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Abstract 
To enhance the performance of quantum-behaved PSO, some improvements are proposed. First, 
an encoding method based on the Bloch sphere is presented. In this method, each particle carries 
three groups of Bloch coordinates of qubits, and these coordinates are actually the approximate 
solutions. The particles are updated by rotating qubits about an axis on the Bloch sphere, which 
can simultaneously adjust two parameters of qubits, and can automatically achieve the best 
matching of two adjustments. The optimization process is employed in the n-dimensional space 
[-1, 1]n, so this approach fits to many optimization problems. The experimental results show that 
this algorithm is superior to the original quantum-behaved PSO. 
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1. Introduction 
The particle swarm optimization (PSO) algorithm is a global search strategy that can efficiently handle arbitrary 
optimization problems. In 1995, Kennedy and Eberhart introduced the PSO method for the first time [1]. Later, 
it received considerable attention and was shown to be capable of tackling difficult optimization problems. PSO 
mimics the social interactions between members of biological swarms. A good analogy for illustrating the con-
cept is a swarm of birds. Birds (solution candidates) are allowed to fly in a specified field looking for food. It is 
believed that after a certain time (generations; iterations) all birds will gather around the highest concentration of 
food in the field (global optimum). At every generation, each bird updates its current location using information 
about the local and global optimums having achieved so far, and information received from other birds. These 
social interactions and continuous updates will guarantee that the global optimum will be found. The method has 
received considerable international attention because of its simplicity and because of its skill in finding global 
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solutions to hard optimization problems. At present, the classical PSO method has been successfully applied to 
combinatorial optimization [2] [3] and numerical optimization [4] [5]. The following improvements have been 
applied to the classical PSO technique: modification of design parameters [6]-[8], modification of the update 
rule of a particle’s location and velocity [9] [10], integration with other algorithms [11]-[17], and multiple sub- 
swarms PSO [18] [19]. These improvements have enhanced the performance of the classical PSO in varying de-
grees. 

Quantum PSO (QPSO) is based on quantum mechanics. A quantum-inspired version of the classical PSO al-
gorithm was first proposed in [20]. Later Sun et al. introduced the mean best position into the algorithm and 
proposed a new version of PSO, quantum-behaved particle swarm optimization [21] [22]. The QPSO algorithm 
permits all particles to have a quantum behavior instead of the Newtonian dynamics of the classical PSO. In-
stead of the Newtonian random walk, a quantum motion is used in the search process. The iterative equation of 
QPSO is very different from that of PSO, and the QPSO needs no velocity vectors for the particles. One of the 
most attractive features of the new algorithm is the reduced number of control parameters. Only one parameter 
must be tuned in QPSO, which makes it easier to implement. The QPSO algorithm has been shown to success-
fully solve a wide range of continuous optimization problems and many efficient strategies have been proposed 
to improve the algorithm [23]-[27]. 

In order to enhance the optimization ability of QPSO by integrating quantum computation, we propose an 
improved quantum-behaved particle swarm optimization algorithm. In our algorithm, all particles are encoded 
by qubits described on the Bloch sphere. The three-dimensional Cartesian coordinates of qubits can be obtained 
from projective measurement. Since each qubit has three coordinate values, each particle has three locations. 
Each of the locations represents an optimization solution, which accelerates the search process by expanding the 
search scope of each variable from an interval on the number axis to an area of the Bloch sphere. The delta po-
tential well is used to establish the search mechanism. Pauli matrices are used to perform the projective mea-
surement, establish the rotation matrices and achieve qubits rotating about the rotation axis. The experimental 
results show that the proposed algorithm is superior to the original one in optimization ability. 

2. The QPSO Model 
In quantum mechanics, the dynamic behavior of a particle complies with the following Schrodinger equation 

( ) ( ) ( )
2

2, ,
2

j r t V r r t
t m

 ∂
Ψ = − ∇ + Ψ ∂  



                             (1) 

where   denotes Planck’s constant, m denotes particle quality and V(r) denotes the energy distribution func-
tion. 

In Schrodinger’s equation, the unknown is the wave function ( ),r tΨ . According to the statistical interpreta-
tion of this wave function, the square of its magnitude denotes the probability density. Taking the delta potential 
well as an example, the design of QPSO is described as follows. 

The potential energy distribution function of the delta potential well can be expressed as 

( ) ( )V r rγδ= −                                       (2) 

where γ  denotes the potential well depth. 
Substituting Equation (2) into Equation (1), we can obtain a particle’s wave function, 

( ) 1 e r Lr
L

−Ψ =                                      (3) 

where 
2

L
mγ

=


 denotes the characteristic length of the delta potential well. 

Therefore, a particle’s probability density function can be written as 

( ) ( ) 2 21 e r LQ r r
L

−= Ψ =                                  (4) 

To increase the probability of a particles moving towards the potential well’s center, Equation (4) must satisfy 
the following relationship, 
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From Equations (4) and (5), the characteristic length, L, must satisfy 

( ) ( )1
ln 2

r
L g

g
= >                                (6) 

In the potential well, the dynamic behavior of the particles obeys the Schrodinger equation, in that the par-
ticles’ locations are random at any time. However, the particles in classical PSO obey Newtonian mechanics, 
where the particles must have definite locations at any time. This contradiction can be satisfactorily resolved by 
means of the collapse of the wave function and the Monte Carlo method. We first take a random number u in the  
range (0,1) and let 2e r Lu −= , then the following result can be obtained 

1ln
2
Lr

u
 =  
 

                                            (7) 

Using Equations (6) and (7), we can derive that 
( )

1

ln 1
2 ln 2k k

u
r r

g+ = . Let k kr x P= − . It is then possible to de-

rive 
( )

1

ln 1
2 ln 2k k

u
x P x P

g+ = ± − . By letting 1
2 ln 2g

α = ,  

( )1 ln 1k kx P x P uα+ = ± −                              (8) 

The above formula is the iterative equation of QPSO [26] [27]. 

3. The QPSO Improvement Based on Quantum Computing 
In this section, we propose a Bloch sphere-based quantum-behaved particle swarm optimization algorithm called 
BQPSO. 

3.1. The Spherical Description of Qubits 
In quantum computing, a qubit is a two-level quantum system, described by a two-dimensional complex Hilbert 
space. From the superposition principles, any state of the qubit may be written as 

( ) ( )cos 2 0 e sin 2 1iϕθ θ= +ϕ                                 (9) 

where 0 πθ≤ ≤ , 0 2πφ≤ ≤ . 
Therefore, unlike the classical bit, which can only equal 0 or 1, the qubit resides in a vector space paramete-

rized by the continuous variables θ  and ϕ . The normalization condition means that the qubit’s state can be 
represented by a point on a sphere of unit radius, called the Bloch sphere. The Bloch sphere representation is 
useful as it provides a geometric picture of the qubit and of the transformations that can be applied to its state. 
This sphere can be embedded in a three-dimensional space of Cartesian coordinates ( cos sinx ϕ θ= , sin siny ϕ θ= , 

cosz θ= ). Thus, the state ϕ  can be written as 

( )

T

1 i,
2 2 1

z x y
z

 + + =
 + 

ϕ                                   (10) 

The optimization is performed in [ ]1, 1 n− , so the proposed method can be easily adapted to a variety of opti-
mization problems. 

3.2. The BQPSO Encoding Method 
In BQPSO, all particles are encoded by qubits described on the Bloch sphere. Set the swarm size to m, and the 
space dimension to n. Then the i-th particle is encoded as 
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1 2, , ,i i i inp φ φ φ =                                    (11) 

where 
T

icos ,e sin ; 0 π; 0 2π; 1, 2, , ; 1, 2, , .
2 2
ij ij

ij ij ij i m j nϕθ θ
φ θ ϕ

 
= ≤ ≤ ≤ ≤ = = 
 

   

From the principles of quantum computing, the coordinates x, y, and z of a qubit on the Bloch sphere can be 
measured by the Pauli operators written as 

0 1 0 i 1 0
, ,

1 0 i 0 0 1x y z

−     
= = =     −     

σ σ σ                          (12) 

Let ijφ  denote the j-th qubit on the i-th particle. The coordinates (xij, yij, zij) of ijφ  can be obtained by 
Pauli operators using 

0 1
1 0ij ij x ij ij ijx  

= =  
 

ϕ σ ϕ ϕ ϕ                              (13) 

0 i
i 0ij ij y ij ij ijy

− 
= =  

 
ϕ σ ϕ ϕ ϕ                              (14) 

1 0
0 1ij ij z ij ij ijz  

= =  − 
ϕ σ ϕ ϕ ϕ                              (15) 

In BQPSO, the Bloch coordinates of each qubit are regarded as three paratactic location components, each 
particle contains three paratactic locations, and each location represents an optimization solution. Therefore, in 
the unit space [ ]1, 1 n− , each particle simultaneously represents three optimization solutions, which can be de-
scribed as follows 

[ ]
[ ]
[ ]

1 2

1 2

1 2

, , ,

, , ,

, , ,

ix i i in

iy i i in

iz i i in

p x x x

p y y y

p z z z

 =
 =


=







                                   (15) 

3.3. Solution Space Transformation 
In BQPSO, each particle contains 3n Bloch coordinates of n qubits that can be transformed from the unit space 
[ ]1, 1 n−  to the solution space of the optimization problem. Each of the Bloch coordinates corresponds to an op-

timization variable in the solution space. Let the j-th variable of optimization problem be ,j j jX A B ∈   , and  
( ), ,ij ij ijx y z  denote the coordinates of the j-th qubit on the i-th particle. Then the corresponding variables 
( ), ,ij ij ijX Y Z  in the solution space are computed as follows 

( ) ( )1 1 2ij j ij j ijX B x A x = − + +                                (16) 

( ) ( )1 1 2ij j ij j ijY B y A y = − + +                                (17) 

( ) ( )1 1 2ij j ij j ijZ B z A z = − + +                                (18) 

where 1, 2, , ; 1, 2, , .i m j n= =   

3.4. The Optimal Solutions Update 
By substituting the three solutions [ ] [ ] [ ]1 1 1, , , , , , , ,i in i in i inX X Y Y Z Z    described by the i-th particle into the 
fitness function, we may compute its fitness, for 1, 2, , .i m=   Let bestgfit  denote the best fitness so far, and 

bestgp  denote the corresponding best particle. Let icfit  denote the own best fitness of the i-th particle, and icp  
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denote the corresponding best particle. Further, let ( ) ( )( )max , ,i i i ifit p fit X Y Z= , ( )( )
1
maxbest i m

fit fit p i
≤ ≤

= . If  

( ) ( )( )cfit i fit p i<  then ( ) ( )( )cfit i fit p i=  and i icp p= . If ( )bestgfit fit best<  then ( )bestgfit fit best=  
and best bestgp p= . 

3.5. Particle Locations Update 
In BQPSO, we search on the Bloch sphere. That is, we rotate the qubit around an axis towards the target qubit. 
This rotation can simultaneously change two parameters θ  and ϕ  of a qubit, which simulates quantum beha-
vior and enhances the optimization ability. 

For the i-th particle, let ijP  denote the current location of the j-th qubit ijφ  on the Bloch sphere, and L
ijP  

and gjP  denote its own best location and the global best location on the Bloch sphere. According to [27], for 
ijP , the two potential well centers in Equation (8) can be obtained using 

( ) 1

1

m L
ijc i

ij m L
iji

P m
P k

P m
=

=

= ∑
∑

                                  (19) 

( ) ( )
( )
1

1
1

L
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ij L
ij gj

rP r P
P k

rP r P

+ −
+ =

+ −
                              (20) 

where m denotes the number of particles, r denotes a random number uniformly distributed in (0, 1), and k de-
notes the iterative step. 

Let O denote the center of the Bloch sphere and ( )ij kβ  denote the angle between ijOP  and ( )c
ij kOP . 

From the QPSO’s iteration equation, to make ijP  move to ( )1c
ijP k + , the angle ( )1ij kβ +   needs to be ro-

tated on the Bloch sphere so that 

( ) ( ) ( ) ( )1 ln 1 , 0 1ij ijk u kβ α β α+ = ± < <                       (21) 

Let the qubit corresponding to the point ( )1c
ijP k +  be c

ijφ . From the above equation we know that the new 
location of ijφ  is actually the location of c

ijφ  after it is rotated through an angle ( )1ij kβ +  towards ijφ . 
To achieve this rotation, it is crucial to determine the rotation axis, as it can directly impact the convergence 

speed and efficiency of algorithm. According to the definition of the vector product, the rotation axis of rotating 
c
ijφ  towards ijφ  through an angle ( )1ij kβ +  can be written as 

( ) ( )
( ) ( )

1

1

c
ij ij

axis c
ij ij

k k

k k

+ ×
=

+ ×

OP OP
R

OP OP
                           (22) 

From the principles of quantum computing, the rotation matrix about the axis axisR  that rotates the current 
qubit ijφ  towards the target qubit c

ijφ  can be written as 

( )( ) ( ) ( ) ( )cos isin
2 2

ij ij
ij axis

k k
M k I

β β
β = − ×R σ                     (23) 

and the rotation operation can be written as 

( ) ( )( ) ( )1 1 c
ij ij ijk M k kφ β φ+ = +                               (24) 

where 1,2, , , 1, 2, , ,i m j n= =   and k denotes the iterative steps. 

4. Experimental Results and Analysis 
4.1. Test Functions 
Many benchmark numerical functions are commonly used to evaluate and compare optimization algorithms. In 
this section, the performance of the proposed BQPSO algorithm is evaluated on 8 standard, unconstrained, sin-
gle-objective benchmark functions with different characteristics, taken from [28]-[30]. All of the functions are 
minimization problems.  
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8) ( ) ( )( ){ } ( )( )max max
22 1 0 0cos 2π 0.5 cos πD k kk k k k

ii k kf X a b x D a b
= = =

 = + − ∑ ∑ ∑ . 

4.2. Experimental Setup 
For all problems, the following parameters are used unless a change is mentioned. Population size: NP = 100 
when D = 30 and NP = 80 when D = 20, the precision of a desired solution value to reach (VTR): VTR = 10 − 5  

(i.e. ( ) ( ) 510optimalf X f X −− < ) for 1f  and 6f ; VTR = 100 for 2f  and 5f ; VTR = 0.1 for 3f ; VTR = 10  

for 4f  and 7f ; VTR = 0.001 for 8f . The maximum of the number of function evaluations (MNFE): MNFE = 
20000; The control parameter: 0.8α = ; Halting criterion: when MNFE is reached, the execution of the algo-
rithm is stopped. 

To minimize the effect of the stochastic nature of the algorithms, 50 independent runs on 8 functions are per-
formed and the reported indexes for each function are the average over 50 trials. If an algorithm finds the global 
minima with predefined precision within the preset MNFE the algorithm is said to have succeeded. Otherwise it 
fails. All of the algorithms were implemented in standard Matlab 7.0 and the experiments were executed on a 
P-II 2.0 GHz machine with 1.0 GB RAM, under the WIN-XP platform. 

4.3. Performance Criteria 
Five performance criteria were selected from [31] to evaluate the performance of the algorithms. These criteria 
are also used in [32] and are described as follows. 

Error: The error of a solution X  is defined as ( ) ( )*f X f X− , where *X  is the global optimum of the 
function. The error was recorded when the MNFE was reached and the average (mean) and standard deviation 
(std dev) of the 50 error values were calculated. 

NFE: When the VTR was reached, the number of function evaluations (NFE) was recorded. If the VTR was 
not reached within the preset MNFE then the NFE is equal to MNFE. The average (mean) and standard devia-
tion (std dev) of the 50 NFE values were calculated. 

Number of successful runs (SR): The number of successful runs was recorded when the VTR was reached 
before the MNFE was satisfied. 

Running time (time (s)): Running time indicates the average time over one function evaluation. 

4.4. Comparison Results 
In this section, we compare our approach with the classical QPSO of [26], to demonstrate the superiority of 
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BQPSO. The parameters used for the two algorithms are described in Section 4.2. The results were calculated 
using 50 independent runs. Table 1 shows the mean and standard deviation of the errors of BQPSO and QPSO 
on 8 benchmark functions. The mean and standard deviation of NFE are shown in Table 2.  

From Table 1 and Table 2, we can see that BQPSO performs significantly better than QPSO for 8 functions. 
For 2f , 4f , 6f , BQPSO succeed in finding the minimum in all runs. For the other functions, BQPSO succeed 
much more often than QPSO. Furthermore, BQPSO obtains smaller mean and standard deviations than QPSO 

 
Table 1. Comparison of the mean and standard deviation of the error of BQPSO and QPSO on 8 benchmark functions.       

F D MNFE 
BQPSO QPSO 

Mean Std dev SR Time (s) mean Std dev SR Time (s) 

f1 30 20,000 0.079 73 0.317 86 49 0.037 47 23.0011 452.679 1 0.00184 

 20 20,000 0.239 19 0.914 67 47 0.016 71 3.01441 7.96305 6 0.00155 

f2 30 20,000 38.9119 503.099 50 0.037 11 222.619 206.335 0 0.00263 

 20 20,000 28.2399 331.000 50 0.016 35 120.592 3215.47 11 0.00170 

f3 30 20,000 0.089 91 0.039 48 40 0.037 43 621.143 178731.2 0 0.00242 

 20 20,000 2.9E−09 1.1E−18 50 0.016 46 8.49475 81.7811 4 0.00179 

f4 30 20,000 −28.169 0.322 38 50 0.031 39 −10.971 0.57122 0 0.00485 

 20 20,000 −18.866 0.180 42 50 0.016 60 −9.1920 0.43015 15 0.00270 

f5 30 20,000 141.237 70671.1 37 0.053 73 260.084 7081.92 3 0.01753 

 20 20,000 31.1062 935.123 48 0.029 56 102.068 1255.77 21 0.00709 

f6 32 20,000 1.3E−07 1.0E−15 50 0.033 22 3.9E−04 4.0E−08 0 0.00316 

 24 20,000 3.8E−08 8.7E−17 50 0.016 64 7.0E−05 1.8E−09 4 0.00236 

f7 30 20,000 7.680 00 10.8751 36 0.036 97 21.9300 57.9156 0 0.00296 

 20 20,000 4.020 00 3.203 67 50 0.016 67 8.33940 6.03014 37 0.00222 

f8 30 20,000 0.324 16 0.454 06 30 0.446 92 28.6777 5.51655 0 0.03800 

 20 20,000 0.100 63 0.164 75 46 0.267 24 14.4137 2.11969 0 0.02871 

 
Table 2. Comparison of the mean and standard deviation of the NFE of BQPSO and QPSO on 8 benchmark functions.        

F D MNFE 
BQPSO QPSO 

Mean Std dev SR mean Std dev SR 

f1 30 20,000 11934.64 7.47E+06 49 19960.84 76 675.279 1 

 20 20,000 12701.46 8.35E+06 47 19326.60 4.37E+06 6 

f2 30 20,000 312.8400 1.66E+06 50 20,000 0 0 

 20 20,000 211.1400 1.10E+06 50 18154.64 1.47E+07 11 

f3 30 20,000 17096.88 7.55E+06 40 20,000 0 0 

 20 20,000 5943.780 3.57E+06 50 18899.44 1.44E+07 4 

f4 30 20,000 66.940 00 2.77E+02 50 20,000 0 0 

 20 20,000 20.720 00 71.51184 50 16553.88 3.61E+07 15 

f5 30 20,000 7698.440 6.30E+07 37 19005.04 1.62E+07 3 

 20 20,000 2725.600 2.35E+07 48 13830.72 6.76E+07 21 

f6 32 20,000 4284.480 1.85E+05 50 20,000 0 0 

 24 20,000 2765.020 8.39E+04 50 19435.52 6.83E+06 4 

f7 30 20,000 13906.26 2.97E+07 36 20,000 0 0 
 20 20,000 4580.540 1.20E+07 50 11246.08 4.78E+07 37 

f8 30 20,000 15620.80 2.44E+07 30 20,000 0 0 
 20 20,000 8842.720 2.54E+07 46 20,000 0 0 
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for 8 functions. Especially, for ( )2 30f D = , ( )3 30f D = , ( )4 30f D = , ( )6 30f D = , ( )7 30f D = , and 
( )8 30f D = , BQPSO succeeds many times while all runs of QPSO fail. In Table 1, we can see that there are 

significant differences in quality between the BQPSO and QPSO solutions of the high-dimensional functions. 
In Table 2, the MNFE is fixed at 20000 for 8 functions. From this table it can be observed that, for all func-

tions, BQPSO requires less NFE than QPSO. For some high-dimensional functions (such as ( )2 30f D = , 
( )3 30f D = , ( )4 30f D = , ( )6 30f D = , ( )7 30f D =  and 8f , QPSO fails to reach the VTR after 20,000 

NFE while BQPSO is successful. It is worth noting that, from Table 1, the running time of BQPSO is about 10 
to 20 times longer than that of QPSO. According to the no free lunch theorem, the superior performance of 
BQPSO is at the expense of a long running time. 

It can be concluded that the overall performance of BQPSO is better than that of QPSO for all 8 functions. 
The improvement based on quantum computing can accelerate the classical QPSO algorithm and significantly 
reduce the NFE to reach the VTR for all of the test functions. 

4.5. The Comparison of BQPSO with Other Algorithms 
In this subsection, we compare BQPSO with other state-of-art algorithms to demonstrate its accuracy and per-
formance. These algorithms include a genetic algorithm with elitist strategy (called GA), a differential evolution 
algorithm (called DE), and a bee colony algorithm (called BC). The BQPSO’s control parameter was 0.8α = . 
For the genetic algorithm, the crossover probability was 0.8cP =  and the mutation probability was 0.05mP = . 
For the differential evolution algorithm, the scaling factor was 0.6Fλ = = , and the crossover probability was 

0.8CR = . For the bee colony algorithm, let N  denote the population size of the whole bee colony, and Ne  
and Nu  denote the population size of the employed bee and onlooker bee, respectively. 

We have taken Ne Nu= . The threshold of a tracking bee searching around a mining bee was 100Limit = . 
The other parameters used for the four algorithms are the same as described in Section 4.2. The eight 
high-dimensional functions were used for these experiments, which had 50 independent runs. Table 3 shows the 
mean of these 50 errors and the number of successful runs. The mean and standard deviation of the NFE are 
shown in Table 4. 

From Table 3 and Table 4 it can be argued that the BQPSO performed best among the four algorithms. It ob-
tained the best results for all eight benchmark functions. The best algorithm is not as obvious for the remaining 

 
Table 3. Comparison of the mean of the error and the number of successful runs of the four algorithms.                   

F D MNFE 
BQPSO GA DE BC 

Mean SR Mean SR Mean SR Mean SR 

f1 30 20,000 0.07973 49 227.4855 0 3.1071 0 6.0792 0 

 20 20,000 0.23919 47 172.8114 0 1.7693 0 7.9874 0 

f2 30 20,000 38.9119 50 52.4963 50 60.8792 50 42.2418 50 

 20 20,000 28.2399 50 35.5755 50 49.0714 50 42.6962 50 

f3 30 20,000 0.08991 40 8.9E+03 0 1.0330 10 125.5168 0 

 20 20,000 2.9E–09 50 1.3E+03 0 3.3E−04 50 1.5107 3 

f4 30 20,000 –28.169 50 –9.255 0 –17.060 0 –21.941 45 

 20 20,000 –18.866 50 –6.771 0 –14.574 0 –13.133 0 

f5 30 20,000 141.237 37 4.9E+05 0 282.0958 3 393.2102 18 

 20 20,000 31.1062 48 765.4107 4 111.5074 17 147.4145 34 

f6 32 20,000 1.3E−07 50 0.4800 0 8.3E−05 40 8.8E−04 0 

 24 20,000 3.8E−08 50 0.1171 0 2.9E−06 48 9.1E−04 0 

f7 30 20,000 7.68000 36 18.3473 0 80.1740 0 18.3369 1 

 20 20,000 4.02000 50 8.5440 35 25.8359 0 13.2798 7 

f8 30 20,000 0.32416 30 4.5371 0 3.2423 0 6.4422 0 

 20 20,000 0.10063 46 1.8608 0 1.1100 1 1.3450 0 
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Table 4. Comparison of the mean of the error and the standard deviation of NFE of the four algorithms.                   

F D 
BQPSO GA DE BC 

Mean Std dev Mean Std dev Mean Std dev Mean Std dev 

f1 30 11,935 7.47E+6 20,000 0 20,000 0 20,000 0 

 20 12,701 8.35E+6 20,000 0 20,000 0 20,000 0 

f2 30 312.8 1.66E+6 9081.5 4.52E+6 843.38 2.31E+5 8218.5 2.79E+4 

 20 211.1 1.10E+6 6253.8 3.21E+6 678.78 2.54E+5 8308.8 2.11E+4 

f3 30 17,097 7.55E+6 20,000 0 18,723 1.16E+7 20,000 0 

 20 5943.8 3.57E+6 20,000 0 10,728 9.15E+6 19,445 6.22E+6 

f4 30 66.94 2.77E+2 20,000 0 20,000 0 16,330 5.35E+6 

 20 20.72 71.5118 20,000 0 20,000 0 20,000 0 

f5 30 7698.4 6.30E+7 20,000 0 18,838 2.16E+7 19,182 1.50E+6 

 20 2725.6 2.35E+7 19,821 6.43E+5 14,268 6.91E+7 17,735 4.74E+6 

f6 32 4284.5 1.85E+5 20,000 0 17,350 4.77E+6 20,000 0 

 24 2765.0 8.39E+4 20,000 0 15,148 8.71E+6 20,000 0 

f7 30 13,906 2.97E+7 20,000 0 20,000 0 19,998 158.42 

 20 4580.5 1.20E+7 15,816 1.28E+7 20,000 0 19,977 4045.6 

f8 30 15,621 2.44E+7 20,000 0 20,000 0 20,000 0 

 20 8842.7 2.54E+7 20,000 0 19,606 7.77E+6 20,000 0 

 
three algorithms. The DE algorithm performed well on average. It obtained the best results among the three al-
gorithms for some benchmark functions, but it did not successfully optimize the functions f2, f4, and f7, because it 
got trapped in a local optimum. The BC achieved the best results among the three algorithms for the 
30-dimensional functions f2, f4, and f7. The GA achieved the best results among three algorithms for the 
20-dimensional functions f2 and f7. The DE achieved the best results among three algorithms for the 
20-dimensional function f4. According to the experimental results, the algorithms can be ordered by optimizing 
performance from high to low as BQPSO, DE, BC, GA. This demonstrates the superiority of BQPSO. 

These results can be easily explained as follows. First, In BQPSO, two parameters θ  and ϕ  of a qubit can 
be simultaneously adjusted by means of rotating the current qubit through an angle δ  about the rotation axis. 
This rotation can automatically achieve the best matching of two adjustments. In other words, when the current 
qubit moves towards the target qubit, the path is the minor arc of the great circle on the Bloch sphere, which is 
clearly the shortest. Obviously, this rotation with the best matching of two adjustments has a higher optimization 
ability. Secondly, the three chains structure of the encoding particle also enhances the ergodicity of the solution 
space. These advantages are absent in the other three algorithms. 

5. Conclusion 
This paper presents an improved quantum-behaved particle swarm optimization algorithm. Unlike the classical 
QPSO, in our approach the particles are encoded by qubits described on the Bloch sphere. In this kind of coding 
method, each particle contains three groups of Bloch coordinates of qubits, and all three groups of coordinates 
are regarded as the approximate solutions describing the optimization result. As three solutions are synchron-
ously updated in each optimization step (with the same swarm size as QPSO), our encoding method can extend 
the search range and accelerate the optimization process. In our approach, the particles are updated by rotating 
qubits through an angle about an axis on the Bloch sphere, and the rotation angles of qubits are computed ac-
cording to the iteration equation of the classical QPSO. This kind of updating approach can simultaneously ad-
just two parameters of qubits, and can automatically achieve the best matching of two adjustments. The experi-
mental results reveal that the proposed approach can enhance the optimization ability of the classical quan-
tum-behaved particle swarm optimization algorithms, and for high dimensional optimization the enhancement 
effect is remarkable. In addition, our approach adapts quicker than the classical QPSO when the control para-
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meter changes. Further research will focus on enhancing the computational efficiency of BQPSO without re-
ducing the optimization performance. 
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