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Abstract 
This paper aims at the development of an approach integrating the fuzzy logic strategy for a the-
rapeutic hepatitis C virus dynamics optimal control problem. To test the efficiency of this strategy, 
the authors propose a numerical comparison with the direct method by taking the values of de-
terminant parameters of this disease for people administrating the drugs. The results are in good 
agreement with experimental data. 
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1. Introduction 
In the 1970s and 1980s, serological tests developed hepatitis A virus (HAV) and B viruses (HBV) which indi-
cated that most transfusion-associated hepatitis was not caused by either HAV or HBV, which was therefore 
named non-A, non-B hepatitis (NANBH). After detection of the first NANBH-specific clone, the entire viral 
genome of the now termed hepatitis C virus (HCV) was sequenced. Hepatitis C is a liver infection caused by the 
Hepatitis C virus (HCV). HCV is a small positive-strand ribonucleic acid (RNA) virus in the Flaviviridae family 
where it forms its own genus hepacivirus [1]. At least six viral HCV genotypes are identified, numbered 1 to 6 
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[2]; most genotypes have been divided into multiple subtypes (e.g., genotype 1 subtypes 1a and 1b). The chronic 
hepatitis C (CHC) causes cirrhosis and hepatocellular carcinoma and, without effective treatment interventions, 
significant increases in CHC associated morbidity, mortality, and health care costs are predicted [3]. 

HCV can be transmitted by transfusion of blood and blood products, transplantation of solid organs from in-
fected donors, injection drug abuse, unsafe therapeutic injections, and occupational exposure to blood (primarily 
contaminated needles) [4]. Transfusion-associated HCV infection was an important source of infection before 
HCV testing of blood donors was introduced in the early 1990s. Since then, transfusion-associated HCV infec-
tion has been virtually eliminated in those countries where routine HCV-testing has been implemented (Safe In-
jection Global Network (SIGN, 2001)). HCV is less efficiently transmitted by occupational, perinatal and high- 
risk sexual exposures compared to those involving large or repeated percutaneous exposures to blood [4]. 

To date, an active or passive vaccination against HCV is not yet available. The main factor that hampers the 
development of an efficient vaccine is the considerable genetic heterogeneity of this positively-stranded RNA 
virus. However, better understanding of the natural immunity to HCV and the proof of vaccine efficacy in the 
chimpanzee challenge model allow some optimism about the development of an at least partly effective vaccine 
against this heterogeneous pathogen [5]. 

The ultimate goal of CHC treatment is to reduce the occurrence of end-stage liver disease and its complica-
tions including decompensated cirrhosis, liver transplantation, and hepatocellular carcinoma (HCC). However, 
because progression of liver disease occurs over a long period of time, clinicians use sustained virologic re-
sponse (SVR), defined as lack of detection of HCV RNA in blood several months after completing a course of 
treatment, to determine treatment success. SVR is considered a virologic cure [6]. Total duration of treatment 
and choice of regimen may depend on HCV genotype or subtype and host genotype. For many years, the stan-
dard of care for treatment of CHC had been a combination of pegylated interferon alpha-2 (peg-IFN) and ribavi-
rin (RBV) administered for 24 (genotypes 2 and 3) or 48 weeks (genotype 1 and others). There are three types of 
interferon: alfa (IFN-α), beta (IFN-β) and gamma (IFN-γ). Interferon alfa is used to treat viral hepatitis and 
some types of cancer. The type 1 IFNs [interferon alpha and beta (IFN-α/β)] comprise a family of distinct pro-
teins [7] [Takaoka] that are produced by a wide variety of cells, including fibroblasts, epithelial cells, and hepa-
tocytes [8], although plasmacytoid dendritic cells (DCs) are probably the major source in most viral infections. 
In contrast, type II IFN [interferon gamma (IFN-γ)] is a single gene cytokine unrelated in structure to IFN-α/β 
that is produced largely by macrophages, natural killer (NK) cells, and T lymphocytes. Both types of IFNs inte-
ract with cells via distinct cellular receptors. The details of the signaling mechanisms by which IFN-α/β and 
IFN-γ induce the transcription of interferon-stimulated genes (ISGs) and depress the transcription of others are 
still being defined [9]. However, it is increasingly clear that the complex transcriptional programs induced differ 
significantly depending on the IFN type, the cellular target, and the nature of the infection/host challenge. 
IFN-α/β produced by DCs activates NK cells, enhancing their cytotoxic potential and stimulating their produc-
tion of IFN-γ, whereas other cytokines such as interleukin-15 (IL-15) induced by IFN-α/β stimulate the prolife-
ration and accumulation of NK cells [10] [11]. IFN-α/β produced by DCs also modulates the activation of CD8+ 
T cells, which produce additional IFN-γ and represent the central players in the pathogen-specific adaptive im-
mune response [12]. With peg-IFN- and RBV-based therapy, viral relapse usually occurs within the first few 
weeks following treatment cessation and measurement of SVR at an earlier time point could yield greater trial 
efficiency [13]. Interferon is a protein made by the immune system, named because it interferes with viral re-
production. In addition, interferon signals the immune system to recognize and respond to microorganisms, in-
cluding viral and bacterial infections. Ribavirin, also known as Copegus, Rebetol, Virazole, or a component of 
Rebetron, is a type of antiviral medicine called a nucleoside analogue. This medicine blocks the ability of the 
hepatitis C virus (HCV) to make more copies of itself. Ribavirin is not active against HIV. Ribavirin is used in 
combination with interferon alfa-2a or -2b or peginterferon alfa-2a or -2b to treat HIV infected patients who are 
also infected with HCV. Ribavirin capsules are indicated in combination with INTRON A (interferon alfa-2b, 
recombinant) injection for the treatment of chronic hepatitis C in patients 18 years of age and older with com-
pensated liver disease previously untreated with alpha interferon or in patients 18 years of age and older who 
have relapsed following alpha interferon therapy. Ribavirin is a broad spectrum antiviral agent that is used with 
pegylated IFN (Peg-IFN) for HCV treatment. Ribavirin does not significantly reduce HCV viral load when used 
alone but increases rates of sustained virologic response (SVR) when combined with Peg-IFN. Infected cells re-
lease interferon to trigger the immune response. In patients infected with genotype 1 or 4, HCV eradication rates 
range between 45% and 52%. In contrast, in patients infected with HCV genotype 2 or 3, antiviral therapy re-
sults in HCV eradication in 75% - 90% of cases. Furthermore, HCV genotype 1 infected patients require higher 
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doses of ribavirin administered for a longer duration of time versus HCV genotypes 2 and 3 patients who re-
spond effectively to Peg-IFN with lower doses of ribavirin and shorter duration of therapy. Higher serum con-
centrations of ribavirin are associated with higher response rates but also higher rates of hemolytic anemia 
which is a dose limiting side effect. Currently, several novel antiviral agents are being evaluated in individual 
studies, which are NS3-4A protease inhibitors, RNA-dependent RNA polymerase inhibitors, and different im-
mune therapies [14]. 

Mathematical modelling and quantitative analysis of hepatitis C infections has been explored extensively over 
the last decade. Most of the modelling has been restricted to the short term dynamics of the model. One of the 
earliest models was proposed by Neumann et al. [15], who examine the dynamics of HCV in presence of Inter-
feron-α (IFN-α) treatment. They find that the primary role of IFN is in blocking the production of virions from 
the infected hepatocytes. However, IFN has little impact when it comes to controlling the infection of the hepa-
tocytes. Dixit et al. [16] improved upon [15] by including the effects of ribavirin, which in turn results in a frac-
tion of the virions being rendered noninfectious. Their model is able to explain clinically observed biphasic de-
cline patterns amongst patient population. Their study also shows that while IFN plays a pivotal role in the first 
phase decline of viral load, ribavirin has very little impact. However, in case of low IFN efficacy, ribavirin 
makes a significant contribution to the second phase of decline. The model could not successfully explain the 
triphasic decline patterns, as well as some cases of non-responders. Dahari et al. [17] in a subsequent and im-
proved model, take into account the homeostatic mechanisms for the liver by incorporating a growth function. 
This model successfully explains the triphasic decline, as well as therapeutic failures. 

Control theory has found wide ranging applications in biological and ecological problems [18]. In the case of 
HCV, Chakrabarty and Joshi [19] consider a model (motivated by [15]-[17] for HCV dynamics under combina-
tion therapy of interferon and ribavirin. An objective functional is formulated to minimize the viral load, as well 
as the drug side-effects and the optimal system is solved numerically to determine optimal efficacies of the 
drugs. Chakrabarty [20] extended the results in [19] by considering a clinically validated functional form for the 
interferon efficacy and hence determined the optimal efficacy of ribavirin. Martin et al. [21] in a recent paper 
examine a three compartment model for HCV, involving the susceptible, chronically infected and treated inject-
ing drug users (IDUs). They determine an optimal treatment programme over a 10 year period taking into ac-
count several biomedical and economic objectives. The objective of this paper is to find a new mathematical 
model of therapetic hepatitis C virus dynamics with treatment of two drugs, which is combination treatment with 
IFN and ribavirin. 

In this paper we are interested in the role of drugs and how they play a crucial role in controlling HCV dis-
eases through a bicompartmental model such that the controls are those drugs. Therefore, the formulation of op-
timal control problem is done. There are the numerous methods that allow solving this kind of problem. We 
prefer to make a comparative study of direct method with another approach based on the fuzzy logic strategy. 

This paper is organized as follows. Section 2 presents the model equations and optimal control problem. A 
short description of strategy approach by fuzzy logic for solving optimal control problems is discussed in this 
section. Section 3 is interested in presentation of the direct approach and the approach integrating the fuzzy logic 
for solving an optimal control problem of hepatitis C. The numerical simulation is presented in Section 4. Final-
ly, we present concluding remarks in Section 5. 

2. Methods 
2.1. Setting of the Problem 
In terms of constraints of our problem, we consider a two compartmental mathematical model proposed in [22].  

This mathematical model is formulated from a diagram given in Figure 1. 
The model equations are as follows: 

( ) ( ) ( ) ( )( )d ,
d

H t H t I f IFN t Rib t
t

α= − +                            (1) 

( ) ( ) ( ) ( )( )d ,
d

I t I t H g IFN t Rib t
t

β= − +                            (2) 

where  

0.0089 and 0.4678α β= − = −                               (3) 
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Figure 1. A schematic diagram of two compartments for modeling human hepatitis C virus 
dynamics. PBr is blood pressure. IFN is interferon and Rib is ribavirin. H and I represent 
uninfected hepatocytes and infected hepatocytes respectively. The function f and g r 
represent the mechanism of control of hepatitis C virus. This mechanism is not direct and 
can be represented by outflow functions between uninfected hepatocytes and infected 
hepatocytes compartments that depend on interferon (IFN) and ribavirin (Rib) which flow 
in lever through circulatory system by blood pressure.These f and g must be identified.      

 
( ) ( ), 884.9682 sin 350.8518 48.3569g IFN Rib Rib IFN Rib IFN≈ × × + × + ×              (4) 

If ( )T,X H I=  is a state vector, then the healthy improvement conditions for an uninfected human should 
look for reaching uninfected steady state ( )T,e e eX H I=  where eH  is the constant that must be found out. 
Since 0eI = , next the cost function (objective function) was formulated in the following way. 

Find ( )IFN t∗  and ( )Rib t∗  solution of 

( ) ( ) ( ) ( )max 2 2 2

0
,

T
H e IFN RibJ IFN Rib q H H q IFN t q Rib t= − + +∫                  (5) 

subject to the system (1) - (2). 
The positive scalar coefficients Hq , IFNq  and Ribq  determine how much weight is attached to each cost 

component term in the integrand whereas maxT  denotes the maximum time that the physical activity can take. 

2.2. Description of Fuzzy Logic Strategy Approach 
To describe fuzzy logic strategy approach, we consider a linear quadratic problem which can be formulated as 
follows. For two positive defined matrices L  and Q  find M

mU ∈R , 0, , 1m M= −  that is minimizer of 

( ) ( )
1

T T
0 1

0
, ,

M

M m m m m
m

J U U z Lz U QU
−

−
=

= +∑
                          (6) 

subject to 

( )1 ,
,    0, , 1.

,
m m m m

m m
m m

z f x U
m N

z U
+ =

= −
∈ ∈



R R
                           (7) 

The methods with a fast convergence can be used to solve the problem (6) - (7). One of these methods is dy-
namic programming method which is quadratically convergent. Furthermore, a state of control feedback is an 
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optimal solution for this mathematical method [23]. Although this method is used to solve the linear quadratic 
problem, the solution in some cases is not optimal because this method this method depends on the choice of the 
initial trajectory. Therefore, another method can be taken, we prefer for this reason, the method which integrates 
the fuzzy logic in order to determine quickly the optimal solution [24]. Fuzzy logic strategy approach is based 
on the linearization of state system. This approach had been developed by Takagi-Sugeno [25] [26]. It is from 
the mathematical model introduced in 1985 by Takagi-Sugeno that is used to get some fuzzy linearization re-
gions in the state space [27]. These linearization regions are fuzzy regions where the operating points are taken. 
From the idea of Takagi-Sugeno, the nonlinear system decomposition in a structure multi models which are in-
dependent linear models [28]. The mechanism of linearization using fazzy logic strategy for a nonlinear system 
(NL) can be described as follows. 

If , 1, ,iz i S=   is a operating point and ( )T
1, , Sz z z=   denotes a state vector of operating points, the ap-

proximation of a nonlinear term ( )NL z  is done using two following different fuzzy approximations: 
1) The approximation of order zero which satisfies: 

( ) ( ) ( )0 ,  1, ,iNL z NL z NL z i S≈ = =                            (8) 

2) Taylor expansion series of first order verifying 

( ) ( ) ( ) ( ) ( )
T

1

d
,  1, , .

d
i

i i
z

NL z
NL z NL z NL z z z i S

z
 

≈ = + − = 
 

                   (9) 

To minimize the error between the non linear function and the fuzzy approximation, we introduce the factor 
of the consequence for fuzzy Takagi-Sugeno system that allows the improvement of approximation (8) or (9). 
Taking ε  as this factor, from approximation (9) yields: 

( ) ( ) ( ) ( )

( ) ( ) ( )
T

0 11

d
, with 0 1.

d
i

i i
z

NL z NL z NL z

NL z
NL z z z

z

β ε

β β

≈ − +

 
≈ + − ≤ ≤ 

 

                (10) 

The following expression is obtained from the replacement of nonlinear term ( )NL x  in (7) by its approx-
imated value using linearization around iz  and it is system of m equations for each operating point 1, ,i S= 

: 

1 , , , , 1, , ; 0, , 1m i m m i m m i mz A z B U C i S m M+ = + + = = −                    (11) 

where ,i mA  and ,i mB  are ( )M M×  square matrices and ,i mC  is ( )1M ×  matrix. 
The outcome of approximation of nonlinear term ( )( )NL z  using fuzzy approximation is the transformation 

optimal control problem (6) - (7) in linear quadratic problem such that the feedback control is given by the fol-
lowing expression [29] [30]: 

, , 1, , ;   0, , 1,i m i mU K z i S m M= − = = −                       (12) 

where  

( ) 1T T ,i i i i i i iK Q B E B B E A
−

= +                            (13) 

is the feedback gain matrix and iE  discreet Riccati equation solution of the following form 

( ) 1T T T T 0.i i i i i i i i i i i i iE Q A E A A E B L B E B B E A
−

− − + + =                  (14) 

From (12) S controls are determined and the defuzzyfication method [26] leads to only one system and only 
one control mU  obtained by solving the iterated system  

1 ,    0, , 1,m m mx Ax BU C m M+ = + + = −                      (15) 

,   0, , ,m mU Kx m M= − =                            (16) 

where  
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( )

( )

( )

( )

( )

( )

( )

( )

, , , ,
1 1 1 1

1 1 1 1

,    ,  and ,  1, ,

S S S S

i i i m i i i m i i i m i i i m
i i i i

S S S S

i i i i i i i i
i i i i

z A z B z C z K
A B C K i S

z z z z

ω ω ω ω

ω ω ω ω

= = = =

= = = =

= = = = =
∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
    (17) 

and where ( )i ixω  designates membership degree partner to the operating point iz . 

3. Numerical Approaches for Solving the Optimal Control Problem (5) Subject to  
(1) - (2) 

3.1. Using Fuzzy Logic Strategy 
Since explicit Euler scheme is stable, it is used to approximate the optimal control problem (5) subject to (1) - 
(2). This method is an advantage to approach some ordinary differential equations. The following system is ob-
tained from Taylor expansion around eIFN  (Interferon of equilibrium) and eRib  (Ribarivin of equilibrium): 

( )( ) ( )

( )( ) ( )

0.0089
1 2 3

0.4678
1 2 3

d
d
d ,
d

f f f

g g g

H H I C IFN C Rib C
t

I I H C IFN C Rib C
t

−

−

 = − + + +

 = − + + +


                      (18) 

where 

( )

( )

( ) ( )

( )

( )

1.0320
1

2.0320
2

2.0320
3

1

2

150.0734 996.5871

73.8850 1090.2213

, 150.0734 996.5871

884.9682 cos 48.3569

884.9682 cos 350.8518

f e e

f e

f e e e e e

g e e e

g e e e

C IFN Rib

C IFN

C f IFN Rib IFN Rib Rib

C Rib IFN Rib

C IFN IFN Rib

C

= × × +

= × −

= − × × − ×

= × × × +

= × × × +

( ) ( ) ( )3 , 1769.9364 cos

48.3569 350.8518 .

g e e e e e e

e e

g IFN Rib IFN Rib IFN Rib

IFN Rib

= − × × ×

− × − ×

 

Using the variable change 

( ) ( )T T,    and   , ,e e e eX H H I I U IFN IFN Rib Rib= − − = − −                   (19) 

the system (18) becomes 

( )( ) ( ) ( )( )

( )( ) ( ) ( )( )

0.00891
1 2 1 1 2 2 3

0.46782
2 1 1 1 2 2 3

d
d

d
.

d

e e f e f e f

e e g e g e g

X X H X I C U H C U IFN C
t

X X I X H C U H C U Rib C
t

−

−

 = − − + + + + + +

 = − − + + + + + +


           (20) 

On the uniform grid and from the system (20) yields the following approximated system 

( ) ( )( )

( )( ) ( )

( ) ( )( )

( )( ) ( )

0.0089
1, 1 1, 2, 1 1, 2 2,

0.0089
2, 1 2 3

0.4678
2, 1 2, 1, 1 1, 2 2,

0.4678
1, 1 2 3

1

1

,

m m m e f m f m

e m e f e f e f

m m m e g m g m

e m e g e g e g

X h X h X I C U C U

h H X I C H C Rib C

X h X h X H C U C U

h I X H C H C Rib C

−

+

−

−

+

−

  = − + + × + × 


  − + + + +  

  = − + + + 
  + − + + + +   

               (21) 



J. M. Ntaganda et al. 
 

 
533 

where maxT
h

M
=  and ( )m mX X t= . 

To determine the Takagi-Sugeno fuzzy system and using the form given by expression (8) or (9), now we fo-
cus on linearization of two nonlinear factors of the system (21) that is  

( ) ( )( ) ( ) ( )( )0.0089 0.4678
2 1and .e eNL X X I NL X X H− −= + = +  

This mechanism is done by taking the points iH  and , 1, 2,3iI i = , as for the first, second and third equation 
of the system this system respectively. In universe of discourse X  set, these points take the corresponding 
values in the labels centers [24]. The simplification, we use only the Taylor expansion of first order around the 
operating points iH  and iI . Hence we have three systems of the following form 

( ) ( )( )

( )( ) ( )

( ) ( )( )

( )( ) ( )

0.0089
1, 1 1, 1 1, 2 2,

0.0089
1 2 3

0.4678
2, 1 2, 1 1, 2 2,

0.4678
1 2 3

1

1

.

m m i e f m f m

e i e f e f e f

m m i e g m g m

e i e g e g e g

X h X h I I C U C U

h H I I C H C Rib C

X h X h H H C U C U

h I H H C H C Rib C

−
+

−

−
+

−

  = − + + × + × 
  − + + + +  

  = − + + + 
  + − + + + +  

                 (22) 

Let us note ( )T
1, 2,,m m mX X X=  and ( )T

1, 2,, ,m m mU U U=  for each number i of operating point, the system 
(22) becomes 

1, , , ,    1, 2,3,m i s m i i m i iX A X BU C i+ = + + =                          (23) 

where 

1 0
,    1, 2,3

0 1i

h
A i

h
− 

= = − 
                            (24) 

( )( ) ( )( )

( )( ) ( )( )

0.0089 0.0089
1 2

0.4678 0.4678
1 2

,  1, 2,3i e f i e f
i

i e g i e g

I I C I I C
B h i

H H C H H C

− −

− −

 + × + ×
 = =
 + × + × 

               (25) 

( )( ) ( )
( )( )

0.0089
1 2 3

0.4678
1 2 3

,   1, 2,3.
( )

e i e f e f e f
i

e i e g e g e g

H I I C IFN C Rib C
C h i

I H H C IFN C Rib C

−

−

 − + + × × + × +
 = =
 − + + × × + × + 

            (26) 

Now we are interested in approximating the objective function of the problem (5). Hence, using rectangular 
method the following expression yields 

( ) ( )
1

T T
1 2

0
, ,

N
N

m m m m
m

J X U X R X U R U h
−

=

= +∑                        (27) 

where matrices 1R  and 2R  are as follows 

1 1
1 2

2 2

0 0
,       

0 0
a b

R R
a b

   
= =   
   

 

such that the optimal control problem () subject to () - () can be formulated as follows. 
Find ( )T

0 1, , NU U U∗ ∗ ∗
−=   solution of  

( ) ( )
1

T T
1 2

0
min ,

M

m m m mU m
J X U X R X U R U h

−

=

= +∑                           (28) 

subject to 
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1 , , , ,    1, 2,3.m i m m i m m i mX A X B U C i+ = + + =                           (29) 

The problem (28) - (29) is a linear quadratic (LQ) such that for each 1, 2,3i = , the solution leads to feedback 
control that is  

, 1, 2,3m i mU K X i= − =                                 (30) 

where iK  is a gain feedback.  

3.2. Using Direct Approach 
Firstly, the direct method focuses on approximation of the system (1) - (2) on uniform grid 

max ,  0, , ,M m
mT

t m M
M

 Ω = = = 
 

                              (31) 

where we define a linear B-splines basis functions of the form 

{ },  1, ,N M
j j Mψ= = B                                  (32) 

such that we have the relation 

( )M
i m imtψ δ= , 

where ikδ  is Kronecker symbol verifying 

1    if 

0   if im

i m

i m
δ

== 
≠

. 

This approximation is done by introducing the vector space MW  whose the basis is MB  and satisfying two 
following relation 

1) dim MW M=   
2) 1M MW W +⊂   
Assuming ( )0

max0,W C T=  and taking the interpolation operator 

:M M

M

W W

φ φ

Π →

Π

                                    (33) 

satisfying  

( ) ( ) , 1, , ,M
k kt t k Mφ φΠ = =                               (34) 

we are able to verify easily that 

0M
MW

Wφ φ φ→∞Π − → ∀ ∈                             (35) 

0
sup 1.

M
M W

WW
φ
φ

φ

φ≠
∈

Π
Π = =                                 (36) 

Furthermore, the approximation of the system (1)-(2) can be formulated as follows. 
Find ( ) ( )2

,M M MH I W∈  solution of the system 

( ) ( ) ( ) ( ) ( )( )d ,
d

MM M MH t H t I f IFM t Rib t
t

α= − +                        (37) 

( ) ( ) ( ) ( ) ( )( )d ,
d

MM M MI t I t H g IFM t Rib t
t

β= − +                        (38) 
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( ) ( )0 00 ,     0 ,M M M MH H I I= =                               (39) 

such that 

0 0 0M
NH H →∞− →                                   (40) 

0 0 0.M
NI I →∞− →                                    (41) 

Secondly, the direct method deals with the discretization of the optimal problem (5) which becomes 

( ) ( )( ) ( )( )max
22 2

0
1

min d  
TM M

H e j jQ j
J q H t H q t t

λ
λ λ

∈ =

 
= − + ⋅ 

 
∑∫                    (42) 

where 

( ) ( )TT,  and ,IFN RibIFN Rib q q qλ = =  

with jλ  and iq  respectively the thj  component of the vectors λ  and q  respectively. 
Taking ( )2M MQ W=  the approximation of solution of (42) is done by looking for ( )1 2,M M M MQλ λ λ= ∈  

where the set such that  

( ),
0

,   1, 2.
M

M M
j j m m m

m
t jλ λ ψ

=

= =∑                               (43) 

Using rectangular method such that the discretization is done on a regular grid MΩ  the cost function (42) 
becomes 

( ) ( ) ( )
22 2 max

,
1 1

( ) ,     with .
M

M M M M
H k e j j m

m j

T
J q H t H q h h

M
λ λ

= =

 
≈ − + = 

 
∑ ∑                (44) 

Therefore, the discrete formulation of optimal problem (5) subject to (1) - (2) is written as follows. 

( ) ( ) ( ) ( ) ( )( )1 1

TTmin
M MM

M M M MJ h Y RY B
λ

λ λ λ
+ +∈ ×

≈ +
R R

                      (45) 

where Mλ  is a matrix ( )1 2M + ×  with elements ,
M
j mλ  obtained from the function M

jλ  in the set MB  and 
Y  denotes the matrix with ( ), thi m  component, ( )M

m eH t H−  which is the first components of solution of 
the system (1) - (2) associated to Mλ λ= , R  and B  are matrices of the form 

00
,

00
IFNH

RibH

qq
R B

qq
  

= =   
   

                          (46) 

Taking the approximated objective function (45) and (37) - (38) satisfying (40) and (41) into account, the op-
timal control problem (5) subject to (1) - (2) is a minimization problem with constraint such that discreet formu-
lation of such problem can be formulated as follows. 

Find ( ) ( )1 1, M NMλ + +∗ ∈ ×R R  solution of 

( ) ( ) ( ) ( ) ( )( )1 1

TTmin ,
M MM

M M M MJ h Y RY B
λ

λ λ λ
+ +∈ ×

≈ +
R R

                     (47) 

subject to 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

d ,
d
d ,
d

MM M M

MM M M

H t H t I f IFN t Rib t
t

I t I t H g IFN t Rib t
t

α

β

 = − +

 = − +


                     (48) 

where Mλ  is a matrix ( )1 2M + ×  with elements ,
M
j mλ  obtained from function M

jλ  in MB  and 
Y  is the matrix such that the ( ), thj m  component is ( ) ,M e

j m jx t x−  where ( )T
,M M Mx H I=  is the solution 
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of (5) subject to (1) - (2) associated to Mλ λ=  and ( )T,e
e ex H I= . 

4. Numerical Simulation 
Using the mechanism of linearization of the nonlinear terms of the system (21), we apply the fuzzy strategy and 
we consider the case of health person where we take 1000e eH H= =  cells/dl of human blood and 0.0001eI =  
cells/dl of human blood. 

We consider a universe of discourse X  which has two linguistic variables: uninfected hepatocytes (UH) 
and infected hepatocytes (IH). Taking account of the physiology of hepatitis in human body, we consider 

[ ]200,1500H ∈  and [ ]0,300I ∈ . Therefore, the uninfected hepatocytes (respectively infected hepatocytes) is 
low if 200H <  cells/dl (respectively 0I <  cells/dl). If H  (respectively I ) is included between 200 and 
1500 cells/dl (respectively 0 and 300 cells/dl), we suppose that the uninfected hepatocytes (respectively infected 
hepatocytes) is normal. While if 1500h >  (respectively 300I > ) we say that the uninfected hepatocytes (re-
spectively infected hepatocytes) is the highest. Then, LUH (Low uninfected hepatocytes), NUH (Normal unin-
fected hepatocytes) and HUH (the highest uninfected hepatocytes) constitute the terms (fazzy sets) of the lin-
guistic variable UH. In an analogous way, LIH (Low infected hepatocytes), NIH (Normal infected hepatocytes) 
and HIH (the highest infected hepatocytes) are the terms of the variable linguistic IH. 

According the relation (19) and equilibrium values, we have [ ]1 800,500X ∈ −  and [ ]2 0,300X ∈ . For an 
uninfected Hepatitis C virus, uninfected hepatocytes and infected hepatocytes change such that we can consider 
a universe of discourse X  where the labels are centered respectively at −800, 150 and 500; 0, 150 and 300. 
Then, we suppose that theses centers constitute the operating point’s values of the system (21). The operating 
points associated to those linguistic variables are given in Table 1; membership functions associated to this 
labeling are represented in Figure 2. 

Let us set 100M =  and max 10T = , then the following results are found form (24), (25) and (26) respectively.  

0.9 0
,    1, 2,3

0 0.9iA i 
= = 
 

 

Table 1. Variables and their operating points.    

Variable Operating Points 

H [−500; 0; 500] 

I [0; 150; 300] 

 

 
(a)                                            (b) 

Figure 2. Triangular membership functions associated to operating points −800, −150, and 
500 (respectively 0, 150 and 300) for the linguistic variable UH (a) (respectively IH (b)) 
according to the variable change (19). 500 and 250 are the values of entries obtained thanks to 
the formula (19).                                                                  
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1 2 3

105.9779 115.9350 95.3121 104.2671 94.7259 103.6259
,    ,

0.4055 2.9424 0.2061 1.4953 0.1580 1.1464
B B B

− − −     
= = =     
     

 

1 2 3

83.7874 85.4191 85.5088
,     ,     .

0.0001 0.0001 0.0001
C C C

− − −     
= = =     − − −     

 

It easy to note that the problem (28) - (29) is a linear quadratic (LQ). Since there are three linear state systems, 
the solution leads to three feedback controls of the form 

, ,   1, 2,3;k i k kU K X i= − =                             (49) 

where iK  is a gain feedback. 
The implementation can be made in several platforms. Here we use MATLAB package. Taking 1R  and 2R  

of the relation (46) as identity matrices of size 2 respectively, we obtain from the relation (13) and (14) the fol-
lowing matrices , 1, 2,3.iK i =   

1 2 3

0.0068 0.2440 0.0065 0.3285 0.0061 0.3299
,    , .

0.0015 0.2231 0.0027 0.3003 0.0031 0.3016
K K K     

= = =     − − −     
 

The defuzzification transformation allows to obtain one system. Consequently, for the system (29) this tech-
nique gives the following system 

1 ,    0, , 1,k k kX AX BU C k N+ = + + = −                       (50) 

where A  and B  are 2 2×  matrices and C  a 2 1×  matrix. 
In the same way, from the matrixes 1 2,K K  and 3K  he defuzzication precess allows to have one matrix K . 

We propose the following procedure. 
The first (respectively second) line of matrixes , , ,i i iA B C  and ,iK  1, 2,3i =  is defuzzified using the de-

gree of membership 2 fω  and 3 fω  (see Figure 2(a)) (respectively 2gω  and 3gω  (see Figure 2(b))). This 
manner of procedure is due to the two following reasons. 

i) We consider the degree of membership of the entry uninfected hepatocytes (respectively infected hepato-
cytes). According to variable change (19), this value is 400 cells/dl (see Figure 2(a)) (respectively 120 cells/dl 
(see Figure 2(b)))). After calculations, we get  

1 0.4615,fω =  2 0.5385fω =  and 3 0fω =  ( )( )0.4615;0.5385;0UHθ =   
[resp. 1 0,gω =  2 0.6667gω =  and 3 0.3333gω = . ( )( )0;0.6667;0.3333IHθ = . 
ii) The nonlinear factor  

( ) ( )( ) ( ) ( )( )0.0089 0.4678
2 1 and ,e eNL X X I NL X X H− −= + = +  

is used only in the first (respectively second) equation of the system (22). 
Considering these hypothesis, we have the following matrixes. 

0.9 0 100.2344 109.6519
, ,

0 0.9 0.3391 2.4601

84.6661 0.0067 0.2895
, .

0.0001 0.0019 0.2488

A B

C K

−   
= =   
   

−   
= =   − −   

 

The solutions of the optimal control problem (28) - (29) and (47) - (48) can be determined in several platform. 
The implementation of these solutions is made using MATLAB packages. 

To solve the problem (28) - (29) by fuzzy logic strategy only one program is enough. Using direct approach, 
the solutions of the problem (47) - (48) are given by a succession of programs based on MATLAB function used 
in optimization that is fmincon. This function is a MATLAB program which allows solving minimization prob-
lem with constraints. 

In this section, we note by AHLF, ADIR to designate respectively the hybrid approach integrating fuzzy logic 
strategy and direct approach. Consequently, Table 2 gives us the results found after the execution of main  
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Table 2. Minimal values of the objective function (Jopt) and 
the execution time (T) of main program for the resolution of 
the optimal control problem (28) - (29) by AHLF and (47) - 
(48) by ADIR.                                               

 AHLF ADIR 

Jopt 0.0524 14.2379 

T (second) 0.0149 51.08034 

 
MATLAB program for AHLF, ADIR respectively. The results are obtained using a Processor Intel (R) core 
(TM) 2 Duo CPU, 2.20 GHZ. 

Table 2 shows that the time execution of the main program to solve the problem (28) - (29) by AHLF is very 
small compared to one obtained by solving the problem (47) - (48) using ADIR . This argument justifies the ef-
ficiency of the fuzzy logic strategy. 

Considering a patient who is administrating the drugs during 12 months, the variations of the optimal para-
meters is obtained using the hybrid approach integrating fuzzy logic strategy (AHLF) and the direct approach 
(ADIR). Numerical results of fuzzy logic strategy are obtained from the resolution of the problem (28) - (29) 
such that the controls are calculated using the relation (30). Solving the problem (47) - (48), we have the numer-
ical results of direct approach. Figure 3 and Figure 4 illustrate comparison of the results of those two different 
methods. 

Figure 3 illustrates both interferon (IFN) that is used to prevent the virus from infecting the cell (Figure 
3(a)) and ribavirin (Rib) that allows the prevention of the infected cells from producing the new viruses 
(Figure 3(b)). Figure 4 presents the response of these chemotherapy to variation of the concentration of unin-
fected hepatocytes (Figure 4(a)), infected hepatocytes (Figure 4(b)). For a patient who is administrating regu-
larly the drugs, we see that interferon (IFN) and ribavirin (Rib) decrease and after 4months they reach the low-
er value 0 (maximal use of therapy) before having its oscillation around this value (Figure 3(a) and Figure 
3(b)). The solutions from AHLF and ADIR show that after 2.5 minutes of the starting time the optimal unin-
fected hepatocytes (Figure 4(a)) increases to reach the wanted equilibrium value and infected hepatocytes 
(Figure 4(b)) decreases gradually to reach the value around the wanted value in 6 months before its oscillation 
around this value. 

It is known that the main aim of treatment for chronic hepatitis C is to suppress HCV replication before there 
is irreversible liver damage. Furthermore, the role of drugs on chronic hepatitis C virus is to reduce the risk of 
liver disease and prevent the patient from passing the infection to others. The variation of controls given in Fig-
ure 3 which shows the decrease from 1 (when and treatment is absent) of both interferon (IFN) and ribavirin 
(Rib) to be closer to the lower value 0 (maximal use of therapy). Figure 4(a) (respectively 4(b)) shows a in-
crease (respectively decrease) of uninfected hepatocytes (respectively infected hepatocytes) to its higher (re-
spectively lower) value during the six first months of the beginning of the process before oscillating around the 
wanted equilibrium value. This behaviour is due to action of therapeutic drugs. The results obtained in this work 
are rather satisfactory. In particular, the reaction of the disease to drugs can be modeled and they reduce the risk 
of it. Therefore the drugs play a crucial role such that any patient becomes healthy. Comparing the results using 
AHLF and ADIR, it is important to see in Figure 3 and Figure 4 that they are very closed. 

5. Concluding Remarks 
This work deals with an optimal control problem related to uninfected hepatocytes and infected hepatocytes of 
hepatitis C virus. To handle that problem, two numerical approaches have been compared to determine the op-
timal trajectories of these determinant parameters which respond to two controls (interferon and ribavirin) of this 
disease hepatitis C virus for a patient who is administrating drugs during 12 months. The results show that two 
used methods are satisfactory and closed. The findings also show that, in terms of time, the hybrid approach in-
tegrating the fuzzy logic strategy has an advantage on the direct approach in terms of time. Consequently, it 
constitutes an important approach for the resolution of the optimal control problem. In particular, it gives the op-
timal trajectories of uninfected hepatocytes and infected hepatocytes in the same way that it ensures their  
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(a)                                            (b) 

Figure 3. Variation of drugs (controls) interferon, IFN (a) and ribavirin, Rib (b). The curves 
in dotted line represent the parameter for the the direct approach. The curve dashed line show 
the parameter for the approach integrating the fuzzy logic approach.                            

 

 
(a)                                            (b) 

Figure 4. Variation of the concentration of uninfected hepatocytes (a), infected hepatocytes 
(b) for a patient. The curves in dotted line represent the parameter for the direct approach. The 
curve dashed line show the parameter for the approach integrating the fuzzy logic strategy.       
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