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Abstract 
We present the analysis of three independent and most widely used image smoothing techniques 
on a new fractional based convolution edge detector originally constructed by same authors for 
image edge analysis. The implementation was done using only Gaussian function as its smoothing 
function based on predefined assumptions and therefore did not scale well for some types of 
edges and noise. The experiments conducted on this mask using known images with realistic 
geometry suggested the need for image smoothing adaptation to obtain a more optimal perfor-
mance. In this paper, we use the structural similarity index measure and show that the adaptation 
technique for choosing smoothing function has significant advantages over a single function im-
plementation. The new adaptive fractional based convolution mask can smoothly find edges of 
various types in detail quite significantly. The method can now trap both local discontinuities in 
intensity and its derivatives as well as locating Dirac edges.  
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1. Introduction 
Edge detection is an important stage in image analysis since they provide the topology and structural informa-
tion of relevant object in an image [1] [2]. Imaging tasks like feature extraction, region segmentation and object 
identification [3] heavily depends on efficiently detected edge image. However, in most natural cases, this in-
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formation gets tainted with image noise while performing image acquisition or transmission [4]. The obvious 
answer to this problem and lately a requirement are to apply the concept of image filtering [5] before the edge 
detection. Standard filtering techniques such as median filters for some years now remain one of the famous 
image denoising techniques with high performance and computational efficiency. Nonetheless, its implementa-
tion on dense noisy images pose a challenge as it loses its ability to preserve detail information. 

Until recently, methods like Robert [6], Prewitt [7] and Sobel [8] for edge detection have been filtered or 
smoothened with methods such as adaptive mean filter [9], decision based algorithm [10] and conventional 
based algorithms [11]. In particular, the “Famous Canny Edge Operator” [12] originally proposed by John F. Can-
ny in 1986 [13] can perform edge analysis on the so called dense noisy images by first preprocessing the image 
with the Gaussian filter [14] and subsequently using Otsu algorithm [15] for double thresholding. The Canny oper-
ator which is by far one of the best edge operators can provide a good detection and localisation at minimal re-
sponse. In spite of its efficiency in the industry, it suffers some drawbacks due to the use of the Gaussian filter as 
smoothing technique. The method is also known not to do well with isotropic regions in an image since they pos-
sess Dirac edges. Certainly, edge detectors produce edges with some compromise among accuracy, completeness, 
and smoothness. In recent times, the use of fractional mask for performing derivative operations has been explored 
with very promising results [16]-[18]. In the last few years we have been performing edge analysis on a dense noi-
sy image using a new fractional based convolution mask smoothened with various smoothing functions with the 
aim of reducing noise and improving the accuracy in edges automatically extracted from an image. 

In this paper, we present a hybrid of median, Gaussian and cubic spline based smoothing technique on the 
new fractional based convolution edge detector. We show that the resulting hybrid fractional edge operator is 
able to detect edges very well when the smoothing function is adaptive. In section 2, the paper provides brief re-
view of basis spline and Gaussian filters as image smoothing functions and the formulation of a fractional edge 
detector. In section 3, the paper discusses how the numerical experiment is setup, optimal selection of Gaussian 
and spline parameters and the performance analysis of smoothing functions used in the study. The last section 
concludes the paper.  

2. Image Smoothing and Edge Detection  
Edges are well known to be characterized by high frequencies and so are noise as well [19]. This in a way makes 
edge detection quite challenging since the possibilities of mistaking a noise as an edge is predominant [20]. 
Hence the need for image data smoothing and in this work some basic idea of B-spline is reviewed after which 
the fractional edge detection algorithm is considered.  

2.1. Basis Spline Filter 
A basis spline (B-spline) filter is a piecewise polynomial function of degree k in a variable t defined over a do-
main [ ]0 , kt t . We note that since splines are compactly supported piecewise polynomial functions they posses 
the tendency to be used for image filtering as they are both smooth and refinable. Below are two definitions to 
help us construct the Cubic B-Spline for smoothing image data.  

Definition 1. Let ( )0 1, , , nt t t t=   be a knot vector. B-spline function of k degree is defined as  
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Definition 2. Let ( )0 1, , , d
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where k
iN  are base B-spline functions from 1. 

2.2. Gaussian Filter 
The Gaussian filter normally written as:  

( )
2 2
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has a standard deviation σ which determines the width of the filter as well as the outcome of the smoothed im-
age. The larger the value of σ, the wider the frequency band of the Gaussian filter. 

2.3. Fractional Edge Detector 
We begin with the following definition of Riemann Liouville fractional calculus as defined in the work Owa [21] 
[22] and recently used in Srivastava and Owa [23].  

Definition 3. The Riemann Liouville fractional integral of order α  is defined for a function ( )f t  by:  
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where ( )f t  is an analytic function in a simply connected region of the t-plane containing the origin. 
Definition 4. The Riemann Liouville fractional derivative of order α  is defined for a function ( )f t  by:  
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where ( )f t  is constrained.  
Given an analytic function ( )f t  with an integral order of 1 α− , then with the help of convolution and Eq-

uation (5) we have the following:  
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Using Equation (7), it is clear that Equation (6) can be written as below:  
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Expanding Equation (8) into 2-D, we let the following:  
2 2t x y→ +  

( )
( )

( )

22 2

, , .
1

x y
g x y

α

α
α

−
+

=
Γ −

 

Taking derivative in the x-direction we obtain:  

( ) ( ) ( ) ( ) ( )
, ,

, , , , ,a x

g x y
D f x y f x y x y f x y

dx
α α

α
∂

= ∗ = ∗                    (9) 

while in the y-direction we have:  
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Finally, the fractional gradient operator is defined as:  
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In order to apply the mask on images, Equations ((11) and (12)) are rewritten as discrete operators as follows:  
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where m i m− ≤ ≤  and n j n− ≤ ≤  with ( ) ( )2 1 2 1m n+ × +  being the mask(grid) size for all , 1m n ≥  and 
α  a constant parameter. Using Equations ((13) and (14)) a 5 5×  convolution mask for example can be written 
as follows (Table 1). 

3. Numerical Experiments 
In this section, an experimental analysis of two most widely [24]-[27] used smoothing functions (i.e. Gaussian 
and median filter) and spline function are discussed. A demonstration of their effect on a fractional derivative 
mask is presented in the following subsections. In subsection 3.1, a discussion on how the experiment was car-
ried out is presented. Subsection 3.2, discusses the selection of an optimal filter length required to obtain a high 
structural similarity index. In subsection 3.3, we explain how the parameter σ of the Gaussian function can be 
optimally selected keeping in mind either the homogeneity or the adaptive assumption. Finally in subsection 3.4,  

 
Table 1. 5 5×  Directional fractional mask. 
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a performance analysis of the three selected smoothing functions are compared with justifications.  

3.1. Experimental Setup 
In order to carry out a more accurate experiment, the following measures and structures were considered. A 
performance analysis of the behaviour of some selected smoothing functions on a fractional derivative operator 
described in Equations ((13) and (14)) under various noise types is done. Here, three smoothing functions, 
Gaussian, Median and Spline functions were considered. We also considered four noise types, namely the mo-
tion blur, Gaussian, salt & pepper and speckle. Unlike the median smoothing function, the Gaussian and the 
spline smoothing functions are parametric and an appropriate value is required before a comparative analysis 
could be done. For example, the Gaussian and the spline functions require a discrete and finite length to form the 
filter length (size). In this study, the selection of an optimal filter length is obtained using the Structural Similar-
ity Index Measure (SSIM). Here an optimal filter length is obtained at the maximum SSIM value (point of in-
tersection) using Equations ((2) and (4)). The results reported in this paper is based the popular Lena image in 
Figure 1(a). Figure 1(b) also shows an example of a artificially introduced noise (salt and pepper) as discussed 
in the subsequent section of the paper. 

3.2. Optimal Selection of Filter Size for Spline and Gaussian Function 
In the selection of an optimal filter size for the spline and Gaussian function, we assume the σ parameter is con-
stant as well as the order of the fractional gradient operator. For the purpose of demonstration, the order α  is 
set to 0.9 while the σ parameter of the Gaussian function is set to 1. Figure 2 has four sub figures, each with two 
plots. One plot is a plot of the SSIM against the filter size taking into consideration the Gaussian smoothing 
function and the other for spline smoothing function. For a given filter length, x the filter size is estimated as 
2 1x + . Figures 2(a)-(d) show the effect of Gaussian and spline smoothing function under the motion blur, 
Gaussian, Salt & Pepper and Speckle noise respectively. Here, the fractional gradient operator of size 3 3×  is 
applied. 

In these Figures 2(a)-(d), the spline smoothing function has a decaying life cycle with varying filter length 
just after the optimum SSIM value is obtained. The SSIM value for the Gaussian smoothing function however 
remains stable after its maximum point even as the filter length grows. An indication that, unlike the spline 
function which obtains different SSIM values for varying filter length, changing the filter length of the Gaussian 
function has no significant effect on its SSIM value after its maximum point value. Apart from Figure 2(a) 
which suggest a filter size of 3( ( )2 1 1+ ), the remaining Figures 2(b)-(d), estimates the filter size of 9( ( )2 4 1+ ) 
for the spline smoothing function. As noted earlier, an optimum filter length is obtained with the Gaussian 
smoothing function immediately the first stable point is achieved. 

 

 
Figure 1. Original and corresponding noisy image used in the experiment. (a) Original Image; (b) Noisy version of the orig-
inal image. 
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Figure 2. Efficiency of smoothing functions on various noise types using a 3 3×  edge mask size. (a) Motion Blur Noise; (b) 
Gaussian Noise; (c) Salt & Pepper Noise; (d) Speckle Noise. 

 
Figure 3 represents the application of the smoothing functions with a fractional gradient operator of size 

5 5× . Similar remarks and observations can be made with the spline smoothing function as having filter size of 
9 for Gaussian, salt & pepper and speckle noise and 3 for motion blur noise. The Gaussian function, however 
varies for the different noise types. 

In Figure 4, the same experiment was conducted using a 7 7×  mask size for the fractional edge operator. 
Similar to the previous treatment, the optimal filter size for the spline function was 3 for motion blur noise and 7 
for all other noise types under the spline function. The Gaussian smoothing function again showed similar in-
consistency as previous. The corresponding optimal filter sizes were 7, 3, 5 and 7 for motion blur, Gaussian, salt 
& pepper and speckle noise type respectively. 

In the last experiment, an edge operator of mask size 9 9×  was applied. The results are shown in Figure 5. It 
also follows similar trends and characteristics as observed in Figure 2 and Figure 3. Although the spline func-
tion gives some defined points for which optimal performance is always achieved, a single optimal value cannot 
be selected due to the dynamic nature of the smoothing functions at various noise type. 

Table 2 gives a summary of the supposed optimal value for the filter size for both the spline and the Gaussian 
smoothing function at varying noise type. In effect, the homogeneity assumption cannot be used here and hence 
the need to resort to an adaptive approach. For example, the table shows that a filter of size 3 is more stable ir-
respective of the smoothing function with motion blur noise except with the 7 7×  mask size of the Gaussian 
smoothing function. 
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Figure 3. Efficiency of smoothing functions on various noise types using a 5 5×  edge mask size. (a) Motion Blur Noise; (b) 
Gaussian Noise; (c) Salt & Pepper Noise; (d) Speckle Noise. 

 

 



P. Amoako-Yirenkyi et al. 
 

 
485 

 
Figure 4. Efficiency of smoothing functions on various noise types using a 7 7×  edge mask size. (a) Motion Blur Noise; (b) 
Gaussian Noise; (c) Salt & Pepper Noise; (d) Speckle Noise. 

 

 
Figure 5. Efficiency of smoothing functions on various noise types using a 9 9×  edge mask size. (a) Motion Blur Noise; (b) 
Gaussian Noise; (c) Salt & Pepper Noise; (d) Speckle Noise. 
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3.3. Optimal Selection of the Parameter σ for the Gaussian Function 
As stated in the previous section, you observe that, the value for the Gaussian smoothing function as provided in 
Table 2 is only optimal with the assumption that the second parameter (σ) is constant. In this subsection, we ex-
plore in detail if these measures are indeed optimal or sub optimal. In Table 3, the following observations were 
made in varying the σ parameter along with the filter size simultaneously at various noise type and mask size. 
Only three values were seen to be optimal from Table 2 in relation to Table 3 as marked with single asterisks. 
The value marked with double asterisks was noted to be optimal and coincide with that of Table 2, however, a 
sigma value of 4 was more efficient compared to the sigma value of 1. All other values recorded in Table 3 are 
the most optimal values needed for performance analysis in the following subsection.  

3.4. Performance Analysis of the Smoothing Functions 
In order to obtain the required optimal value for the smoothing functions, performance test was carried out on 
the three selected smoothing functions to ascertain which function works better and under which condition it 
should be considered. Table 4 is obtained by first, introducing selected noise types(motion blur, Gaussian and  

 
Table 2. Optimal filter size selection. 

 Mask Size Motion Blur Gaussian Salt & Pepper Speckle 

Spline 

3 3×  3 9 9 9 
5 5×  3 9 9 9 
7 7×  3 7 7 7 
9 9×  3 7 5 7 

Gaussian 

3 3×  3 5 17 7 
5 5×  3 9 13 9 
7 7×  7 3 5 7 
9 9×  3 7 9 5 

 
Table 3. Optimal σ and filter size. 

Mask Size 
Motion Blur Gaussian Salt & Pepper Speckle 

sigma filter sigma filter sigma filter sigma filter 
3 3×  1 3* 6 9 4 9 4 15 
5 5×  9 3 4 9** 3 11 5 11 
7 7×  1 7* 4 11 3 19 3 11 
9 9×  1 3* 4 9 3 13 2 7 

 
Table 4. Performance measure using SSIM. 

 Mask Size Motion Blur Gaussian Salt & Pepper Speckle 

3 3×  

Median 0.6654 0.1335 0.6701 0.2526 
Spline 0.7143 0.5995 0.6374 0.6127 

Gaussian 0.6992 0.5988 0.6464 0.6208 

5 5×  

Median 0.8511 0.2032 0.8654 0.3852 

Spline 0.8808 0.7573 0.8008 0.7722 

Gaussian 0.8763 0.7681 0.8012 0.7790 

7 7×  

Median 0.9099 0.2962 0.9392 0.5165 

Spline 0.9441 0.8066 0.8720 0.8441 

Gaussian 0.9385 0.8225 0.8773 0.8560 

9 9×  

Median 0.9317 0.3949 0.9416 0.6056 

Spline 0.9527 0.8472 0.8880 0.8635 

Gaussian 0.9543 0.8485 0.9002 0.8742 
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Salt & Pepper) to the image. The smoothing functions (spline, median and Gaussian) iare then applied to the 
noisy image. The fractional mask is subsequently applied to the smoothened image. Finally the SSIM is com-
puted for each mask type against a selected smoothing function using the optimal filter length obtained in Table 
2 and Table 3. By definition, the higher the SSIM value the more effective the smoothing function. 

From Table 4, the Gaussian smoothing function, based on the optimal parameter selection, performs relative-
ly well when speckle noise was introduced irrespective of the mask size. The Median smoothing function also 
performed significantly better for salt & pepper noise. The Spline function out-performed the other two when 
Motion Blur noise was introduced for most mask sizes. From Table 4, it is clear that, the choice of a single 
smoothing function to generalise images of varying distortions is not enough. The noise type has a lager effect 
on the selection of the smoothing function as opposed to the effect of the mask size.  

4. Conclusion 
In this paper, we have presented the analysis and optimal technique for adapting an image smoothing function 
on a new fractional based convolution mask for image edge detection. Experimental results from the study tabu-
late the structural similarity index measure on three image smoothing functions and different noise types. In par-
ticular, the effect of the Gaussian, median filter and spline function on the mask is discussed. The paper also 
discussed the selection of an optimal filter length required to attain a higher structural similarity index as well as 
optimal selection of σ for the Gaussian function. Finally, a performance analysis of the three selected smoothing 
functions was compared. The results show that the new adaptive fractional based convolution mask can 
smoothly find edges of various types in detail quite significantly. The method can now trap both local disconti-
nuities in intensity and its derivatives as well as locating Dirac edges as opposed to using single Gaussian 
smoothing function. 
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