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Open

Abstract

Problems associated with energy distribution, consumption and management are undoubtedly
some of the most significant problems that energy utilities face globally. For instance, when de-
velopment takes place, the demand for electrical power and in particular domestic electrical
energy also increases. Thus improvement of energy distribution policies becomes important for
utilities and energy decision making agencies. The authors had earlier [1] [2] provided a mixed
strategy 2-player game model for a residential energy consumption profile for winter and summer
seasons of the year using a dual-occupancy high-rise (11-storey) building located within the Poly-
technic of Namibia, Windhoek. The optimum energy values and the corresponding probabilities
obtained from the model extend the usual simple statistical analyses of minimum and maximum
energy values and their associated percentages. The time-block and the week-day strategies de-
pict critical probabilistic values worth considering for decision purposes, especially, the necessity
and justification for a dual tariff regime for the residential and workplace residents of the building
as against the existing institutional uniform energy tariff policy. However, this paper presents ex-
tended results of post-optimality analyses for the winter and summer seasons, and thus provides
the optimal range of energy values over which the energy consumption can change without chang-
ing the optimal tariff estimate parameters obtained from the mixed strategy of critical energy
game values. The post-optimality analyses also provide extended information on the mixed strat-
egy of non-optimal week-day solutions obtained from the game model, hence validating one of the
essential roles of sensitivity analysis, namely, investigation of sub-optimal solutions. From appli-
cation point of view, the post-optimality model provides a useful tool for Utilities, especially for
identifying flexibility range of optimal break-even energy values for consumers, such as in the in-
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formal settlements where metering is rather a challenge to determine varied or non-uniform ta-
riffs.
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1. Introduction

Post-optimality Analysis (or Sensitivity Analysis) is concerned with the propagation of uncertainties in mathe-
matical models. It belongs to a broader area of Perturbation Analysis [3] that defines the largest sensitivity re-
gion and its main goal is to assess the influence of parameter changes on the state of the system [4]. Post-opti-
mality analysis is necessary in identifying critical or breaking-even values where the optimal strategy changes,
and also for investigating sub-optimal solutions. For instance, given the optimal solution of a linear optimization
model, a series of post-optimality analyses can provide valuable decision making information to deal with un-
certainties.

Specifically, our earlier game model solutions focused on the optimal week-day strategies (or equivalently
identified the optimal days of use of energy) and the game value (which was proposed as a uniform tariff esti-
mate parameter). By nature of the game model, there was no information on the energy consumption for the
non-optimal week days. The post-optimality analysis model in this paper fills the gap, providing information on
the “sub-optimal” solutions which are earlier characterized as “non-optimal” in the game model [1]. Moreover,
the dual LPP problem provides the optimal solutions for the time-block decision variables.

We earlier as in [1] solved the following version of the game model represented by Equations (1)-(3):

7
Maximize D = d, (@)
j=1
Subject to
7 48
2 28d; <1 2)
j=Li=1
d, >0 ©))
where

d;, j=1---,7 =the week day strategies (days of the week, Monday to Sunday).

g; = the energy consumption values (or the payoff matrix of the game model, represented by the kilowatt-
hour values recorded for each time instant, separated by 30 minutes on each day).

A mixed strategy solution with respective probabilities and value of the game were obtained. However, in this
paper, a direct linear programming problem (LPP) approach is employed for the above model to confirm our
earlier game model optimal solution and to further derive the associated post-optimality results.

In the following LPP model to be solved, the decision variables d; above have corresponding LPP decision
variables as x1,x2,---,X7 while the coefficients e, are as defined above. The relationship between the game
model decision variables and the LPP decision variables are defined by Equation (8) below.

2. Solution of Winter LPP Model
2.1. The Model

Defining the variables x1, x2, x3, x4, x5, x6 and x7 as the energy decision variables for the days of the week,
namely for Monday, Tuesday..., Sunday, our LPP model is as in Equations (4) and (5):

Maximize D,, = X1+ X2 + X3+ X4 + X5+ X6 + X7 4)

Subject to



S. A. Reju, G. Gope

27.642678x1+ 28.93933x2 +29.27172x3 + 28.26516x4 + 28.87478%5 + 28.84201x6 + 30.286526X7 <1
25.9262393x1+ 25.66183x2 + 26.13624x3 + 27.42176x4 + 26.6133x5+ 28.42685x6 + 28.312744x7 <1
25.4382561x1+ 25.19901x2 + 25.08198x3 + 25.91629x4 + 25.50332%5 + 25.87914x6 + 25.523228x7 <1
24.1491054x1+ 23.72513%2 + 24.2098x3 + 24.33872x4 + 25.19087x5 + 23.82306x6 + 23.787366x7 <1
24.4040223%1+23.79068X2 + 24.79247 x3+ 23.56741x4 + 23.20033x5 + 23.36639x6 + 23.547017x7 <1
19.8259667 x1+ 22.43399x2 + 23.15372x3 + 22.6366x4 + 22.5929x5 + 23.23311x6 + 23.432911x7 <1
22.0223721x1+ 22.98421x2 + 23.10259x3 + 22.98839x4 + 22.78518X5 + 23.1173x6 + 22.949783x7 <1
22.573477x1+22.3307x2 + 22.77863x3 + 22.56887 x4 + 23.34454 x5 + 23.86676X6 + 22.437522X7 <1
22.5564828x1+ 22.44392x2 + 23.09346x3 + 22.28045x4 + 23.56086 x5 + 23.16756 X6 + 23.628677x7 <1
24.1709557x1+ 22.75976x2 + 23.74102x3 + 22.76333x4 + 21.95925x5 + 22.88569x6 + 24.071417x7 <1
22.9837729x1+ 22.36646x2 + 22.06632x3 + 23.44068x4 + 22.42684X5 + 22.74367x6 + 23.231405x7 <1
23.7728x1+ 22.6366x2 + 22.21053x3 + 23.14134x4 + 21.92429x5 + 22.17338X6 + 22.726427x7 <1
22.9230771x1+ 25.40361x2 + 25.02262x3 + 23.9913x4 + 23.18941x5 + 22.66282%6 + 22.175322Xx7 <1
25.7562944x1+ 27.08745x2 + 29.76844x3 + 28.51862x4 + 26.87769x5 + 23.59064x6 + 23.105161x7 <1
32.614771x1+ 34.9753%x2 + 36.61842x3 + 33.93305%x4 + 34.17777x5 + 25.03355%6 + 23.607711x7 <1
38.065133x1+ 45.54415x2 + 43.31764x3 + 42.36934x4 + 41.25718X5 + 28.10129x6 + 27.42175x7 <1
45.229496x1+ 51.04597x2 +52.69783x3 + 49.28924x4 + 48.61626X5 + 31.19307x6 + 41.94737x7 <1
45.363028x1+ 47.52158x2 + 46.50336x3 + 47.25937 x4 + 47.40795x5 + 37.14499x6 + 38.01901x7 <1
41.762636x1+ 44.0933x2 +43.43125x3 + 44.13264x4 + 42.70802x5 + 39.21589x6 + 39.30815x7 <1
40.985743x1+ 40.35914x2 + 40.10131x3 + 38.48182x4 + 37.75243x5 + 39.86168x6 + 41.79906 X7 <1
40.160296x1+ 37.44654x2 + 36.44799x3 + 36.48354 x4 + 38.62644 x5+ 40.30111x6 + 41.04887x7 <1
36.899789x1+ 36.74972x2 + 36.67087x3 + 34.82095x4 + 38.37953x5 + 39.13578x6 + 40.9906x7 <1
35.0935278x1+ 35.64729x2 + 35.53904 %3 + 34.39191x4 + 36.21857 x5+ 37.82477x6 + 37.2761x7 <1
34.930871x1+34.3641x2 + 35.61551x3 + 35.36919x4 + 34.44435x5 + 37.31737x6 + 37.77622x7 <1
33.3018256x1+ 34.49519x2 + 32.94325x3 + 35.66715x4 + 33.20983%5 + 37.91703x6 + 35.236767x7 <1
33.430505x1+ 33.55166x2 + 32.2659x3 + 33.60928x4 + 33.74951x5+ 37.22755%6 + 37.873333x7 <1
33.024095x1+ 34.05819x2 + 34.68252x3 + 32.31417 x4 + 32.23969x5 + 37.74708X6 + 36.465216X7 <1
33.568155x1+ 35.23677x2 + 35.12825x3 + 33.48413x4 + 33.84129x5 + 34.98913%6 + 34.24623x7 <1
34.673775x1+34.2171x2 + 34.1734x3 + 33.62317 x4 + 34.44435x5 + 34.90174x6 + 34.1297x7 <1
32.746595x1+ 31.30012x2 + 33.767x3 + 34.85671x4 + 35.44727%5 + 35.06682x6 + 34.06172x7 <1
31.01389x1+31.62788x2 + 32.66358x3 + 30.74096 x4 + 31.97748x5 + 32.74344x6 + 35.68106x7 <1
30.327805x1+ 29.8562x2 +29.70871x3 + 29.10008x4 + 30.01972x5 + 31.41059x6 + 33.58102x7 < 1
28.66502x1+ 30.08563x2 + 29.79612x3 + 28.48843%x4 + 29.77937 x5+ 31.78689x6 + 30.194267x7 <1
30.59219x1+ 29.56305x2 + 28.78738%3 + 28.68905x4 + 29.15665x5 + 31.21394x6 + 32.78471x7 <1
29.195975x1+ 30.99422x2 + 30.37587x3 + 28.05739x4 + 29.04521x5 + 30.83521x6 + 30.429767x7 < 1
31.608215x1+ 31.32381x2 +29.39262x3 + 30.20464x4 + 31.07071x5 + 31.97141x6 + 32.493379x7 <1
33.41968x1+ 32.87151x2 + 34.00517x3+ 32.4552x4 + 31.61696X5 + 33.14646x6 + 33.96704x7 <1
36.316885x1+ 36.73714x2 + 38.2681x3 + 35.5401x4 + 34.25426 x5 + 35.5718%6 + 36.33655x7 <1
39.943995x1+ 41.30196x2 + 43.45747 x3+ 39.03205x4 + 37.44435x5 + 40.12631x6 + 38.48514x7 <1
39.489515x1+ 43.45419x2 + 41.99133x3 + 40.99656x4 + 41.2965x5 + 38.38608x6 + 40.30839x7 <1
41.99352x1+43.52339x2 + 41.36861x3 + 41.00251x4 + 40.57109x%5 + 40.02678x6 + 39.09693x7 < 1 ®)
39.31252x1+ 40.20218x2 + 40.76992x3 + 37.92875x4 + 38.98478x5 + 39.36642x6 + 38.77889x7 <1
36.66212x1+40.96328x2 + 38.13918x3+ 37.51646x4 + 37.15374x5 + 36.78326x6 + 40.3351x7 <1
39.382445x1+ 39.14245x2 + 36.62498x3 + 36.95232x4 + 37.25426 X5+ 35.2052X6 + 34.62254x7 <1
36.51354x1+37.66576X2 + 35.01901x3+ 36.11011x4 + 36.84129x5 + 35.58152x6 + 33.61501x7 <1
34.582005x1 + 34.40829x2 + 33.92213x3 + 33.63311x4 + 35.07581x5 + 32.3987 x6 + 32.2506X7 < 1
32.59802x1+34.05687x2 + 33.72548x3 + 31.59708x4 + 33.1836x5 + 31.78933%6 + 31.092551x7 <1
29.34018x1+32.81142x2 + 30.39554x3 + 30.44102x4 + 31.23021x5 + 32.83812x6 + 29.762126X7 < 1

&)
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The coefficients in the above model are the energy readings taken from the dual-occupancy high-rise building
(stated in the Abstract).
The optimal solution for the above model is as follows

x1=0
x2=0
x3=0
x4 =0.00233375565998705
x5=10.00196693868495645
x6 = 0.0155408776995797
X7 =0.00517836109162509
And
D,, =0.0250199331361483
Theoretically, given the expected value of the game defined by Equation (6) in our previous game model [1]

7 48

TED=>>etX,=p 6)
j=li=1
where T is the time strategy vector, E =e¢;, the energy payoff matrix and X, the Day strategy vector, once
we solve the associated linear programming problem, the value of the game is obtained by the formula in Equa-
tion (7) below.

p= D, ()
Thus, we have
p= 1 39.96818532
0.0250199
Moreover, the column player’s (week day) optimal mixed strategy is obtained by the formula in Equation (8):
g -2 ®
"D

where X, =xj, j=123;-7

The comparative results are provided in Table 1.

It is observed that the above probabilities coincide with those earlier obtained from our game model [1] in
Table 2.
2.2. Winter Week-Day Sensitivity Analysis Results

Figure 1 summarises the procedure for the post-optimality analysis and Table 3 is the result of running a Post-
Optimality test based on the Simplex method, using the LPSolve package.

The above gives on dividing by D,, = 0.025019933, the optimal range of energy values as follows (and using
zero (0) in place of —o for non-negative energy values):

0< X, <41.3948284
0< X, <41.72583365
0< X, < 40.29555199
39.75519492 < X, < 40.56906598
39.61080734 < X, < 40.28072835
39.42965009 < X, < 40.19669252



S. A. Reju, G. Gope

Table 1. Winter LPP and game model comparison.

LPP Model Game Model (2012)
Optimal Objective D, =0.025019933 p= Diw =39.96813239
X g,
Variables X, D, '
Probabilities
X, 0 0
X, 0 0
X, 0 0
X, 0.002333756 0.093275856
X, 0.001966939 0.078614866
X, 0.015540878 0.621139861
X 0.005178361 0.206969423

<3

39.50194189 < X, <40.86035541

The 5" degree polynomial regression plots for the optimal range of values (with the week day mean plot for
the winter season) are as in Figure 2.

It is observed that the four-day optimal energy consumption days for the season (Thursday-Sunday) as ob-
tained in our game model show fairly stable consumption profile from the post-optimality results (i.e. the values
showing very close proximity).

Superposed plots with the mixed-strategy game model tariff estimate value are shown in Figure 3.

2.3. Winter Time Block Sensitivity Analysis Results

The following time-block optimal range of values in Table 4 which coincide with the same optimal time-blocks
in the game model is obtained from the Dual problem (using the LPSolve Software).

Using Equation (6), we obtain the corresponding post-optimality energy ranges by computing the values using
Equation (9).

=t )

where T, isthe Time-Block optimal mixed-strategy and T, =D,

Thus the ranges of energy values are as follows:
39.73552664 < t,, < 40.25188749

39.59374664 <t,, < 40.16628286
39.80201684 < t,, < 40.21069659
39.58727316 <t,, < 40.15870528

where tg, t,, t,,and t, arethe time instants indicated in Table 4.

3. Solution of Summer LPP Model
3.1. The LPP Model

Following similar procedure as in the winter model, we have the summer linear programming model given by
Equations (10) and (11):

Maximize D, = X1+ X2 + X3+ x4 + X5+ X6 + X7 (10)

&)

Subject to
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23.8688x1+23.8274x2 + 23.2569x3 + 22.9328x4 + 22.0727 x5+ 23.0904x6 + 24.1528x7 <1
23.1384x1+ 22.3498x2 + 22.3793x3+ 23.0153x4 + 22.6224x5 + 22.8303%x6 + 22.8204x7 <1
22.7459x1+ 22.1436X2 + 23.2266x3 + 22.2651x4 + 21.6950X5 + 23.1991x6 + 22.4068x7 <1
22.0477x1+ 22.2351x2 + 21.6643x3+ 21.6922x4 + 21.5899x5 + 22.6435%6 + 23.2614x7 <1
20.5729x1+ 21.7858x2 + 21.8658x3 + 21.8245x4 + 21.0303x5 + 21.5025%6 + 23.1889x7 <1
22.6055x1+21.8650x2 + 21.5271x3+ 21.4470x4 + 22.1830x5 + 21.5609x6 + 22.4373x7 <1
21.0313x1+ 21.8514x2 + 22.8272x3 + 22.0891x4 + 20.8742x5 + 20.7814x6 + 22.5856x7 <1
22.0382x1+ 21.5755%x2 + 21.7675x3+ 21.2977 x4 + 21.0296 x5+ 20.5841x6 + 21.6074Xx7 <1
21.5296x1+21.9442x2 +21.1411x3+ 22.2190x4 + 20.8120x5 + 22.0394x6 + 21.0020x7 <1
22.0616x1+ 21.7093%2 + 23.2338x3+ 22.7058%4 + 22.3151x5 + 20.2957x6 + 21.9485x7 <1
22.1518x1+ 23.4191x2 + 24.1904x3 + 24.0471x4 + 24.5878x5+ 21.8365x6 + 21.8885x7 <1
26.2768x1+ 27.2196x2 + 28.4681x3 + 29.3033x4 + 28.6658x5 + 22.3676x6 + 21.7619x7 <1
30.7296x1 + 32.9430x2 + 32.7119x3+ 34.4842x4 + 34.0827 x5+ 23.0365x6 + 22.4974x7 <1
36.4062x1+39.1675x2 + 42.2251x3 + 40.9433x4 + 38.8082x5 + 25.6101x6 + 25.8903x7 <1
44.4838x1+ 43.8093x2 + 40.0826x3 + 44.5303x4 + 42.8277 x5+ 29.4292x6 + 27.5326X7 <1
37.2820x1+ 39.6564x2 + 40.7454x3 + 40.1300x4 + 40.3427x5 + 34.2710x6 + 31.8429x7 <1
33.5061x1+34.9832x2 + 37.5067x3 + 35.4358x4 + 35.9067 X5 + 34.7583x%6 + 25.3363x7 <1
32.1347x1+ 33.3199x2 + 34.9466 X3 + 34.5898%4 + 34.6139x5 + 34.6564 X6 + 37.4958x7 <1
32.2935x1+32.7914x2 + 31.6716x3 + 31.6230x4 + 32.0852x5 + 34.9456 X6 + 36.6587x7 <1
30.3029x1 + 33.4100x2 + 30.2847x3 + 30.8952x4 + 31.6720x5 + 38.4210x6 + 33.9243x7 <1
32.0694x1+31.0215x2 + 32.0066x3 +31.5910x4 + 31.2710x5 + 35.1093x6 + 34.3863x7 <1
32.6619x1+31.7016x2 + 30.6373x3+30.5602x4 + 29.2036 x5+ 35.7201x6 + 33.1212x7 <1
33.2202x1+ 33.2513x2 + 28.8423x3 + 31.4552x4 + 29.9035x5 + 35.9908x%6 + 34.0931x7 <1
33.3745x1+32.3060x2 +31.0331x3 + 31.9017x4 + 29.5993x5 + 34.6630%6 + 34.1961x7 <1
33.0741x1+ 30.5026x2 + 30.9420x3 + 32.1767x4 + 28.7542x5 + 35.3256 X6 + 33.3463x7 <1
32.9157x1+30.5962x2 + 29.8386x3 + 31.1844 x4 + 29.9234 x5 + 32.8237x6 + 33.7195x7 <1
34.7797x1+32.7478x2 + 32.7313x3+ 31.8587x4 + 31.0841x5+ 32.7131x6 + 33.2156x7 <1
32.2069x1+ 31.5432x2 + 32.0661x3 + 30.8912x4 + 29.9343x5 + 32.1901x6 + 32.2649x7 <1
30.8112x1+ 29.9695x2 + 29.8010x3+ 29.2615x4 + 29.5747x5+ 32.1705x6 + 30.4433x7 <1
30.0997x1+27.1236x2 + 27.6900x3 + 28.6936 x4 + 27.5468x5 + 31.1264x6 + 29.9617x7 <1
29.8034x1+ 28.7377x2+ 26.6000x3 + 26.7959x4 + 25.6304x5 + 31.1609x6 + 32.5136x7 <1
31.6647x1+27.1587x2 + 28.6963x3 + 26.2556 x4 + 28.4445%5 + 31.6943x6 + 29.3786x7 <1
28.1087x1+ 26.4226x2 + 28.5040x3 + 26.6707x4 + 36.9958x5 + 30.4599x%6 + 30.3961x7 <1
27.9339x1+ 28.3682x2 + 28.7789x3 + 28.4718x4 + 27.7238x5+ 30.8574x6 + 29.9319x7 <1
29.8498x1+ 29.7899x2 + 28.5834x3 + 28.9063%x4 + 30.6831x5+ 30.0002x6 + 30.7471x7 <1
32.5346x1+ 32.0640x2 + 30.7927x3 + 30.6895%4 + 32.9890x5 + 31.9891x6 + 31.4353x7 <1
35.2085x1+33.1100x2 + 33.1756x3 + 32.4497 x4 + 34.3692x5 + 31.4413x6 + 31.3976x7 <1
34.8207x1+ 34.5622x2 + 34.7002x3 + 35.5451x4 + 36.0338xX5 + 32.5638x%6 + 34.7076 X7 <1
36.4513x1+ 36.8359%2 + 37.4703x3 + 36.2188%4 + 34.5814X5 + 34.2888x6 + 34.7784Xx7 <1
37.2543x1+34.9004x2 + 37.8818x3 + 37.3004 x4 + 34.8331x5 + 33.1371x6 + 36.5130x7 <1
37.7609x1 + 34.7049x2 + 37.7119x3+ 37.9353x4 + 36.0665x5 + 34.7353%6 + 36.3382x7 <1
35.4530x1 + 34.1571x2 + 37.7944x3 + 37.7750x4 + 34.0789x5 + 33.1041x6 + 36.9849x7 <1
36.0047x1+ 33.1094x2 + 34.2426 X3 + 34.9891x4 + 33.0504 X5 + 32.7393%6 + 34.7846X7 <1
32.4036x1+ 33.6719x2 + 33.0700x3 + 32.6658x4 + 33.6535x5 + 31.9995x6 + 32.9181x7 <1
32.3503x1+ 28.3440x2 + 29.0714x3+ 30.3921x4 + 29.6728x5+ 30.5725x6 + 31.6519x7 <1
29.5876x1+ 26.8952x2 +29.0896x3 + 29.2341x4 + 27.5456 X5 + 29.2795%6 + 29.1900x7 <1
27.0080x1+ 25.5740x2 + 25.7405x3+ 27.5395x4 + 25.8128x5 + 28.9487x6 + 27.0588x7 <1
24.9841x1+ 25.0066x2 + 25.4480x3 + 25.2465x4 + 25.5130x5 + 25.5799x6 + 25.7625x7 <1

(11)
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Table 2. Winter energy consumption concentration matrix.

Days Thu Fri Sat Sun
Time Probabilities 0.0933 0.0786 0.6211 0.2070
09.00 0.1208 441326 42.7080 39.21589 39.3082
09.30 0.1460 38.4818 37.7524 39.86168 41.7991
10.00 0.2311 36.4835 38.6264 40.30111 41.0489
20.00 0.5021 41.0025 40.5711 40.02678 39.0969
Game Value 39.9681

Table 3. Results of winter week-day sensitivity analysis.

From Till
Objective 0.0250199331361483 0.0250199331361483
Variables
X, —0 1.03569583315223
X, —0 1.04397756219379
X, —0 1.00819201095926
X, 0.994672313337416 1.01503531275992
X 0.991059745754735 1.00782112455324
X 0.986527203511101 1.00571855368084
X, 0.98833593943488 1.02232335482563

v

Output Optimal
Start Primald; andDual t;
7

Perform Post-Optimality Analyses
Max D = Z d;
v
7 48
S. T'z eij d]- <1; d]- >0 Compute F ig@l OptimaltYalues
) —_ i
Jj=1i=1 dj —D—wandTi .

v v

LPSolve Simplex Routine

Output Post-Optimal Primal
Energy Ranges for Seasons

Figure 1. Post-Optimality algorithm for winter model.

The optimal solution is as follows:

x1=0

x2 =0.00906091473154742
x3=0

x4=0
x5=0.000330919431198716
x6 = 0.00966675499545442
X7 =0.00929680391087571
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Figure 2. Relationships between the seasonal mean and post-optimality ener-
gy values.
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Figure 3. Relationships between the seasonal mean, post-optimality energy
values and the tariff estimator.

Table 4. Results of winter dual problem sensitivity analysis.

From Till
Objective 0.0250199331361483 0.0250199331361483
Variables
t, =09H00 0.99418022 1.007099534
t,, = 09H30 0.990632894 1.004957712
t,, =10H00 0.9958438 1.00606894
t,, = 20H00 0.990470928 1.004768121




S. A. Reju, G. Gope

and

D, =0.0283553930690763

For the summer season, the value of the game is obtained using Equation (12) below:

Thus, we have

oo b
DS

~ 1

~ 0.0283553930

=35.26665986

The comparative table of results for the summer season is as follows in Table 5:
It is also observed that the above probabilities coincide with those earlier obtained from our game model [1]

for the season as seen in Table 6.

3.2. Summer Week-Day Sensitivity Analysis Results

(12)

Running the LPSolve Sensitivity Analysis routine for the problem, we have the results as presented in Table 7.
On dividing by D, =0.028355393, the above gives the optimal range of energy values as follows (using zero
(0) in place of —oo for non-negative energy values):

Table 5. Summer LPP and game model comparison.

Optimal Objective

LPP Model

D, =0.028355393

Game Model

p= Di = 35.26665986

X;
Variables X, D,
Probabilities
X, 0 0
X, 0.009060915 0.319548198
X, 0 0
X, 0 0
X, 0.000330919 0.011670423
X, 0.009666755 0.34091416
X, 0.009296804 0.327867221
Table 6. Summer energy consumption concentration matrix.
Days Tue Fri Sat Sun
Time Probabilities 0.3195 0.0117 0.3409 0.3279
7.30 0.0695 39.65638 40.34272 34.27103 31.8429
9.30 0.1784 33.41002 31.67203 38.42097 33.92427
19.00 0.2106 36.835885 34.58144 34.28885 34.77837
20.00 0.5415 34.704865 36.06655 34.73525 36.33819
Value 35.2666
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Table 7. Results of summer week-day sensitivity analysis.

Variables From Till

Objective 0.0283553930690763 0.0283553930690763
X, —0 1.02422635412771
X, 0.981537627468657 1.06062733133012
X, —0 1.03629009420123
X, —o0 1.03412262609405
X, 0.982292128971773 1.02150606857908
X, 0.969765665592283 1.03416157676571
X 0.974735091792164 1.0145564767584

<3

0< X, £36.12104245
34.61555364 < X, < 37.40478333
0 < X, £36.54649026

0< X, £36.4700509
34.64216239 < X, <36.02510706
34.20039587 < X, < 36.47142456
34.37565093 < X, <35.78001817

When the seasonal mean and post-optimality values in Figure 4 are superposed with the mixed-strategy game
model tariff estimate value, we have Figure 5:

3.3. Summer Time-Block Sensitivity Analysis Results

The following time-block optimal range of values in Table 8 coinciding with the same optimal time-blocks in
the game model are obtained from the Dual problem (using the LPSolve software).
Using Equation (6), we obtain the corresponding post-optimality energy ranges by using Equation (13).

T =t (13)

where T, is the Time-Block optimal mixed-strategy and T, = D, = 0.028355393.

Thus the ranges of energy values are as follows:
35.16175215 < t,, <36.32470197

33.60693822 <t,, < 35.77974053
34.27879848 <t,, < 35.30868593
35.20508294 < t,, < 35.35365461

4. Duality Results and Discussions on Utility Application
4.1. Summer and Winter Dual Optimal Solutions

Solving a linear programming problem usually provides more information about an optimal solution than merely
the values of the decision variables. Associated with an optimal solution are shadow prices (also referred to as
dual variables or marginal values) for the constraints. The shadow price on a particular constraint represents the
change in the value of the objective function per unit increase in the right hand-side value of that constraint.
Thus duality in linear programming is essentially a unifying theory that develops the relationships between a
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Figure 4. Relationships between the seasonal mean and post-optimality energy

values.
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Figure 5. Relationships between the seasonal mean, post-optimality energy

values and the tariff estimator.

Table 8. Results of summer dual problem sensitivity analysis.

From Till
Objective 0.025019933136 0.02501993313
Variables
t, =07H30 0.997025303 1.030001202
t,, = 09H30 0.952937943 1.014548607
t,, =19H00 0.971988805 1.001191668
t, = 20HO0 0.998253965 1.002466773
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given (primal) linear programming problem and another related (dual) linear programming problem stated in
terms of variables with this shadow-price interpretation

The related dual problems to the week-day models for the two seasons have the time-blocks as the dual va-
riables. In Figure 6 and Figure 7 we have the dual problem model solution yielding the time-block optimal
energy values plotted against the seasonal season means, the seasons’ Tariff Estimator game values and the four
time-optimal energy consumption values for the winter and summer seasons, respectively.

4.2. Discussions on Utility Applications

From the foregoing model results, the following conclusions are drawn:

1) The direct LPP models and their associated post-optimality analyses for the two seasons validate our earlier
optimal mixed strategy game values, both for the week-day and time-block optimal values.

2) The post-optimality analysis for each of the seasons provides additional information on the non-optimal
week-day mixed strategies, specifically, the analysis shows the significant maximum energy values which are

50 T T T T T T T T T
451 8
40 ]
35 ~ _
30 1
25 1
20 8
15F 1
1ok —+— Winter Mean i
== = = | PP-Optimal
5k —— Tariff Est |
Time Opt
0 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Figure 6. Winter comparison plots and dual optimal simulation.
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151 -

10+ -
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5 | —%— Tariff Est 1
Time Opt
0 I I | | | | |
0 5 10 15 20 25 30 35 40 45 50

Figure 7. Summer comparison plots and dual optimal simulation.
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not explicit in the game model results as summarised in Table 9:

3) In each of the seasons, the tariff energy estimator obtained from the mixed-strategy model lies within the
post-optimality ranges. This is clearly seen in the plots in Figure 2 and Figure 5. Thus this confirms the uni-
queness of the estimator as a very useful energy value for utility application, especially for determining a single
uniform tariff estimate.

4) While the Time-Block post-optimality results may not be of significant application from utility point of
view, however, they equally validate our mixed-strategy game model values, and also specifically show the
range of energy values within the optimal time-blocks that were not explicit from the game model.

5) It is noteworthy to see that the time-optimal solution of the dual problem model reveals small deviations
from each of the season’s means, globally.

We had earlier [1] categorized the consumers into morning (workplace) and (evening) residential consumers.
Thus the comparison plots in Figure 8 show two fairly convergence points for the two seasons that appear use-
ful for some estimates for the two periods of the day for the whole year.

5. Conclusion

Utilities, i.e. agencies in charge of distribution of electricity commonly face a serious challenge of determining a
tariff policy as noted in [5]. This is even more challenging for consumers where provision of electricity meters
(or metering) is not easily feasible, such as the informal settlements. Having determined a tariff estimate in our
earlier game model as in [1], useful for utilities in determining a uniform tariff policy, knowing the range of
energy demand (or consumption) values within which uniform tariff remains unchanged, becomes essential for

Table 9. Summary of seasonal sensitivity analyses.

Winter Post-Optimality Week-Day Energy Range Summer Post-Optimality Week-Day Energy Range
R Tariff Estimator = 39.9681 Tariff Estimator = 35.2666
Monday 0< X, £41.3948284 0< X, <£36.12104245
Tuesday 0< X, <41.72583365 34.61555364 < X, <37.40478333
Wednesday 0< X, <40.29555199 0< X, <36.54649026
Thursday 39.75519492 < X, <40.56906598 0< X, <36.4700509
Friday 39.61080734 < X, <40.28072835 34.64216239 < X, <36.02510706
Saturday 39.42965009 < X, <40.19669252 34.20039587 < X, < 36.47142456
Sunday 39.50194189 < X, <40.86035541 34.37565093< X, < 35.78001817

50 T T T T T T T T T

—+— Summer Mean
—<— Summer LPP-Optimal
— Winter Mean

—%— Winter LPP-Optimal

20 | M | | | | | | | |

0 5 10 15 20 25 30 35 40 45 50

Figure 8. Seasonal means and the dual LPP time optimal values.
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utility break-even analysis. This requires a post-optimality (or sensitivity) analysis as presented in this paper and
reflected in the abstract.
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