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Abstract 
To enhance the approximation ability of neural networks, by introducing quantum rotation gates 
to the traditional BP networks, a novel quantum-inspired neural network model is proposed in this 
paper. In our model, the hidden layer consists of quantum neurons. Each quantum neuron carries 
a group of quantum rotation gates which are used to update the quantum weights. Both input and 
output layer are composed of the traditional neurons. By employing the back propagation algo-
rithm, the training algorithms are designed. Simulation-based experiments using two application 
examples of pattern recognition and function approximation, respectively, illustrate the availabil-
ity of the proposed model. 
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1. Introduction 
In 1980s, Benioff firstly proposed the concept of quantum computation [1]. Shor discussed the first quantum al-
gorithm of very large integer factorization [2] in 1994. In 1996, Grover explored an important quantum algo-
rithm, which can search for a marked state in an unordered list [3]. Although the quantum machines are not yet 
technologically feasible, the quantum algorithms that can be applied on the quantum computers are indeed in-
teresting and significantly different from the classical computing. As we know, fuzzy logic, evolutionary com-
putation, and neural networks are regarded as intelligent computing (soft computing), and also have some com-
parability with the quantum computation [4]. Therefore, combination of these computing methods is emerging. 
Different from the Hebbian learning, a quantum neural network can be used for the enriched learning of neural 
networks. Proposed by Penrose in 1989 [5], the idea of quantum information processing in the human brain was 
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still a controversial theory, which has not been experimentally proved. However, the exploration of quantum in-
formation devices is a promising research topic, because of the enhanced capacity and speed from the quantum 
mechanism. With characteristics such as smaller size of quantum devices, larger capacity of quantum networks 
and faster information processing speed, a quantum neural network can mimic some distinguishing properties of 
the brain better than the classical neural networks, even if the real human brain does not even have any quantum 
element. In a word, the quantum neural networks have important research significance in both theory and engi-
neering. 

Since Kak firstly proposed the concept of quantum neural computation [6] in 1995, the quantum neural net-
works had attracted great attention during the past decade, and a large number of novel techniques had been stu-
died for the quantum computation and neural networks. For example, Ref. [7] proposed the model of quantum 
neural networks with multi-level hidden neurons based on the superposition of quantum states in the quantum 
theory. Ref. [8] proposed a neural network model with quantum gated nodes and a smart algorithm for it, which 
showed superior performance in comparison with a standard error back propagation network. Ref. [9] proposed 
a weightless model based on quantum circuit. It is not only quantum-inspired but is actually a quantum NN. This 
model is based on Grover’s search algorithm, and it can perform both quantum learning and simulate the clas-
sical models. Ref. [10] proposes the neural networks with the quantum gated nodes, and indicates that such 
quantum networks may contain more advantageous features from the biological systems than the regular elec-
tronic devices. Ref. [11] have proposed a quantum BP neural networks model with learning algorithm based on 
the single-qubit rotation gates and two-qubit controlled-NOT gates. 

In this paper, we study a new hybrid quantum-inspired neural networks model with quantum weights and real 
weights. Our scheme is a three-layer model with a hidden layer, which employs the gradient descent principle 
for learning. The input/output relationship of this model is derived based on the physical meaning of the quan-
tum gates. The convergence rate, number of iterations, and approximation error of the quantum neural networks 
are examined with different restriction error and restriction iterations. Three application examples demonstrate 
that this quantum-inspired neural network is superior to the classical BP networks. 

2. Quantum-Inspired Neural Network Model 
2.1. Qubits and Quantum Rotation Gate 
In the quantum computers, the “qubit” has been introduced as the counterpart of the “bit” in the conventional 
computers to describe the states of the circuit of quantum computation. The two quantum physical states labeled 
as 0  and 1  express 1 bit information, in which 0  corresponds to the bit 0 of classical computers, while 
1  bit 1. Notation of “ ” is called the Dirac notation, which is the standard notation for the states in the 

quantum mechanics. The difference between bits and qubits is that a qubit can be in a state other than 0  and 
1 . It is also possible to form the linear combinations of the states, namely superpositions 

0 1φ α β= +                                       (1) 

where α  and β  are complex numbers, called probability amplitudes. That is, the qubit state φ  collapses 

into either 0  state with probability 2α , or 1  state with probability 2β , and we have 

2 2 1i iα β+ = .                                        (2) 

Hence, the qubit can be described by the probability amplitudes as [ ]T,α β . 
Suppose we have n qubits, and correspondingly, a n qubits system has 2n  computational basis states. Similar 

to the case of a single qubit, the n qubits system may form the superpositions of 2n  basis states: 

( )0,1 n xx a xφ
∈

= ∑                                      (3) 

where xa  is called probability amplitude of the basis states x , and “{ }0,1 ” means “the set of strings of 
length two with each letter being either zero or one”. The condition that these probabilities can sum to one is 
expressed by the normalization condition 

( )
2

0,1 1n xx a
∈

=∑ .                                       (4) 
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In the quantum computation, the logic function can be realized by applying a series of unitary transform to the 
qubit states, which the effect of the unitary transform is equal to that of the logic gate. Therefore, the quantum 
services with the logic transformations in a certain interval are called the quantum gates, which are the basis of 
performing the quantum computation. 

The definition of a single qubit rotation gate is given 

( )
cos sin
sin cos

R
θ θ

θ
θ θ

− 
=  
 

.                                  (5) 

Let the quantum state 0

0

cos
sin

θ
φ

θ
 

=  
 

, and φ  can be transformed by ( )R θ  as follows: 

( ) ( )
( )

0

0

cos
sin

R
θ θ

θ φ
θ θ

 +
=  + 

                                  (6) 

It is obvious that ( )R θ  shifts the phase of φ . 

2.2. Quantum-Inspired Neuron Model 
A neuron can be described as a four elements array: (input, weight, transform function, output), where input and 
output is the outer attribute of the neuron, and weight and transform function are the inner attribute of the neuron. 
Therefore, the different neuron models can be constructed by modifying types of weight and transform function. 
According this viewpoint, for the quantum-inspired neuron proposed in this paper, the weights are represented 
by qubits, and the transform function is represented by inner-product operator. The difference from the tradi-
tional neuron is that the quantum-inspired neuron carries a group of single-bit quantum gates that modify the 
phase of quantum weights. The quantum-inspired neuron model is shown in Figure 1. 

In quantum-inspired neuron model, the weights are represented by qubits [ ]T0 1 ,i i i i iφ α β α β= + = . Let 

( )T
1 2, , , nX x x x=   is the input real vector, y is an output real number, [ ]Ti i iφ α β= is the quantum weight, 

the input/output relation of quantum-inspired neuron can be described as follows: 

( ) 1
n

i i iiy f XR C x Rφ φ
=

= = •∑                               (7) 

where •  is an inner product operator, ( )f X C X= • , [ ]T1 , 1C = , the iR  is a quantum rotation gate to 

modify the phase of the iφ . 

2.3. Quantum-Inspired Neural Network Model 
Quantum-inspired Neural Network (QINN) is defined as the model that all the input, output, and linked weights 
for each layer may be qubits. The QINN structure is the same as the general ANN which includes input layer, 
hidden layer, and output layer. Obvious, the network including neuron in Figure 1 is QINN. The QINN only in-
cluding quantum neurons is defined as the normalization QINN, and the QINN including quantum neurons and 
general neurons is defined as the hybrid QINN. Since QINN transform function adopts linear operator, the non- 

 

 
Figure 1. Quantum-inspired neuron model.           
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linear mapping capability falls under restriction. Therefore, this paper considers the hybrid QINN (HQINN) in-
cluding a hidden layer of quantum neuron, which holds the advantage of the quantum computing and the nonli-
near mapping capability of the general ANN. HQINN model is presented in Figure 2. 

The model includes three layers, the input layer and output layer contains n and m general neurons, respec-
tively, and the hidden layer contains p quantum-inspired neurons. The input/output relation can be described as 
follows: 

( )
1

1

n
j j i ij iji

p
k jk jj

h C x R

y g v h

φ
=

=

= • 


= 

∑
∑

                                 (8) 

where 1,2, ,i n=  ; 1, 2, ,j p=  ; 1, 2, ,k m=  , jkv  is the linked weight between the jth neuron in hidden 
layer and the kth neuron in output layer, g is the Sigmoid function or Gauss function. 

2.4. Learning Algorithm 
For the HQINN in Figure 2, when transform function in output layer is continuous and differentiable, the learn-
ing algorithm may adopt BP algorithm. The output error function is defined as follows: 

( )2
1

1 ˆ
2

m
k kkE y y

=
= −∑                                      (9) 

where ˆky  represents the desired output. 
According to BP algorithm, the modifying formula for output layer weight is described as follows: 

( ) ( ) ( ) ( )( ) ( ) ( )1 ˆ1jk jk jk k k j
jk

Ev t v t v t y y t g t h t
v

η η∂ ′+ = + = + −
∂

                   (10) 

where, 1, 2, ,j p=  , 1, 2, ,k m=  , η  represents the learning ratio, and t represents the iteration steps. 
The weights between the input layer and quantum hidden layer are modified by quantum rotation gates de-

scribed as follows: 

( ) ( )
( ) ( )

cos sin

sin cos

ij ij
ij

ij ij

R
θ θ

θ θ

 ∆ − ∆
 =
 ∆ ∆ 

                                 (11) 

where 1,2, ,i n=  , 1, 2, ,j p=  . According BP algorithm, the ijθ∆  can be gained from the following for-
mula. 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( )( )
1 1

ˆ cos sin
m m

jk
ij k k jk j i ij ij

k kij k j ij

hyE Et y y t g t v t h t x t t
y h

θ ϕ ϕ
θ θ= =

∂∂∂ ∂ ′∆ = = − = − − −
∂ ∂ ∂ ∂∑ ∑     (12) 

where ( )ij tϕ  is the phase of the ijφ . For ( )ij tϕ , the modifying formula is described as follows. 
 

 
Figure 2. Hybrid quantum-inspired neural network model.   
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( ) ( ) ( )1ij ij ijt t tϕ ϕ θ+ = + ∆                                    (13) 

Let the vector 
T

,ij ij ijφ α β =   , the modifying formula of ijφ  is described as follows: 

( )
( )

( ) ( )
( ) ( )

( )
( )

cos sin1

1 sin cos

ij ijij ij

ij ijij ij

t t

t t

θ θα α

β βθ θ

 ∆ − ∆+   
 =   
 + ∆ ∆       

                           (14) 

where t represents the iteration steps. 
Synthesizing above depiction, the HQINN learning algorithm can be described as follows: 
Step 1: Initialize network parameters. Include: The number of nodes in each layer, the learning ratio, the re-

striction error ε , the restriction steps Max . Set the current steps 0t = . 

Step 2: Initialize network weights. Hidden layer: ( ) 2πij t rndϕ = × , 
( )( )
( )( )

cos

sin

ij
ij

ij

t

t

ϕ
φ

ϕ

 
 =
 
 

, and output layer: 

0.5jkv rnd= − , where rnd  is a random number in (0,1), 1, 2, ,i n=  , 1, 2, ,j p=  , 1, 2, ,k m=  . 
Step 3: Compute network outputs according to Equation (8), modifying the weights of each layer according to 

Equation (10) and Equation (14), respectively. 
Step 4: Compute network output error according to Equation (9), if E ε<  or t Max>  then go to Step 5，

else 1t t= + , go back to Step 3. 
Step 5: Save the weights, and stop 3. 

3. Simulations 
To testify the validity of HQINN, two kinds of experiments are designed and the HQINN is compared with the 
classical BP network in this section. In two experiments, the HQINN adopts the same structure and parameters 
as the BP network. 

3.1. Twenty-Five Sample Patterns Classification 
For twenty-five sample points in Figure 3, determine the pattern of each point by HQINN. This is a typical 
two-pattern classification problem, which is regard as the generalization of XOR problem. 

The network construct is set to 2-10-1, and the learning ratio is set to 0.8. The HQINN and the BP network 
are learned 50 times, restively, and then compute the average of iteration steps. Training results are shown in 
Table 1. When the restriction error takes 0.05, the convergence curves are shown in Figure 4. 

 

 
Figure 3. Twenty-five pattern classification samples.             
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Figure 4. The convergence curve comparison.            

 
Table 1. The training results comparison between HQINN and BP network for 25 sample patterns classification.            

Restriction error Restriction steps 
HQINN BP 

Iteration steps Convergence ratio Iteration steps Convergence ratio 

0.10 1000 583 90% 1000 Non-convergence 

0.05 2000 1131 84% 2000 Non-convergence 

0.01 10000 8893 82% 10000 Non-convergence 

3.2. Double Spiral Curves Classification 
For two spiral curve in Figure 5, fetch 30 points from each curve, respectively, compose the sample set con-
taining 50 sample points, and classify these points in sample set by HQINN. 

The network construct is 2-20-1, and the learning ratio is 0.7. The HQINN and the BP network are training 30 
times, restively, and then compute the average of iteration steps. Training results are shown in Table 2. When 
the restriction error takes 0.10, the convergence curves are shown in Figure 6. 

3.3. Function Approximation 
In this simulation, such function is selected as follow: 

( )21.5
1 2 31.0 1y x x x−= + + +                                 (20) 

where 1x , 2x , and 3x  are integers in the set {1, 2, 3, 4, 5}. 
To approximate the nonlinear function, we sample 40 groups of discrete data, half of which is used to train 

networks and the other half to test its performance. Set the maximum of iteration steps 5000. By changing the 
number of hidden neurons and the learning coefficient, we present an experimental evaluation of HQINN’s and 
compare their performance with that of the other algorithms. This example is simulated 30 times for each group 
of parameters by the HQINN, the BP, and the algorithm in Ref. [12], respectively. When the number of hidden 
neurons is 6 and 8, the training result are presented in Table 3 and Table 4. 

Firstly, we investigate how to change for the average convergence rate when the learning coefficient changes. 
The networks structure is 3-5-1, the restriction error is 0.1, and the restriction iteration steps are 5000. The 
learning coefficient set is {0.1, 0.2, …, 1.0}. This example is simulated 30 times for each learning coefficient by 
the HQINN and the BP respectively. When the learning coefficient changes the average convergence ratio of 
HQINN always is 100% and is insensitive to the learning coefficient. However, the average convergence ratio of 
BP changes in a large range when the learning coefficient changes. The maximum of average convergence ratio 
of BP reaches to 80%, and the minimum is only 10%. The comparison result is shown in Figure 7. 

The comparison result shows that the HQINN is evidently superior to the BP in both the average convergence 
ratio and the robustness. 
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Figure 5. Double spiral curves.                                 

 

 
Figure 6. The convergence curve comparison.                       

 

 
Figure 7. The relationship between the average convergence rate and 
the learning coefficient.                                       

 
Table 2. The training results comparison between HQINN and BP network for double spiral curves classification.            
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Secondly, we investigate how to change for the average iteration steps when the learning coefficient changes. 
The networks structure is 3-5-1, and the restriction error is 0.1. The learning coefficient set is still {0.1, 0.2, …, 1.0}. 
This example is simulated 30 times for each learning coefficient by the HQINN and the BP, respectively. When 
the learning coefficient changes, for the average iteration steps of HQINN, the maximum is 958 steps, the min-
imum is 496 steps, and the average is 693 steps. However, for the average iteration steps of BP, the maximum is 
4619 steps, the minimum is 1532 steps, and the average is 2489 steps. Hence, the performance of HQINN is 
evidently superior to BP in both the average iteration steps and its fluctuation range when the learning coeffi-
cient changes. The comparison result is shown in Figure 8. 

The comparison results show that the HQINN is evidently superior to the BP in both the average iteration 
steps and the robustness. 

4. Conclusion 
The HQINN is the amalgamation of quantum computing and nerve computing, which holds the advantage such 
as parallelism and high efficiency of quantum computation besides continuity, approximation capability, and 
generalization capability that the classical ANN holds. In HQINN, the weights are represented by qubits, and the 
phase of each qubit is modified by the quantum rotation gate. Since both probability amplitudes participate in 
optimizing computation, the computation capability is evidently superior to the classical BP network. Experi-
mental results show that the HQINN model proposed in this paper is effective. 

 

 
Figure 8. The relationship between the average iteration steps and 
the learning coefficient.                                         

 
Table3. The simulation result for the nonlinear function approximation (the number of hidden neurons is 6).               

Algorithm Training error Testing error 

HQINN 0.035236 0.635218 

BP 0.083605 3.268351 

Alg. in Ref. [12] 0.019852 1.775031 

 
Table4. The simulation result for the nonlinear function approximation (the number of hidden neurons is 8).                    

Algorithm Training error Testing error 

HQINN 0.011836 1.008653 

BP 0.029605 2.831532 

Alg. in Ref. [12] 0.019324 4.302806 
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