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Abstract 
In this work capacity of tokamak plasma is calculated using modeling of tokamak configuration as 
toroidal and coaxial capacitor. This value is very important and plays an important role in time- 
varying regimes in tokamak. For exact simulation of plasma behavior, this amount will be added 
to circuit equations and transport codes. Since capacitive properties of tokamak cause production 
of a radial electric field, it deserves our special attention. 
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1. Introduction 
Tokamak is a torodial shape magnetic confinement fusion device that is the best candidate for nuclear fusion re-
actors [1] [2]. Working principle of this device is like a transformer, passing the electric current through the 
primary coils inducing a current in the tokamak plasma that plays the role of secondary coils of transformer 
(Figure 1) [1]-[3]. This current causes heating of the plasma and creates a polar magnetic field Bθ which in-
creases the quality of the confinement of tokamak plasmas. The resistive and inductive properties of the plasma 
in tokamak have been widely studied. Though the plasma has capacitance property in all area between its centre 
and the chamber wall, its capacitive performance was not widely studied before 1990’s [4] [5]. In this article, the 
capacitive property of the plasma in the tokamak and its importance in circuit equations and transport codes of 
tokamak is explained. Then, the numerical results of such model for Damavand tokamak compare with experi-
mental results and a good agreement between them is observed.  
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Figure 1. Tokamak [3].                                                           

2. The Capacitive Model 
Estimation the value of capacitance of the equal circuit of tokamak can be done by a torodial coaxial capacitor 
(Figure 2), the tokamak plasma plays the role of inner electrode and the discharge chamber wall is external 
electrode and the low-density plasma between them considered as the dielectric of capacitor. In this article, the 
capacity of tokamak plasma obtained through solving the Laplace equation for a torus, and the working regimes 
in which this property is important have been identified. 

1a , 2a  and R  are the distance between centre of plasma and its edge, tokamak minor radius and major ra-
dius of the tokamak, respectively. Here the main problem is the solving of the Laplace equation for ( ), ,V r θ φ  
with the boundary conditions of ( 0V =  in 1r a= ) and ( 1V =  in 2r a= ).  
The Laplace equation [6]: 

2 2 3 1 3 1 2

1 2 3 1 2 3

1 0
h h h h h hV V VV

h h h r h r h hθ θ φ φ
     ∂ ∂ ∂ ∂ ∂ ∂

∇ = + + =     ∂ ∂ ∂ ∂ ∂ ∂       
                       (1) 

1 1h = ,  2h r=  and 3 cosh R r θ= −   

With substituting the above values in Equation (1) and with respect to that in this system 0V
φ

∂
=

∂
 the Equa-  

tion (1) becomes as follows. 

1 cos
cos1 0

r
r V VRr

r R r r

θ
θ

θ θ

 −  
  ∂  ∂  ∂ ∂ − + =    ∂ ∂ ∂ ∂         

                                  (2) 

1r a= : 0V =  
2r a= : 1V =  

Because of the uniqueness of the solutions of Laplace equation, there will be only one answer that will satisfy 
the above conditions. 

It is obvious that in a constant 
r
R

, the solution of Equation (2) V  will be a periodic function of θ  that its  

period is 2π . It is also evident that because of symmetry V  is a paired function of θ . Thus, V  can be de-  

scribed as a cosine Fourier series of θ  as the following form in which coefficients ( )nb  are functions of 
r
R

:  



S. Goudarzi et al. 
 

 
35 

 
Figure 2. Coaxial torus [2].                                                       

 

( )0, cosnn

r rV b n
R R
θ θ∞

=

   =   
   

∑                                     (3) 

Now, it is necessary to obtain expressions for n
rb
R

 
 
 

 that can satisfy the boundary conditions, for finding 

the simplest solution, we first put the ,rV
R
θ 

 
 

 from Equation (3) instead of V  in Equation (2) and equals  

the coefficients of ( )cos pθ  in the resulting equation to zero for any natural number of p  more than 1. Fi-
nally, the following expressions obtain for 0b  and 1b :  

2 22
2 1 2

0
1 2 1

1 Ln Ln Lna a ar r rb
R a R a aR

             = + − +            
               

                        (4) 

1 2
1 1 2

4 a ab r a a
R r
 = + − − 
 

 

On the other hand, the solution to Laplace equation for such coordinate system would be in the form of  

1
0

2

1

Ln

Ln

r
a

V
a
a

 
 
 =
 
 
   

 
This solution provides the boundary conditions ( )1 0V a =  and ( )2 1V a =  and is completely independent 

from θ . We can calculate the capacity of capacitor in Figure 2 if the charge on each torus can be measured.  

With respect to that the boundaries are considered as co-potential surface, on them 0V
θ
∂

=
∂

. Therefore, the  

electrical charge on each surface of torus is equal to drs
Q E sε= ∫   in which the integral is done over the entire 

of surface.  

  In this relation 
1

r
r a

VE
R =

∂ = − ∂ 
 and ε  is the coefficient of permittivity of dielectric material and  

( )1 1d cos d ds a R a θ θ φ= − . 

( ) ( )
1

2π 2π
1 1 0 10 0

2
cos cos cos d dn

n r a

rQ a R a b b b n
r Rϕ θ

ε θ θ θ θ ϕ
∞

= =
= =

∂   = − + +   ∂   
∑∫ ∫              (5) 

By putting the calculated values for 0b  and 1b  (Equation (4)) in Equation (5)) and notice that all of the co-
efficients nb  for 2n ≥  are equal to zero and integrating it the value of Q  is obtained by Equation (6): 

( ) ( )
( )

2 2
1 22 1 2

2
2 1

1 24π
Ln

a R a R a aQ R
a a R

ε
 + −

= − + 
  

                             (6) 
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Since 
Q

C
V

=  and 1V = , the value of capacitance can be calculated by following equation:  

( ) ( )
( )

2 2
1 22 1 2

2
2 1

1 24π
Ln

a R a R a aC R
a a R

ε
 + −

= + 
  

                              (7) 

In limit of R →∞  and taking into account 2πL R=  Equation (7) is changed to 
( )2 1

2π
Ln

LC
a a
ε

=  which is  

the same formula for capacitance in concentric cylinders. It should be noted that ε  is the permittivity of the 
space between the boundary of plasma and the vacuum chamber that is a low-density plasma and can be written  

as 0ε ε ε⊥=  that 
2

21
A

c
V

ε⊥ = + ,  
( )1 2

0
A

BV
µ ρ

= is the Alfven velocity and B , ρ  and c  are the strength of  

magnetic field, mass density and velocity of light, respectively. Because the values of ρ  in different regions 
are not equal, also the values of ε⊥  are different in these regions [7]. The value of ε⊥  is maximum in the 
centre of plasma and minimum in the space between the edge of plasma and the chamber wall, and these spaces 
can be considered as series capacitors. 

The electrical equivalent circuit for tokamak after taking into account the capacitor property is shown in Fig-
ure 3 in which lV  is the loop voltage, pR  and L  are the resistance and inductance of the plasma which are  

calculated by 1 5
eff2

1

0.002P e
RR Z T
a

− 
=  
 

 and 0
1

8 7Ln
4

RL R
a

µ
  

= −  
     

relations, respectively. In these two  

equations, effZ , eT  and 0µ  are the effective charge of tokamak plasma, the electron temperature and the 
vacuum permeability coefficient, respectively [8] [9]. The equivalent circuit that has involved these capacitors 
consists of several meshes and its analytical solution is extremely difficult, but the results of a circuit with 

2n =  (Figure 3) are good enough for simulation the tokamak plasma. The circuit equation for Figure 3 is a 
second order differential equation in following form:  

( ) ( ) ( )
2

2

d d
1

dd
P P

P P P s
i iLC GL R C GR i i T

tt
+ + + + =                              (8) 

In Equation (8), si  is obtained using Norton equivalent circuit of Figure 3 in the following way: 

( )
( )

( )
0

e e d
P

P
R L t

t R L t
s li t V t

L

−
′ ′= ∫                                      (9) 

The general solution of Equation (9) for the plasma current can be written as: 

( ) ( ) ( )
2 2

0 0 0 0
0

sin cose cos sin e cos d e sin dt t td d
P d d s d s d

d d d d

V t ti I t t i t t t i t t t
L

α α αω ω ω ω ωω ϕ ω ω ω
ω ω ω ω

−  
= − + + − 

 
∫ ∫    (10) 

 

 
Figure 3. RLC equivalent circuit of tokamak plasmas.                           
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In Equation (10) 0
1 PGR

LC
ω

+
=  and ( )

2
PGL R C

LC
α

+
=  are the natural frequency (resonance) and the  

damping constant, respectively. 0V , 0I  are the initial values of the plasma loop voltage and the plasma cur-  

rent, respectively. 0ω  is calculated through 2 2
0dω ω α= − . Natural frequency 0

1 1PGR
LC LC

ω
+

= ≅  is an  

important factor that can play an important role in various regimes of the tokamak plasma. The values of natural 
frequencies for different tokamaks are in order of 5

0  10 rad/sω ≈ . 
In fact, according to the properties of electrical elements, in dc regimes (following the end of transient re-

gimes), C  would act such as an open circuit and L  such as a short cuircuit. Therefore, the circuit in Figure 3 
is changed to a simple resistive circuit in which l p pV R i= . When lV  varies with time, not only the resistance 
circuit but also the RL model cannot correctly simulate the behaviour of the plasma. Hence, RLC model should 
be used. 

The first effects of capacitance are weak damping oscillations with natural frequency in plasma current, radial 
electric fields and so on, detection of them is usually difficult. Its second effects are to cause some types of fluc-
tuations in density and other plasma parameters at the edge of plasma. Such fluctuations have been observed in 
Damavand tokamak [4]. Probably, some fluctuations in kHz range in H mode of tokamak and in plasma edge 
can be related to the natural frequency discussed above. When the value of lV  is constant no fluctuation would 
be seen and capacitive and inductive properties do not play an important role and the circuit in Figure 3 is 
changed to a simple resistive circuit. 

3. Results and Discussion 
The experimental data of the Damavand tokamak are [10]: 

19 33 10  mn −= × , 1.2 TTB = , 1 7 cma = , 36 cmR = . 

40 kAPI = , 150 eViT = , 300 eVeT =  and the discharge time 15 msdt = . 
On the basis of dimension and condition of Damavand tokamak we would have: 

60.9 10  HL −≅ × , 
61.7 1 F 0C −≅ × , 

10.01 ΩG −≅  and 
410α ≅ . 

After some calculating it would be: 5
0  8 10 rad/sω α≅ ×  . 

And, therefore, it would be: 5
0 8 1  0 rad/sdω ω≅ ≅ ×  or 51.2 10 Hzf ≅ × .  

As previously noted, the first effect of the capacitance is weak damping oscillations with the frequency 
0dω ω≅   that is the common result of an RLC circuit. However, when the loop voltage is dc, oscillation would 

not observe. Usually during the disruption instability a negative spike would observe in loop voltage. Such 
spikes in loop voltage and the condition of 0ω α  in a tokamak leads to a solution for Equation (9) in the 
form of a weak damped oscillation e cost

d tα ω− .  
In the experiments with Damavand tokamak that a sample of their results is demonstrated in Figure 4, when  

the negative spike of loop voltage is observed, the disruption instability happened and 
d
d

pI
t

 showed weak  

damping oscillations. From the calculations using the presented model, it is seen that the frequency of these os-
cillations is approximately 100 kHz with damping in form of 

410e t− . In Figure 4, the calculated signal by Equa-
tion (11) for an ideal shock input voltage is compared with experimental results and a good agreement between  

them is observed [10]. 
d
d

pI
t

 is measured by a Rogowski coil. 

When a power source (such as induced current, radio frequency wave, neutral beam) is injected into the 
plasma, there will be two working regimes:  

1) The first one is a transient regime in which L and C along with R play role in equation of circuit and to 
simulate the behaviour of the plasma, using RLC circuit (Figure 3) with Equation (9) is necessary.   

2) In the second regime that is a steady state regime, a simple resistive circuit with circuit equation of 
l pV Ri=  is sufficient.  
Therefore, the capacitance of the plasma like its inductance, plays important role in some working regimes of 

tokamak. The importance of capacitance properties is not limited to regimes with time-varying loop voltages. In  
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Figure 4. (a) The negative spike in loop voltage in Damavand tokamak; 

(b) weak damping oscillations d
d
I
t

 in Damavand tokamak; (c) Calcu-

lated signal d
d
I
t

 in Damavand tokamak using the RLC model for this 

loop voltage.                                                          
 

each transient regime and regimes with time varying power source (such as radio frequency waves and neutral 
beam heating) the effect of capacitive property can be seen. In Figure 3, in addition to an electrical power sup-
ply, radio frequency waves and neutral beams can be considered as the power supply.  

4. Conclusions 
The radial electric field in study of the H mode of tokamak plasmas is a very important parameter and several 
models have been proposed to explain the origin of them. In this paper, the effects of capacitive property on ra-
dial electric field in tokamak are briefly explained. It is proposed that a radial electric field is produced by a ra- 

dial current in the form of tot
0 r rE J

t
ε ε⊥

∂
= −

∂
 [5] in which tot

rJ  is the total current in the radial direction.   

Then, a new model for equivalent circuit of tokamak plasmas on the base of capacitive property is explained. 
The plasma has the capacitive property of 0ε ε⊥  in all regions between its centre and the vacuum chamber wall. 
With respect to that value of 0ε ε⊥  inside the plasma is maximum, the capacitance between centre of plasma 
and its edge is very high .Therefore, the capacitance in Equation (7) should be estimated as the capacitance of 
the space between plasma edge and the vaccum chamber that generates a radial electric field on the plasma edge  

in the form of 
( )2 1

r
QE

a a C
=

−
. We can investigate the generation of radial electric field in H mode using this  

value for capacitance in Equation (8) and Figure 3 which gives more accurate results. 
In this article, the analysis on the base of this model is first accomplished for Damavand tokamak and a good 

agreement between results of this model and the experimental results is observed. This model may be extended 
in future for analysis of the performance of big tokamaks such as ITER. 
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