 

( ) 1.sµ = −                            (10) 

We achieve the following iteration formula by substitution of (10) into the 
functional (6) 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

1
1

00

0

1y y y

y , y d d ,

x

k k k k
k

a

k k

x x x s s b D s g s

s H s p F p p s

α αµ
α

λ

∞
−

+
=

= − − −Γ 


− 



∑∫

∫
        (11) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1
0 0

y y y y , y d ,
a

k k k k k k
k

x x b D x g x s H x s F s sα α λ
∞

+
=

 
= − − − 

 
∑ ∫ (12) 

the initial approximation ( )0y x  can be selected by the following way which 
satisfies initial conditions 

( ) ( )0 0 0y , where y 0 .x γ γ= =                       (13) 

4. Analysis of HPM 

The main concept of the HPM is constructing the homotopy for fractional 
quadratic integro-differential equation sees Equation (1), 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
0 0 0

1 y y y , y d 0,
a

k k
k k

p b D x p b D x g x x H s x F x xα α λ
∞ ∞

= =

 
− + − − = 

 
∑ ∑ ∫ (14) 

( ) ( ) ( ) ( ) ( )( )
0 0

y y , y d 0,
a

k
k

b D x p g x x H s x F x xα λ
∞

=

 
= + = 

 
∑ ∫         (15) 

[ ]0,1p∈  is an embedding parameter. If 0p = , then Equation (15) turns 
into a linear Equation  

( )
0

y 0,k
k

b D xα
∞

=

=∑  

and when 1p = , then Equation (15) becomes to be the original problem. 
The solution of Equation (1) can be considered as a power series in p which is 

the basic assumption of HPM : 

( ) ( ) ( ) ( ) ( )2 3
0 1 2 3y y y y y ,x x p x p x p x= + + + +           (16) 

when 1p =  in (16) the approximate solution of Equation (1) can be as 
following 

( ) ( ) ( ) ( ) ( )0 1 2 3y y y y y ,x x x x x= + + + +  

First, substitute the relation (16) in the Equation (15). Second, equate the 
terms which have the same power’s of p which yield to the following series of 
equations: 

( )0
0: y 0,p D xα =                          (17) 

( ) ( ) ( ) ( ) ( )( )( )1
1 0 1 0

0

: y y , y d ,
a

p D x g x x H s x F x xα λ= + ∫            (18) 

( ) ( ) ( ) ( )( )( )

( ) ( ) ( )( )( )

2
2 0 2 1

0

1 1 0
0

: y y , y d ,

y , y d ,

a

a

p D x x H s x F x x

x H s x F x x

α λ

λ

=

+

∫

∫
             (19) 
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( ) ( ) ( ) ( )( )( )

( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )

3
3 0 3 2

0

1 2 1 2 1 0
0 0

: y y , y d

y , y d y , y d ,

a

a a

p D x x H s x F x x

x H s x F x x x H s x F x x

α λ

λ λ

=

+ +

∫

∫ ∫
(20) 

and so on, the functions 1 2, ,F F   satisfy the following condition: 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )2 2
0 1 2 1 0 2 1 3 2y y y y y yF x p x p x F x pF x p F x+ + + = + + +   

5. Applications 

n this section, we apply VIM and HPM to first-order nonlinear (FQIDEs). 
Example 1. 
Consider the following nonlinear first-order (FQIDEs): 

( ) ( ) ( ) ( )
0

y 1 e 3e y y d , 0 1,
x

x xD x x x t tα α= + + + < ≤∫           (21) 

subject to the following initial condition 

( )y 0 1.=                              (22) 

According to VIM, the expression of the iteration formula (12) for Equation 
(21) can be observed in the following form: 

( ) ( ) ( ) ( ) ( ) ( )1
0

y y y 1 e 3e y y d .
x

x x
k k k k kx x D x x x t tα α
+

 
= − − + − − 

 
∫      (23) 

To avoid the difficulty of fractional integration, for the exponential term we  

take the truncated taylor expansion in (23), e.g., 
2 3

e ~ 1
2 6

x x xx+ + +  to sa- 

tisfy the initial condition (22), we assume that the initial approximation has the 
following form ( )0y 1,x =  first-order approximation takes the following form 
by using iteration Formula (23): 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 0 0 0 0
0

2

y y y 1 e 3e y y d ,

3 6 51 ,
1 2 3

x
x xx x D x x x t t

x x x

α α

α

α α α

 
= − − + − − 

 
 −

= − − −  Γ + Γ + Γ + 

∫

     (24) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )
( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

( )

2
2

3 2
2 1

2 2 2 2

2 3

5 4 3 3 1
2

3 6 5y 1
1 2 3

23 21 48 36
4 4 4 4 2 2

3
6 5 9 30 45

4 2 3

4
5 20

2 4 4

2 2
9 99 423 864 324 .

4 3 2

x x x x

x

x

x

x

α

α

α

α

α

α α α

αα α
α α α α α

α
α α α α

α α

α
α

α α

α
α α α α

α α

+

+

+

+

 −
= − − −  Γ + Γ + Γ + 

  Γ +−
− − − −  Γ + Γ + Γ + Γ + Γ + 

Γ +
− − − − − − −

Γ + Γ +

Γ +
− − −

Γ + Γ +

Γ +
+ + + + +
Γ + Γ +

   (25) 



F. A. Hendi et al. 
 

162 

Table 1 and Figure 1 presents the approximate solution for the different 
values of α, we have noticed that the accuracy is improving. First, by computing 
more terms of the approximate solutions. The second way is taking more terms 
in the taylor expansion of the exponential term. 

According to HPM, we build the following homotopy: 

( ) ( ) ( ) ( )
0

y 1 e 3e y y d ,
x

x xD x p x x t tα  
= + + + 

 
∫              (26) 

First, substitute the relation (16) in the Equation (26). 
Second, equate the terms which have the same power’s of p which yield to the 

following series of Equations: 
 

 
Figure 1. Approximate solution for Equation (21) is ob- 
tained by VIM with different values of α. 

 
Table 1. Approximate solution for Equation (21) at different values of α. 

x 0.25α =  0.50α =  0.75α =  1α =  

0.10 3.46688592 2.27052430 1.65826130 1.33251002 

0.20 4.93376139 3.18886968 2.27376989 1.74152708 

0.30 6.70750098 4.28829701 3.00556169 2.24764961 

0.40 8.84373442 5.65002513 3.90802714 2.87616667 

0.50 11.37418953 7.33008584 5.02934761 3.65730794 

0.60 14.32676071 9.37815747 6.41827073 4.62649375 

0.70 17.72917203 11.84228561 8.12594765 5.82458502 

0.80 21.60990786 14.77061532 10.20665676 7.29813333 

0.90 25.99846722 18.21217939 12.71816657 9.09963086 

1.00 30.92541601 22.21731293 15.72195568 11.28776041 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 1
0 1 0 0

0

2
2 0 1 1 0

0 0

: y 0, : y 1 e 3e y y d ,

: y y y d y y d ,

x
x x

x x

p D x p D x x x t t

p D x x t t x t t

α α

α

= = + + +

= +

∫

∫ ∫
    (27) 

and so on, apply the operator α  to the previous equations, and use the initial 
condition (22), to gain the following equations: 

( )0y 1,x =                              (28) 

( ) ( ) ( ) ( )1 0 0
0

y 1 e 3e y y d ,
x

x xx x x t tα  
= + + + 

 
∫               (29) 

( ) ( ) ( ) ( ) ( )2 0 1 1 0
0 0

y y y d y y d ,
x x

x x t t x t tα  
= + 

 
∫ ∫               (30) 

and so on, by taking the truncated taylor expansions for the exponential term in  

(29, 30): e.g., 
2 3

e ~ 1
2 6

x x xx+ + +  to avoid the difficulty of fractional integra- 

tion, thus by solving Equations (28, 29, 30), we obtain 1 2y , y ,  

( ) ( ) ( ) ( )
1 2

1
3 6 5y ,

1 2 3
x x xx
α α α

α α α

+ +

= + +
Γ + Γ + Γ +

               (31) 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 1 2 2
2

2 3

1 2 2 3
y 3 6

1 2 2 2 2 3

3 4
5 .

3 2 4

x x x

x

α α

α

α α α α
α α α α

α α
α α

+ +

+

   Γ + + Γ + Γ + + Γ +
= +      Γ + Γ + Γ + Γ +   

 Γ + + Γ +
+   Γ + Γ + 

   (32) 

The two terms approximation are formed as the following Equation  

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 2
2 1

2

2 2 2 3

1 23 6 51 3
1 2 3 1 2 2

2 3 3 4
6 5

2 2 3 3 2 4

x x xx x

x x

α α α
α

α α

α α
φ

α α α α α

α α α α
α α α α

+ +
+

+ +

 Γ + + Γ +
= + + + +   Γ + Γ + Γ + Γ + Γ + 

   Γ + + Γ + Γ + + Γ +
+ +      Γ + Γ + Γ + Γ +   

 (33) 

Table 2 and Figure 2 shows the approximate solutions of (33) for 0 1x< <  
and for some values of ( ]0,1α ∈ . 

Figure 3 represent a comparison between two approximate solutions by using 
VIM and HPM methods. 

Example 2. 
Consider the following (FQIDEs): 

( ) ( ) ( ) ( )2

0

y 1 y e y d , 0 1, y 0 1.
x

tD x x t tα α−= + < ≤ =∫          (34) 

According to VIM, the expression of the iteration Formula (12) for Equation 
(34) can be observed in the following form: 

( ) ( ) ( ) ( ) ( )2
1

0

y y y 1 y e y d .
x

t
k k k k kx x D x x t tα α −
+

 
= − − − 

 
∫        (35) 

To avoid the difficulty of fractional integration, for the exponential term we  
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Figure 2. Approximate solution for Equation (21) is obtained by 
HPM with different values of α. 

 

 

Figure 3. Comparison of approximate solution by using HPM 
and VIM at 1α = . 

 

take the truncated taylor expansion in (35), e.g., 
2 3

e ~ 1
2 6

x x xx+ + +  to satisfy 
the initial condition, we assume that the initial approximation has the following 
form ( )0y 1,x =  first-order approximation takes the following form by using 
iteration Formula (35): 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
1 0 0 0 0

0

1 2 3 4

y y y 1 y e y d ,

1 ,
1 2 3 4 5

x
tx x D x x t t

x x x x x

α α

α α α α α

α α α α α

−

+ + + +

 
= − − − 

 
 −

= − − + − +  Γ + Γ + Γ + Γ + Γ + 

∫
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Table 2. Approximate solution for Equation (21) at different values of α. 

x 0.25α =  0.50α =  0.75α =  1α =  

0.10 3.34976072 2.25905581 1.65729056 1.33243542 

0.20 4.53980075 3.12399413 2.26453456 1.74033333 

0.30 5.90653782 4.10952104 2.97106726 2.24160625 

0.40 7.51861405 5.28303363 3.82016538 2.85706667 

0.50 9.41603098 6.68897807 4.84789742 3.61067708 

0.60 11.63265252 8.36684782 6.09010254 4.52980000 

0.70 14.20081997 10.35549050 7.58435402 5.64544792 

0.80 17.15275198 12.69459789 9.37077013 6.99253333 

0.90 20.52106372 15.42533768 11.49244150 8.61011875 

1.00 24.33898202 18.59065973 13.99570082 10.54166666 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) (

) ( )
( )

( )

) ( )
( )

1 2 3 4

2

5
6 5 4 3

2 7 2 1

3 2 7

6 5 4 2 2

y 1
1 2 3 4 5

1 30 376 2550 10099
6 8

2
23340 29124 15120

2 2

1 8139 16970 3546 2520
8 2 2

3
15 184 1175

2 3

x x x x xx

x

x

x

α α α α α

α

α

α

α α α α α

α α α α
α α

α
α α α

α

α α α α
α

α
α α α

α

+ + + +

+

+

+

= + + − + −
Γ + Γ + Γ + Γ + Γ +

+ + + + +
Γ + Γ +

Γ +
+ + + +

Γ +

−+ − − + −Γ + 

Γ +
− − − +

Γ +
,

   (36) 

Table 3 and Figure 4 presents the approximate solution for the different 
values of α, we have noticed that the accuracy is improving. First, by computing 
more terms of the approximate solutions. The second way is taking more terms 
in the taylor expansion of the exponential term. 

According to HPM, we build the following homotopy: 

( ) ( ) ( )2

0

y 1 y e y d ,
x

tD x p x t tα − 
= + 

 
∫                 (37) 

First, substitute the relation (16) in the Equation (37). 
Second, equate the terms which have the same power’s of p which yield to the 

following series of Equations: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 1 2
0 1 0 0

0

2 2
2 0 0 1 1 0

0 0

: y 0, : y 1 y e y d ,

: y y e 2y y d y e y d ,

x
t

x x
t t

p D x p D x x t t

p D x x t t t x t t

α α

α

−

− −

= = +

= +

∫

∫ ∫
      (38) 

and so on, applying the operator α  to the previous Equations, and use the 
initial condition (34), to gain the following Equations: 
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Figure 4. Approximate solution for Equation (34) is obtained by 
VIM with different values of α. 

 
Table 3. Approximate solution for Equation (34) at different values of α. 

x 0.25α =  0.50α =  0.75α =  1α =  

0.10 1.74557818 1.39713379 1.20769182 1.10549607 

0.20 2.06685872 1.63644354 1.37989631 1.22394067 

0.30 2.39681774 1.88439871 1.56340949 1.35821602 

0.40 2.74634447 2.15443603 1.76686736 1.51115026 

0.50 3.11743203 2.45118250 1.99492282 1.68553370 

0.60 3.51027500 2.77680334 2.25082546 1.88413224 

0.70 3.92459385 3.13252560 2.53716249 2.10969920 

0.80 4.35998072 3.51915865 2.85615873 2.36498657 

0.90 4.81599699 3.93730820 3.20982456 2.65275652 

1.00 5.29219083 4.38747370 3.60003936 2.97579365 

 

( )0y 1,x =                            (39) 

( )1
0

y 1 e d ,
x

tx tα − 
= + 

 
∫                       (40) 

( ) ( ) ( )2 1 1
0 0

y 2 e y d y e d ,
x x

t tx t t x tα − − 
= + 

 
∫ ∫               (41) 

and so on, by taking the truncated taylor expansions for the exponential term in  

(40, 41): e.g., 
2 3

e ~ 1
2 6

x x xx− − + − . 

To avoid the difficulty of fractional integration, thus by solving Equations (39, 
40, 41), we obtain 1 2y , y ,  
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( )0y 1,x =                                (42) 

( ) ( ) ( ) ( ) ( )
1 2 3

1y ,
1 2 3 4

x x x xx
α α α α

α α α α

+ + +

= + − +
Γ + Γ + Γ + Γ +

          (43) 

( ) ( ) ( ) (

) ( )
( ) ( )

( )
( )

( ) ( ) (

) ( )
( ) ( )

( )
( )

( ) ( )
( )
( )

5 4 3 2
2

2 1 2 1

5 4 3 2

2 2 2 2

2 2
2

1y 1680 2 42 338 1302
7 6

2 212396
2 2 2 2

1 2 38 262 778
7 6

3 31840
2 3 2 2 3

31 ,
2 3

x

x x

x x

x

α α

α α

α

α α α α
α α

α α
α

α α α α

α α α α
α α

α α
α

α α α α
α
αα α α α

+ +

+ +

+

= + + + +
+ Γ +

Γ + Γ +
+ +

Γ + Γ Γ +

+ − − − −
+ Γ +

Γ + Γ +
− −

Γ + Γ Γ +
Γ +

+ +
Γ +Γ + Γ



      (44) 

the two terms approximation are formed as the following Equation  

( ) ( ) ( ) ( ) ( )

( ) ( ) (

) ( )
( ) ( )

( )
( )

1 2 3

2

5 4 3 2

2 1 2 1

1
1 2 3 4
1 1680 2 42 338 1302

7 6

2 212396 ,
2 2 2 2

x x x xx

x x

α α α α

α α

φ
α α α α

α α α α
α α

α α
α

α α α α

+ + +

+ +

= + + − +
Γ + Γ + Γ + Γ +

+ + + + +
+ Γ +

Γ + Γ +
+ + +

Γ + Γ Γ +


     (45) 

Table 4 and Figure 5 shows the approximate solutions of (34) for 0 1x< <  
and for some values of ( ]0,1α ∈ . 
Figure 6 represent a comparison between two approximate solutions by using 
VIM and HPM methods. 
 

 
Figure 5. Approximate solution for Equation (34) is obtained 
by HPM with different values of α. 
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Figure 6. Comparison of approximate solution by using 
HPM and VIM at 1α = . 
 

Table 4. Approximate solution for Equation (34) at different values of α. 

x 0.25α =  0.50α =  0.75α =  1α =  

0.10 1.74531342 1.39709144 1.20768552 1.10549521 

0.20 2.06407267 1.63581216 1.37976305 1.22391477 

0.30 2.38608229 1.88141089 1.56263514 1.35803058 

0.40 2.71887729 2.14558172 1.76420974 1.51041158 

0.50 3.06116974 2.43083965 1.98807470 1.68339534 

0.60 3.40994267 2.73693555 2.23607620 1.87906377 

0.70 3.76162440 3.06236426 2.50903647 2.09921280 

0.80 4.11218308 3.40478991 2.80699405 2.34530601 

0.90 4.45689697 3.76108758 3.12924403 2.61840230 

1.00 4.78998433 4.12719346 3.47425744 2.91904762 

 
Example 3. 
Consider the following nonlinear (FQIDEs) 

( ) ( ) ( ) ( )( ) ( )
0

y 1 y ln y d , y 0 0.
x

x x x t t t′ ′= + − =∫           (46) 

For [ ]0,1x∈  with exact solution ( )y x x= . By using VIM, the iteration 
formula for Equation (46) is, 

( ) ( ) ( ) ( ) ( ) ( )( )1
0 0

y y y 1 y ln y d d .
x

n n n n nx x r r r
ζ

ζ ζ ζ ζ+

 
′ ′= − − − − 

 
∫ ∫       (47) 

We can take an initial approximation ( )0y .x x=  
The first two iterations are easily obtained from (47) and are given by: 

( ) ( ) ( ) ( ) ( )( )1 0 0 0
0 0

y y 1 y ln y d d ,
x

x x r r r x
ζ

ζ ζ ζ ζ
 
′ ′= − − − − = 

 
∫ ∫      (48) 
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( )2y .x x=                               (49) 

Therefore, we obtain the exact solution, ( )y x x= . 
According to HPM, we construct the following homotopy: 

( ) ( ) ( ) ( ) ( )( )
0

, 1 ln d 0,
x

H u p u x pu x x t u t t′ ′= − − − =∫        (50) 

and continuously trace an implicity defined curve from starting point ( ), 0H u  
to a solution function ( ),1H u  substituting (16) into (50). Also, we have to 
equate the terms with the same identical power’s of p, then, we gain these 
components 

( ) ( )0
0 0: 1 ,p u x u x x′ = ⇒ =                    (51) 

( ) ( ) ( ) ( )( ) ( )1
1 0 0 1

0

: ln d 0,
x

p u x u x x t u t t u x′ ′ ′= − ⇒ =∫        (52) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )12

2 0 1 0
00 0

: d ln d 0,
x xu t

p u x u x x t t u x x t u t t
u t
′

′ ′ ′ ′= − + − =
′∫ ∫     (53) 

( ) ( ) ( ) ( )
( )

( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( )( ) ( )

2
2 1 13

3 0 12
0 000 0

2 0 3
0

1: d d
2

ln d 0,

x x

x

u t u t u t
p u x u x x t t u x x t t

u t u tu t

u x x t u t t u x

 ′ ′ ′ 
′ ′ ′= − − + −     ′ ′′   

′ ′+ − ⇒ =

∫ ∫

∫
  (54) 

and so on, we obtain 4 5 0u u= = =  therefore, the approximate solution is  
obtained readily by ( ) ( ) ( )00y nnx u x u x x∞

=
= = =∑  which is the exact solution. 

6. Conclusion 

In this paper, we have applied the VIM and HPM to find the solution of 
nonlinear initial value problem of fractional quadratic integro-differential 
equations for the first order. The methods do not require any linearization, 
perturbation or restrictive assumptions, we have observed that the VIM and 
HPM is a very powerful and effective tool for finding the solutions of the 
fractional quadratic integro-differential Equation. We use the Maple package 
(2015) in calculations. 
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