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Abstract 
The drastic decline in groundwater table and many other detrimental effects in meeting irrigation 
demand, and the projected population growth have force to evaluate consumptive use or evapo-
transpiration (ET), the rate of liquid water transformation to vapor from open water, bare soil, 
and vegetation, which determines the irrigation demand. As underscored in the literature, Pen-
man-Monteith method which is based on aerodynamic and energy balance method is widely used 
and accepted as the method of estimation of ET. However, the estimation of ET is oftentimes car-
ried out using meteorological data from climate stations. Therefore, such estimation of ET may 
vary spatially and thus there exists a need to estimate ET spatially at different spatial or grid 
scales/resolutions. Thus, in this paper, a spatial tool that can geographically encompass all the 
best available climate datasets to produce ET at different spatial scales is developed. The spatial 
tool is developed as a Python toolbox in ArcGIS using Python, an open source programming lan-
guage, and the ArcPy site-package of ArcGIS. The developed spatial tool is demonstrated using the 
meteorological data from Automated Weather Data Network in Nebraska in 2010. 
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1. Introduction 
The world population is projected to grow from 6.9 billion in 2010 to 9.1 billion in 2050 [1]. With this projected 
population growth, it has been documented that by 2050 the food demand is expected to increase by 70% [2]. 
Having said this, as per the ongoing evaluation by [1], the current status of food scarcity is not at a level to 
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appreciate or sustain, specifically in developing countries. Therefore, for the next few decades, the most striking 
focus would be on food security to meet the growing demand. With this statement in mind, to alleviate global 
hunger and to improve food security in the world, many initiatives and collaborations at global levels have been 
taken up to ensure availability of adequate food supply by means of efficient use of resources. One of the key 
limited resources that influences the definition of food security is the available freshwater [1] [2]. 

Although over 70% of Earth’s surface is covered by water, the amount of freshwater available for appropria-
tion is limited as 97.5% of all water on Earth is saline [3]. This limited freshwater is competed by many water 
users such as irrigation, household and municipal, and industrial. Among these water users, irrigation demand 
accounts for 87% of the total use globally [1] [2]. The consequences of such high demand on irrigation in addi-
tion to the demands from other water users have forced to pump water heavily from groundwater aquifers. This 
has arguably caused groundwater tables to decline in many regions, including in Afghanistan, China, India, Iran, 
Pakistan, and the US. The drastic decline in groundwater table and many other detrimental effects in meeting ir-
rigation demand, and the projected population growth have force to evaluate the consumptive use or evapotrans-
piration (ET), the rate of liquid water transformation to vapor from open water, bare soil, and vegetation, which 
determines the irrigation demand. 

As underscored in the literature [4]-[8], to date, there are many methods available to estimate ET. These me-
thods are either empirical or climate data driven. Under empirical based estimation of ET, Blaney-Criddle me-
thod or its modified version is widely used in the arid western regions of the United States [4] [5]. However, this 
method doesn’t account for humidity, wind speed, and other climate factors. On the other hand, using meteoro-
logical data from climate stations, the methods of estimation of ET include aerodynamic method, energy balance 
method, and combination methods such as Penman-Monteith method [4]-[6]. The aerodynamic method of de-
termining evaporation considers the transport of water vapor by the turbulence of the wind blowing over a natu-
ral surface. The energy balance method considers all heat energy received and reflected/dissipated by a cropped 
area or a water body. Penman-Monteith method of evaporation is obtained by combining the evaporation com-
puted by aerodynamic and energy balance method [6]. The weighting factors are applied in combining the me-
thods (i.e., aerodynamic and energy balance). The weighting factors account for aerodynamic resistance and 
surface resistance that accounts for movement of water vapor from the plant leaves to the atmosphere. As un-
derscored in the literature [4]-[8], Penman-Monteith method is widely used and accepted as the method of esti-
mation of ET. However, the application using Penman-Monteith is oftentimes evaluated using meteorological 
data from climate stations. 

The current practices of water resources planning and management are at watershed scale and oftentimes at 
grid scale in parallel with the contemporary technology development. Having said this, as discussed previously, 
the estimation of ET is carried out using meteorological data from climate stations. However, such estimation of 
ET may vary spatially and thus there exists a need to estimate ET spatially. Moreover, in the absence of opti-
mum spatial scale, and with a growing interest of watershed studies at different spatial scales [9], the need to 
evaluate the variation of ET at different spatial scales is also required. Thus, in this paper, a spatial tool that can 
geographically encompass all the best available climate datasets to produce ET at different spatial scales is de-
veloped using Python, an open source programming language supported by a growing user community for its 
extensive collection of standard and third-party libraries, and the ArcPy site-package of ArcGIS. 

2. Estimation of Evapotranspiration 
The need to manage the available freshwater wisely with ever increasing population and the demand from irri-
gation has brought ET as one of the critical subject areas to research in the field of hydrology. Over the years, 
with many research works, numerous methods have been developed to estimate ET. These methods mainly fall 
under these categories: 1) aerodynamic method, 2) energy balance method, and 3) combination of aerodynamic 
and energy balance methods. 

2.1. Aerodynamic Method 
This method of determining evaporation considers the transport of water vapor by the turbulence of the wind 
blowing over a natural surface. According to this method, the evaporation ( )aE , generally from lakes and re-
servoirs, is proportional to ( )s ze e− . The mathematical expression of this method is given by Equation (1). 

( )a s z zE M e e u= ∗ − ∗                                    (1) 



S. Mylevaganam, C. Ray 
 

 
66 

where M, ,s ze e , and zu  are mass transfer coefficient, saturated vapor pressure at water temperature, vapor 
pressure at height z, and wind velocity at height z, respectively. The mass transfer coefficient is given by Equa-
tion (2). 

0.622 a E

w

CM
P

ρ
ρ

= ∗                                     (2) 

where , ,w aP ρ ρ , and EC  are atmospheric pressure at height z, density of water, density of air, and evapora-
tion coefficient, respectively. 

By substituting Equation (2) in Equation (1), 
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where T is the air temperature in degree Celsius. 

( )
( )

2.17
273

s z
a

w a

e e
E

r Tρ +∗
−

=                                   (5’) 

2.2. Energy Balance Method 
As shown in Figure 1, this method considers all heat energy received and reflected/dissipated by a cropped area 
or a water body. The portion of energy that is used to warm the air in contact with the ground or water surface is 
known as sensible heat flux (H). The term G is the heat conduction from the water surface or soil to the layer of 
soil or water below. Since the energy required to evaporate a unit mass of water is called latent heat of vaporiza-
tion (λ), the total energy absorbed per unit area to evaporate rE  is w rEρ λ . Therefore, neglecting the other 
small energy terms that are dissipated/stored, the energy balance for the control volume shown in Figure 1 is 
given by Equation (6). 

0n w rR H G Eρ λ− − − =                                    (6) 

 

 
Figure 1. The energy flow diagram for a cropped area.                         
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where nR  is the net radiation. The latent heat of vaporization is 2.45 MJ/kg at about 20 degree Celsius [6]. 
However, to account for temperature variation, the latent heat of vaporization is given by  

2.501 0.002362Tλ = −                                    (6’) 

The sensible heat flux defined by Equation (7) is related to Bowen ratio, β  

w rH Eβ ρ λ= ∗                                        (7) 

Bowen ratio, 2 1

2 1

T T
e e

β γ −
=

−
 is derived from temperatures and vapor pressures at two heights above the water  

surface. By substituting Equation (7) in Equation (6),  
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Since 0G ≈ ,  
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As shown in Equation (10), the net radiation ( )nR  is the sum of net long-wave radiation ( )nL  and net 
short-wave radiation ( )nS . 

n n nR L S= +                                        (10) 

The net short-wave radiation that is defined by Equation (11) is a function of total extraterrestrial radiation  

( )0S  and cloudiness fraction n
N

 
 
 

. 
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                               (11) 

The net long-wave radiation which is in accord with Stefan-Boltzmann’s law of black body radiation is given 
by Equation (12). 

( ) 40.1 0.9 0.34 0.14n d
nL e T
N

σ = − + − 
 

                         (12) 

where ,de σ , and T are vapor pressure at air temperature, Stefan-Boltzmann constant, and mean air temperature, 
respectively. 

2.3. Combination Method of Penman 
As shown in Equation (13), this method of evaporation is obtained by combining the evaporation computed by  

aerodynamic ( )aE  and energy balance method ( )rE . The weighting factors (i.e., Δ
Δ γ+

 and 
Δ
γ
γ+

) are  

applied in combining the methods (i.e., aerodynamic and energy balance). The weighting factors sum to unity. 
Δ

Δ Δr aE E Eγ
γ γ

= +
+ +

                                 (13) 

where γ  is the psychrometric constant that is defined by Equation (14). The gradient of the saturated vapor 
pressure ( )Δ  is given by Equation (15). 
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2.4. Penman-Monteith Method 
This method is same as the combination method of Penman. However, in this method, similar to ar , another 
term called surface resistance ( )sr  is introduced to account for resistance associated with movement of water 
vapor from the plant leaves to the air outside. This method is widely used to estimate evapotranspiration. The 
mathematical expression of this method is given by Equation (16). 
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For grass reference crop, 69 s msr =  and 
2
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= . Therefore, for grass reference crop  
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where 2u  is the wind speed at 2 m. When the wind speed is measured at different elevation, it can be adjusted 
from one level to another by using Equation (17). 
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where Z1, Z2 are measurement heights for levels 1 and 2, respectively. Z0 is the reference height where velocity 
is zero. For open agricultural area, Z0 = 0.03. 

3. The Development of Spatial Evapotranspiration Tool (SET) at Grid Scale  
ArcGIS provides easy-to-use platform to extend its desktop features by accessing geoprocessing functionalities 
through programming/scripting languages. Python, an open source programming language supported by a 
growing user community for its extensive collection of standard and third-party libraries, is one of the scripting 
languages supported by Environmental Systems Research Institute (Esri). The communication between ArcGIS 
and Python is through a site-package that is called ArcPy. The ArcPy site-package encompasses the modules, 
functions, and classes required to access the geoprocessing functionalities. The modules are the main gates to 
access the geoprocessing functionalities. The ArcPy site-package comes with a series of modules such as data 
access module, mapping module, and ArcGIS Spatial Analysis Extension module. To support the main modules, 
the ArcPy site-package also has some classes that are oftentimes used as shortcuts to complete geoprocessing 
parameters. Using the ArcPy site-package, the customization of desktop features could be in three ways: desktop 
add-in, standard toolbox, and Python toolbox. 

3.1. Python Desktop Add-In 
To extend desktop functionality, in ArcGIS 10, a new desktop add-in model that are authored using .NET or 
JAVA programming languages was introduced. The extension of functionality could be to make a customization 
that performs an action in response to an event such as dragging a rectangle over a geographical map to define 
an area of interest. This new add-in model is further enhanced by introducing Python to the list of supported 
programming languages, and the Python add-in wizard to reduce the development effort. 

3.2. Standard and Python Toolboxes 
ArcGIS tools that are boxed within toolboxes are a chunk of codes used to perform small, but essential tasks on 
geographical data. ArcGIS with its installation comes with a set of tools that are known as system tools. Often-
times, geographic information system (GIS) professionals are required to repeat a task again and again by using 
one or more of the system tools. To facilitate this, a script is written using Python scripting language and the 
ArcPy site-package. This script is then attached to a newly created toolbox. The newly created toolbox could be 
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either a standard or Python toolbox. In case of Python toolbox, which is an ASCII-based file, the toolbox is 
created entirely in Python. 

Since the development of SET at grid scale does not involve an event such as dragging a rectangle over a 
geographical map to define an area of interest, Python toolbox is used to develop the SET. 

3.3. The Spatial Evapotranspiration Tool (SET) at Grid Scale 
The skeleton of ArcGIS Python toolbox is basically a class in Python. A toolbox can have more than one tool. 
Each tool is defined by a Python class. The tools are associated with the toolbox class by setting the “tools” 
property of the toolbox within the constructor or the class initialization method of the toolbox class. For example, 
in the below shown code, a tool named “SpatialET” is associated with the toolbox. The “label” and the “alias” 
are the properties of the toolbox, which are used in calling the tool in geoprocessing tasks. 

 
class Toolbox(object): 
def __init__(self): 
self.label = "Spatial Evapotranspiration" 
self.alias = "grid" 
self.tools = [SpatialET] 
class SpatialET(object): 
def __init__(self): 

… 
def getParameterInfo(self): 

… 
defisLicensed(self): 
defupdateParameters(self, parameters): 
defupdateMessages(self, parameters): 
def execute(self, parameters, messages): 

… 
 
The constructor or the class initialization method of Spatial ET class is used to set the properties of the tool. 

The “label” and “description” are the most important properties. The “canRunInBackground” property is used to 
let the tool to run in the background. As shown below, For SET, this property is set to “False”. 

 
class SpatialET(object): 
def __init__(self): 
self.label = "SpatialET" 
self.description = "This tool is about Evapotranspiration at grid scale." 
self.canRunInBackground = False 

 
Within the Spatial ET class, the method named getParameterInfo() is used to collect the user specified inputs 

such as the location of raster data of temperature, relative humidity, wind speed, and solar radiation. These in-
puts are used to calculate ET using Penman-Monteith at grid scale. Within the getParameterInfo(), the parameter() 
object is used to collect each input from the user. For example, as shown in the below code, the variable named 
“param0” is used to collect the location of raster data of temperature. The parameter() object has few properties 
such as name, datatype, parametertype, and direction. Since the user input for the temperature is a raster, the da-
tatype of param0 is set to “DERasterDataset”. Furthermore, the temperature raster dataset is an input. Therefore, 
the direction property of “param0” is set to “Input”. This same chunk of code is repeated for the other inputs 
(e.g., solar radiation, relative humidity, and wind speed) collected from the user through the tool.  

 
def getParameterInfo(self): 
param0 = arcpy.Parameter( 
displayName="Temperature", 
name="Temperature_raster", 
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datatype="DERasterDataset", 
parameterType="Required", 
direction="Input")  

 
After collecting the parameters, they are stored within a list as shown in the below code, where param0, pa-

ram1, param2, param3, param4, and param5 are the variables used to store the temperature raster, relative hu-
midity raster, wind speed raster, location of tool generated ET raster, wind speed measurement height, and solar 
radiation raster, respectively. The default wind speed measurement height is also set to 3 m. This list is returned 
from getParameterInfo() method. The graphical user interface of the above outlined code is shown in Figure 2. 

 
params = [param0,param1,param2, param3, param4, param5] 
params[4].value=3 
return params 

 
Since the developed tool is in need of spatial analyst extension, the isLicensed()methodis used to check the 

existence of required licenses. The updateMessages() and updateParameters() are some of the other methods that 
could be used to customize the tool further. In SET, these methods are not modified as it doesn’t require custo-
mization using these methods. 

def isLicensed(self): 
return True 

After having stored the information on user specified inputs, the execute() method of the tool is used to setup 
the Penman-Monteith method as discussed in section 2.0. One of the arguments of the execute() method is “pa-
rameters” that has all the input data obtained through getParameterInfo() method. This argument is a list. Therefore, 
the individual inputs are retrieved using the indices of the list and the valueAsText() method of the parameter 
object. For example, as shown below, to retrieve the temperature raster, the zeroth index of the list is called. This 
procedure is followed to retrieve the other inputs as well. Since the user specified temperature raster is in ˚F, a 
temporary raster of temperature in ˚C is created and stored in the Python variable named “inRasterTempC”. 

 

 
Figure 2. The graphical user interface of SET.                                                                           
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#User inputs for the tool 
inRasterTempF=parameters[0].valueAsText #Temp 
inRasterRH=parameters[1].valueAsText #RH 
inRasterW=parameters[2].valueAsText #Wind speed 
outRaster1=parameters[3].valueAsText # The name of the ET Raster 
inWindHeight=parameters[4].value # Anero height 
inSolarRadiation=parameters[5].valueAsText # So 
inRasterTempC=(Raster(inRasterTempF)-32)/1.8  

 
Within the execute() method, raster operations are carried out using the syntax of Map Algebra. As shown 

below, the raster of saturated vapor pressure is developed using the user specified temperature raster. The de-
veloped raster of saturated vapor pressure is multiplied by the raster of relative humidity to get the raster of va-
por pressure. This is a raster operation. In other words, ArcGIS generates values for each grid based on the re-
spective raster values of saturated vapor pressure and the relative humidity. This can be further explained as 
shown in Figure 3. 

outSaturated=0.6108*Exp((inRasterTempC*17.27)/(237.3+inRasterTempC)) #Saturated vapor pressure 
outSaturatedZ=outSaturated*Raster(inRasterRH)/100 #Vapor pressure  

The developed rasters are temporary. In other words, they are not physically stored in a specified location. 
These temporary rasters are used in the subsequent raster operations to develop the other temporary rasters asso-
ciated with Penman-Monteith method. The detailed raster operations in computing ET using Penman-Monteith 
method is outlined in Figure 4. 

To calculate the ET using energy balance method, two inputs at grid levels are required: the latent heat of va-
porization and the net radiation which is the sum of net long wave and net short wave radiation. As shown in the 
below code, the latent heat of vaporization is developed at grid level using equation (6’). The net radiation raster 
that is named “NetRadiation” is also developed to produce the raster of ET using energy balance method at grid 
scale. 

 
outLamda=2.501-0.002362*inRasterTempC #Latent heat of vaporization 
NetSRadiation=(1-0.23)*(0.25+0.5*0.25)*Raster(inSolarRadiation)#Net SW Radiaition 
NetLRadiation=-1*(0.1+0.9*0.25)*(0.34-0.14*SquareRoot(outSaturatedZ))*(4.903/1000000000)*((273.2+ 

inRasterTempC)**4) 
NetRadiation=NetLRadiation+NetSRadiation 
EnergyBal=NetRadiation/1000/outLamda #Using energy balance method 

 
Similarly, as shown in the below code, using raster operations and the temporary rasters, the ET using aero-

dynamic method is also developed. These raster operations are based on the equations discussed in section 2.0. 
The comments provided at each line explain the meaning of the variables. 

 
Windspeed=Raster(inRasterW) 
Windspeed2=0.44704*Windspeed*(Ln(2/0.03)/Ln(inWindHeight/0.03)) #Windspeed at 2m height  
AerodynamicR=208/Windspeed2 #Aerodynamic resistance 
inRasterP=1.225*(275+inRasterTempC)/3.486 #Pressure 
PsychrConst=0.0016286*inRasterP/outLamda #Psychrometric constant  
DeltaR=4098*outSaturated/((237.3+inRasterTempC)**2) #Vapor pressure gradient 
AeroBal=2.17*(outSaturated-outSaturatedZ)/1000/AerodynamicR/(inRasterTempC+273)  
#Using aerodynamic method 

 

 
Figure 3. The computation of vapor pressure using raster operations at grid scale.  
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Figure 4. The raster operations in computing ET using Penman-Monteith.                                      

 
The weights associated with each method (i.e., aerodynamic and energy balance method) are generated at grid 

scale. The weights are generated as per Equation (13). These weights are then applied to the computed ET using 
aerodynamic and energy balance to develop the raster of ET using the Penman-Monteith method. The developed 
raster is stored using the save() method of the raster, as per the user specified output name and the location. 

 
Factor1=DeltaR/(DeltaR+PsychrConst*(1+0.33*Windspeed2)) #Factor for energy balance method 
Factor2=PsychrConst/(DeltaR+PsychrConst*(1+0.33*Windspeed2)) #Factor for aerodynamic method 
PenmanMon=(Factor1*EnergyBal+Factor2*AeroBal)*1000 #Evapotranspiration using Penman-Mon in mm/ 

day 
PenmanMon.save(outRaster1) 

4. The Application of SET 
The state of Nebraska that lies in both the Great Plains and the Midwestern United States has a total geographi-
cal area of 200,520 km2. The total population of the state is 1.8 Million [10]. Both the surface and groundwater 
are used to meet the demand for wide range of purposes. Around 94.8% of the estimated total groundwater 
withdrawals is used to meet the irrigation demand [11]. As of November 2014, around 95,000 irrigation wells 
are registered in the state. The developed tool is demonstrated for the state of Nebraska using the meteorological 
data from Automated Weather Data Network (AWDN) that gathers climatological observational data and the 
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information for High Plains Region and provides its shareholders in fields such as agriculture. Figure 5 shows 
the spatial locations of the climate stations in AWDN. 

The AWDN has around 63 stations to cover the state of Nebraska. The data is available on hourly, daily, and 
sub-daily basis since 1985. To demonstrate the tool, the daily data in 2010 was downloaded from the online ser-
vices provided by AWDN. As discussed in Section 3, the developed tool requires raster datasets on temperature, 
relative humidity, wind speed, and solar radiation. Therefore, at first, the average daily data in 2010 was devel-
oped based on the daily data of temperature, relative humidity, and wind speed. Using ArcGIS and the spatial 
locations of the climate stations, the tabular datasets of average daily data in 2010 were transformed to geo-
graphical data. Subsequently, the Spatial Analyst Extension of ArcGIS was used to develop the grid level values 
of temperature, relative humidity, and wind speed at a resolution of 1 km. The Kriging spatial interpolation 
technique packaged with ArcGIS was used to develop the rasters shown in Figure 6. To ensure that the Krigged 
data covers the whole state, the extent of the interpolation was set using the state map of Nebraska. The research 
work carried out by [4] was used to develop the solar radiation raster. 

As depicted in Figure 6, in 2010, the temperature varies from 47˚F to 53˚F. The maximum temperature is 
observed in the Eastern part of Nebraska. The relative humidity that determines the vapor pressure is very high 
in the Eastern part of Nebraska and tends to decrease towards the Western part of the state. It is also worth to 
note that the trends of temperature and the wind speed are opposite. In other words, the wind speed tends to in-
crease from Eastern part of Nebraska to Western part of Nebraska in the direction of South East to North West. 

The estimated ET using Penman-Monteith method is shown in Figure 7(a). The Figure 7(b) shows the cate-
gorized version of Figure 7(a). For the state of Nebraska in 2010, the estimated ET using Penman-Monteith 
method varies from 0.77 to 1.04 mm/day. In other words, the maximum spatial variation of estimated ET using  

Penman-Monteith method is 1.04 mm day 0.77 mm day 100% 26%
1.04 mm day

−
= × = . Moreover, the highest estimated  

ET using Penman-Monteith method is registered in the Eastern part of Nebraska. However, the geographical 
extent of such high ET is limited to a very small area in contrast to the geographical area with estimated ET us-
ing Penman-Monteith method in the range of 0.77 - 0.96, as shown in Figure 7(b). Furthermore, an increasing 
trend of spatial variation is observed from Western part of Nebraska to Eastern part of Nebraska in the direction 
of North West to South East. 
 

 
Figure 5. The spatial locations of the climate stations from AWDN 
Network in Nebraska.                                                                           
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Figure 6. The input rasters to SET: (a) The average daily temperature in 2010 in ˚F; (b) The average daily relative humidity 
in 2010 in %; (c) The average daily wind speed in 2010 in MPH; (d) The average daily solar radiation in MJm−2∙d−1.                                      
 

 
Figure 7. The Estimation of ET (mm/day) using Penman-Monteith method.                                                     
 

Figure 8(a) and Figure 8(b) show the spatial variation of evapotranspiration estimated using energy balance 
method and the aerodynamic method, respectively.These figures reveal that the contribution of aerodynamic 
method for the estimation of ET using Penman-Monteith method is not that siginificant compared to that of 
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energy balance method. In other words, the estimation of ET using Penman-Moneith is totally defined by the 
energy balance method. The lowest and the highest estimated ET using energy balance method is 2.3 mm/day 
and 2.44 mm/day, respectively. Therefore, the maximum spatial variation of estimated ET using energy balance  

method is 2.44 mm day 2.3 mm day 100% 6%
2.44 mm day

−
= × = . Although the spatial variation of estimated ET using  

energy balance method is not significant, an increasing trend of spatial variation is observed from Western part 
of Nebraska to Eastern part of Nebraska in the direction of North West to South East. Moreover, it is also 
important to note that even though the estimation of ET using Penman-Moneith is totally defined by the energy 
balance method, the spatial variation of estimated ET using Penman-Monteith method is not influenced by the 
energy balance method, but bythe weights used to determine the contribution of energy balance method. 

On the other hand, The lowest and the highest estimated ET using aerodynamic method is 52.88 10 mm day−×  
and 55.33 10 mm day−× , respectively. Therefore, the maximum spatial variation of estimated ET using aerody-  

namic balance method is 
5 5

5

5.33 10 mm day 2.88 10 mm day 100% 46%
5.33 10 mm day

− −

−

× − ×
× =

×
. In other words, the varia-  

tion of estimated ET using aerodynamic method is spatially significant compared to that of energy balance 
method. Moreover, in contrast to what is observed with the trend of estimated ET using energy balance method, 
the lowest estimated ET using aerodynamic method occurs in the Eastern part of Nebraska and increases 
towards the Western part of Nebraska, as shown in Figure 8(b). 

As shown in Figure 9(a), the weighting factor that is used to determine the contribution of energy balance  
 

 
Figure 8. The estimation of ET (mm/day) using (a) Energy balance method and (b) Aerodynamic method.                          
 

 
Figure 9. Weighting factor for (a) Energy balance method and (b) Aerodynamic method.                                       
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method on estimation of ET using Penman-Monteith ranges from 0.34 to 0.43. Similarly, as shown in Figure 
9(b), the weighting factor that is used to determine the contribution of aerodynamic method on estimation of ET 
using Penman-Monteith ranges from 0.29 to 0.32. In other words, in addition to the fact that the contribution of 
aerodynamic method on estimation of ET using Penman-Monteith is very small, the weighting factor that is used 
to determine the contribution of aerodynamic method is smaller than weighting factor that is used to determine 
the contribution of energy balance method. Furthermore, it is also noted that the weighting factor that is used to 
determine the contribution of energy balance method tends to follow the same trend as in Figure 8(a). In other 
words, higher ET estimated using energy balance method is weighted more and lower ET estimated using ener-
gy balance method is weighted less. In contrast to this, in the case of aerodynamic method, higher ET estimated 
using aerodynamic method, although the value is very small, is weighted less and lower ET estimated using 
aerodynamic method is weighted more. This is notable from Figure 8(b) and Figure 9(b). 

5. Conclusion and Recommendations 
In this paper, a spatial tool that can geographically encompass all the best available climate datasets to produce 
ET using Penman-Monteith method at different spatial scales is developed using Python, an open source pro-
gramming language supported by a growing user community for its extensive collection of standard and third- 
party libraries, and the ArcPy site-package of ArcGIS. The developed spatial tool is demonstrated using the me-
teorological data from Automated Weather Data Network (AWDN) in Nebraska in 2010. Based on the devel-
opment and demonstration of the tool, the following points are highlighted: 
1) The contribution of aerodynamic method for the estimation of ET using Penman-Monteith method is not that 

significant compared to that of energy balance method. However, the variation of estimated ET using 
aerodynamic method is spatially significant compared to that of energy balance method. In addition to the 
fact that the contribution of aerodynamic method on estimation of ET using Penman-Monteith is very small, 
the weighting factor that is used to determine the contribution of aerodynamic method is smaller than 
weighting factor that is used to determine the contribution of energy balance method on estimation of ET 
using Penman-Monteith. 

2) It is also observed that even though the estimation of ET using Penman-Moneith is totally defined by the 
energy balance method, the spatial variation of estimated ET using Penman-Monteith method is not influ-
enced by the energy balance method, but by the weights used to determine the contribution of energy bal-
ance method. 

3) The demonstration of the developed tool was based on solar radiation raster from the work done by [4]. 
However, the solar radiation toolbox that is distributed with the installation of ArcGIS is an option that could 
be coupled with the developed tool. 

4) In this study, the Kriging spatial interpolation scheme was used to transform the observed climate data from 
AWDN. Though Kriging is considered as one of the best spatial interpolation schemes, it is also worth to 
research on the impact of other interpolation schemes on spatial ET at grid scales. This may also lead to 
identify the impact of different schemes on energy balance method and the aerodynamic method on estima-
tion of ET using Penman-Monteith. 

5) Though the developed spatial tool is demonstrated for a spatial resolution of 1 km, it can be used to estimate 
ET using Penman-Monteith at different spatial resolutions to decide the best scale that fits a particular region 
or area, and to decide the impact of spatial resolutions on ET using Penman-Monteith. 

6) The sensitivity of ET using Penman-Monteith is oftentimes estimated using meteorological data from cli-
mate stations. However, such estimation of sensitive or most influential parameters may vary spatially and 
thus there exists a need to estimate sensitivity of ET spatially. Thus, the developed tool will be of useful to 
research on this. 

7) Though the developed spatial tool does not include the landuse datasets, the integration of one of the existing 
landuse datasets, such as the National Land Cover Database (NLCD) for the United States of America, with 
the tool is also worth to research. 
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