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Abstract 
Problems associated with energy distribution, consumption and management are undoubtedly 
some of the most significant problems that energy utilities face globally. For instance, when de-
velopment takes place, the demand for electrical power and in particular domestic electrical 
energy also increases. Thus improvement of energy distribution policies becomes important for 
utilities and energy decision making agencies. The authors had earlier [1] [2] provided a mixed 
strategy 2-player game model for a residential energy consumption profile for winter and summer 
seasons of the year using a dual-occupancy high-rise (11-storey) building located within the Poly-
technic of Namibia, Windhoek. The optimum energy values and the corresponding probabilities 
obtained from the model extend the usual simple statistical analyses of minimum and maximum 
energy values and their associated percentages. The time-block and the week-day strategies de-
pict critical probabilistic values worth considering for decision purposes, especially, the necessity 
and justification for a dual tariff regime for the residential and workplace residents of the building 
as against the existing institutional uniform energy tariff policy. However, this paper presents ex-
tended results of post-optimality analyses for the winter and summer seasons, and thus provides 
the optimal range of energy values over which the energy consumption can change without chang- 
ing the optimal tariff estimate parameters obtained from the mixed strategy of critical energy 
game values. The post-optimality analyses also provide extended information on the mixed strat-
egy of non-optimal week-day solutions obtained from the game model, hence validating one of the 
essential roles of sensitivity analysis, namely, investigation of sub-optimal solutions. From appli-
cation point of view, the post-optimality model provides a useful tool for Utilities, especially for 
identifying flexibility range of optimal break-even energy values for consumers, such as in the in-
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formal settlements where metering is rather a challenge to determine varied or non-uniform ta-
riffs. 
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1. Introduction 
Post-optimality Analysis (or Sensitivity Analysis) is concerned with the propagation of uncertainties in mathe-
matical models. It belongs to a broader area of Perturbation Analysis [3] that defines the largest sensitivity re-
gion and its main goal is to assess the influence of parameter changes on the state of the system [4]. Post-opti- 
mality analysis is necessary in identifying critical or breaking-even values where the optimal strategy changes, 
and also for investigating sub-optimal solutions. For instance, given the optimal solution of a linear optimization 
model, a series of post-optimality analyses can provide valuable decision making information to deal with un-
certainties.  

Specifically, our earlier game model solutions focused on the optimal week-day strategies (or equivalently 
identified the optimal days of use of energy) and the game value (which was proposed as a uniform tariff esti-
mate parameter). By nature of the game model, there was no information on the energy consumption for the 
non-optimal week days. The post-optimality analysis model in this paper fills the gap, providing information on 
the “sub-optimal” solutions which are earlier characterized as “non-optimal” in the game model [1]. Moreover, 
the dual LPP problem provides the optimal solutions for the time-block decision variables. 

We earlier as in [1] solved the following version of the game model represented by Equations (1)-(3): 
7

1
Maximize j

j
D d

=

= ∑                                      (1) 

Subject to 
7 48

1 1
1ij j

j i
e d

= =

≤∑∑                                         (2) 

0jd ≥                                           (3) 

where 
, 1, ,7jd j = 

 = the week day strategies (days of the week, Monday to Sunday). 
ije  = the energy consumption values (or the payoff matrix of the game model, represented by the kilowatt- 

hour values recorded for each time instant, separated by 30 minutes on each day). 
A mixed strategy solution with respective probabilities and value of the game were obtained. However, in this 

paper, a direct linear programming problem (LPP) approach is employed for the above model to confirm our 
earlier game model optimal solution and to further derive the associated post-optimality results. 

In the following LPP model to be solved, the decision variables jd  above have corresponding LPP decision 
variables as 1, 2, , 7x x x  while the coefficients ije  are as defined above. The relationship between the game 
model decision variables and the LPP decision variables are defined by Equation (8) below. 

2. Solution of Winter LPP Model 
2.1. The Model 
Defining the variables x1, x2, x3, x4, x5, x6 and x7 as the energy decision variables for the days of the week, 
namely for Monday, Tuesday…, Sunday, our LPP model is as in Equations (4) and (5): 

Maximize 1 2 3 4 5 6 7w x x x x x xD x= + + + + + +                           (4) 

Subject to 
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27.642678 1 28.93933 2 29.27172 3 28.26516 4 28.87478 5 28.84201 6 30.286526 7 1
25.9262393 1 25.66183 2 26.13624 3 27.42176 4 26.6133 5 28.42685 6 28.312744 7 1
25.4382561 1 25.19901 2 25.08198 3 25.91

x x x x x x x
x x x x x x x
x x x

+ + + + + + ≤
+ + + + + + ≤
+ + + 629 4 25.50332 5 25.87914 6 25.523228 7 1

24.1491054 1 23.72513 2 24.2098 3 24.33872 4 25.19087 5 23.82306 6 23.787366 7 1
24.4040223 1 23.79068 2 24.79247 3 23.56741 4 23.20033 5 23.36639 6 23.547017 7

x x x x
x x x x x x x
x x x x x x x

+ + + ≤
+ + + + + + ≤
+ + + + + + 1

19.8259667 1 22.43399 2 23.15372 3 22.6366 4 22.5929 5 23.23311 6 23.432911 7 1
22.0223721 1 22.98421 2 23.10259 3 22.98839 4 22.78518 5 23.1173 6 22.949783 7 1
22.573477 1 22.3307 2 22.77863 3 22.568

x x x x x x x
x x x x x x x

x x x

≤
+ + + + + + ≤
+ + + + + + ≤
+ + + 87 4 23.34454 5 23.86676 6 22.437522 7 1

22.5564828 1 22.44392 2 23.09346 3 22.28045 4 23.56086 5 23.16756 6 23.628677 7 1
24.1709557 1 22.75976 2 23.74102 3 22.76333 4 21.95925 5 22.88569 6 24.071417 7

x x x x
x x x x x x x
x x x x x x x

+ + + ≤
+ + + + + + ≤
+ + + + + + 1

22.9837729 1 22.36646 2 22.06632 3 23.44068 4 22.42684 5 22.74367 6 23.231405 7 1
23.7728 1 22.6366 2 22.21053 3 23.14134 4 21.92429 5 22.17338 6 22.726427 7 1
22.9230771 1 25.40361 2 25.02262 3 23.99

x x x x x x x
x x x x x x x

x x x

≤
+ + + + + + ≤

+ + + + + + ≤
+ + + 13 4 23.18941 5 22.66282 6 22.175322 7 1

25.7562944 1 27.08745 2 29.76844 3 28.51862 4 26.87769 5 23.59064 6 23.105161 7 1
32.614771 1 34.9753 2 36.61842 3 33.93305 4 34.17777 5 25.03355 6 23.607711 7 1

x x x x
x x x x x x x

x x x x x x x

+ + + ≤
+ + + + + + ≤

+ + + + + + ≤
38.065133 1 45.54415 2 43.31764 3 42.36934 4 41.25718 5 28.10129 6 27.42175 7 1
45.229496 1 51.04597 2 52.69783 3 49.28924 4 48.61626 5 31.19307 6 41.94737 7 1
45.363028 1 47.52158 2 46.50336 3 47.25937

x x x x x x x
x x x x x x x
x x x

+ + + + + + ≤
+ + + + + + ≤
+ + + 4 47.40795 5 37.14499 6 38.01901 7 1

41.762636 1 44.0933 2 43.43125 3 44.13264 4 42.70802 5 39.21589 6 39.30815 7 1
40.985743 1 40.35914 2 40.10131 3 38.48182 4 37.75243 5 39.86168 6 41.79906 7 1
40.160

x x x x
x x x x x x x
x x x x x x x

+ + + ≤
+ + + + + + ≤
+ + + + + + ≤

296 1 37.44654 2 36.44799 3 36.48354 4 38.62644 5 40.30111 6 41.04887 7 1
36.899789 1 36.74972 2 36.67087 3 34.82095 4 38.37953 5 39.13578 6 40.9906 7 1
35.0935278 1 35.64729 2 35.53904 3 34.39191 4 36.

x x x x x x x
x x x x x x x
x x x x

+ + + + + + ≤
+ + + + + + ≤
+ + + + 21857 5 37.82477 6 37.2761 7 1

34.930871 1 34.3641 2 35.61551 3 35.36919 4 34.44435 5 37.31737 6 37.77622 7 1
33.3018256 1 34.49519 2 32.94325 3 35.66715 4 33.20983 5 37.91703 6 35.236767 7 1
33.430505 1

x x x
x x x x x x x

x x x x x x x
x

+ + ≤
+ + + + + + ≤
+ + + + + + ≤
33.55166 2 32.2659 3 33.60928 4 33.74951 5 37.22755 6 37.873333 7 1

33.024095 1 34.05819 2 34.68252 3 32.31417 4 32.23969 5 37.74708 6 36.465216 7 1
33.568155 1 35.23677 2 35.12825 3 33.48413 4 33.8412

x x x x x x
x x x x x x x
x x x x

+ + + + + + ≤
+ + + + + + ≤
+ + + + 9 5 34.98913 6 34.24623 7 1

34.673775 1 34.2171 2 34.1734 3 33.62317 4 34.44435 5 34.90174 6 34.1297 7 1
32.746595 1 31.30012 2 33.767 3 34.85671 4 35.44727 5 35.06682 6 34.06172 7 1
31.01389 1 31.62788

x x x
x x x x x x x
x x x x x x x

x x

+ + ≤
+ + + + + + ≤
+ + + + + + ≤
+ 2 32.66358 3 30.74096 4 31.97748 5 32.74344 6 35.68106 7 1

30.327805 1 29.8562 2 29.70871 3 29.10008 4 30.01972 5 31.41059 6 33.58102 7 1
28.66502 1 30.08563 2 29.79612 3 28.48843 4 29.77937 5 31.78689

x x x x x
x x x x x x x

x x x x x x

+ + + + + ≤
+ + + + + + ≤
+ + + + + 6 30.194267 7 1

30.59219 1 29.56305 2 28.78738 3 28.68905 4 29.15665 5 31.21394 6 32.78471 7 1
29.195975 1 30.99422 2 30.37587 3 28.05739 4 29.04521 5 30.83521 6 30.429767 7 1
31.608215 1 31.32381 2 29.3

x
x x x x x x x

x x x x x x x
x x

+ ≤
+ + + + + + ≤
+ + + + + + ≤
+ + 9262 3 30.20464 4 31.07071 5 31.97141 6 32.493379 7 1

33.41968 1 32.87151 2 34.00517 3 32.4552 4 31.61696 5 33.14646 6 33.96704 7 1
36.316885 1 36.73714 2 38.2681 3 35.5401 4 34.25426 5 35.5718 6 36.336

x x x x x
x x x x x x x

x x x x x x

+ + + + ≤
+ + + + + + ≤
+ + + + + + 55 7 1

39.943995 1 41.30196 2 43.45747 3 39.03205 4 37.44435 5 40.12631 6 38.48514 7 1
39.489515 1 43.45419 2 41.99133 3 40.99656 4 41.2965 5 38.38608 6 40.30839 7 1
41.99352 1 43.52339 2 41.36861 3 41.0

x
x x x x x x x
x x x x x x x

x x x

≤
+ + + + + + ≤
+ + + + + + ≤
+ + + 0251 4 40.57109 5 40.02678 6 39.09693 7 1

39.31252 1 40.20218 2 40.76992 3 37.92875 4 38.98478 5 39.36642 6 38.77889 7 1
36.66212 1 40.96328 2 38.13918 3 37.51646 4 37.15374 5 36.78326 6 40.3351 7 1
39.3

x x x x
x x x x x x x
x x x x x x x

+ + + ≤
+ + + + + + ≤
+ + + + + + ≤

82445 1 39.14245 2 36.62498 3 36.95232 4 37.25426 5 35.2052 6 34.62254 7 1
36.51354 1 37.66576 2 35.01901 3 36.11011 4 36.84129 5 35.58152 6 33.61501 7 1
34.582005 1 34.40829 2 33.92213 3 33.63311 4 35.

x x x x x x x
x x x x x x x
x x x x

+ + + + + + ≤
+ + + + + + ≤
+ + + + 07581 5 32.3987 6 32.2506 7 1

32.59802 1 34.05687 2 33.72548 3 31.59708 4 33.1836 5 31.78933 6 31.092551 7 1
29.34018 1 32.81142 2 30.39554 3 30.44102 4 31.23021 5 32.83812 6 29.762126 7 1

x x x
x x x x x x x
x x x x x x x

+ + ≤
+ + + + + + ≤
+ + + + + + ≤

        (5) 
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The coefficients in the above model are the energy readings taken from the dual-occupancy high-rise building 
(stated in the Abstract). 

The optimal solution for the above model is as follows 
1 0x =  
2 0x =  
3 0x =  
4 0.00233375565998705x =  
5 0.00196693868495645x =  
6 0.0155408776995797x =  
7 0.00517836109162509x =  

And 
0.0250199331361483wD =  

Theoretically, given the expected value of the game defined by Equation (6) in our previous game model [1] 
7 48

1 1
ij i j

j i
TED e t X p

= =

= =∑∑                                     (6) 

where T is the time strategy vector, ijE e= , the energy payoff matrix and jX  the Day strategy vector, once 
we solve the associated linear programming problem, the value of the game is obtained by the formula in Equa-
tion (7) below. 

1

w

p
D

=                                             (7) 

Thus, we have  

1 39.96818532
0.0250199

p = =  

Moreover, the column player’s (week day) optimal mixed strategy is obtained by the formula in Equation (8): 

j
j

w

X
d

D
=                                            (8) 

where jX xj= , 1, 2,3, ,7j =   
The comparative results are provided in Table 1. 
It is observed that the above probabilities coincide with those earlier obtained from our game model [1] in 

Table 2.  

2.2. Winter Week-Day Sensitivity Analysis Results 
Figure 1 summarises the procedure for the post-optimality analysis and Table 3 is the result of running a Post- 
Optimality test based on the Simplex method, using the LPSolve package. 

The above gives on dividing by 0.025019933wD = , the optimal range of energy values as follows (and using 
zero (0) in place of −∞ for non-negative energy values): 

10 41.3948284X≤ ≤  

20 41.72583365X≤ ≤  

30 40.29555199X≤ ≤  
439.75519492 40.56906598X≤ ≤  

539.61080734 40.28072835X≤ ≤  
639.42965009 40.19669252X≤ ≤  
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Table 1. Winter LPP and game model comparison.                                                                    

 LPP Model Game Model (2012) 

Optimal Objective 0.025019933wD =  
1 39.96813239

w

p
D

= =  

Variables jX  
j

j
w

X
d

D
=  

Probabilities 

1X  0 0 

2X  0 0 

3X  0 0 

4X  0.002333756 0.093275856 

5X  0.001966939 0.078614866 

6X  0.015540878 0.621139861 

7X  0.005178361 0.206969423 

 
739.50194189 40.86035541X≤ ≤  

The 5th degree polynomial regression plots for the optimal range of values (with the week day mean plot for 
the winter season) are as in Figure 2. 

It is observed that the four-day optimal energy consumption days for the season (Thursday-Sunday) as ob-
tained in our game model show fairly stable consumption profile from the post-optimality results (i.e. the values 
showing very close proximity). 

Superposed plots with the mixed-strategy game model tariff estimate value are shown in Figure 3. 

2.3. Winter Time Block Sensitivity Analysis Results 
The following time-block optimal range of values in Table 4 which coincide with the same optimal time-blocks 
in the game model is obtained from the Dual problem (using the LPSolve Software). 

Using Equation (6), we obtain the corresponding post-optimality energy ranges by computing the values using 
Equation (9). 

i
i

w

t
T

T
=                                             (9) 

where iT  is the Time-Block optimal mixed-strategy and w wT D=  
Thus the ranges of energy values are as follows: 

1939.73552664 40.25188749t≤ ≤  

2039.59374664 40.16628286t≤ ≤  

2139.80201684 40.21069659t≤ ≤  

4139.58727316 40.15870528t≤ ≤  

where 19t , 20t , 21t , and 41t  are the time instants indicated in Table 4. 

3. Solution of Summer LPP Model 
3.1. The LPP Model 
Following similar procedure as in the winter model, we have the summer linear programming model given by 
Equations (10) and (11): 

Maximize 1 2 3 4 5 6 7s x x x x x xD x+ + + + + +=                           (10) 

Subject to 
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23.8688 1 23.8274 2 23.2569 3 22.9328 4 22.0727 5 23.0904 6 24.1528 7 1
23.1384 1 22.3498 2 22.3793 3 23.0153 4 22.6224 5 22.8303 6 22.8204 7 1
22.7459 1 22.1436 2 23.2266 3 22.2651 4 21.6950 5 23.1991

x x x x x x x
x x x x x x x
x x x x x x

+ + + + + + ≤
+ + + + + + ≤
+ + + + + 6 22.4068 7 1

22.0477 1 22.2351 2 21.6643 3 21.6922 4 21.5899 5 22.6435 6 23.2614 7 1
20.5729 1 21.7858 2 21.8658 3 21.8245 4 21.0303 5 21.5025 6 23.1889 7 1
22.6055 1 21.8650 2 21.5271 3 21.4470 4 22.18

x
x x x x x x x
x x x x x x x
x x x x

+ ≤
+ + + + + + ≤
+ + + + + + ≤
+ + + + 30 5 21.5609 6 22.4373 7 1

21.0313 1 21.8514 2 22.8272 3 22.0891 4 20.8742 5 20.7814 6 22.5856 7 1
22.0382 1 21.5755 2 21.7675 3 21.2977 4 21.0296 5 20.5841 6 21.6074 7 1
21.5296 1 21.9442 2 21.1411 3 22

x x x
x x x x x x x
x x x x x x x
x x x

+ + ≤
+ + + + + + ≤
+ + + + + + ≤
+ + + .2190 4 20.8120 5 22.0394 6 21.0020 7 1

22.0616 1 21.7093 2 23.2338 3 22.7058 4 22.3151 5 20.2957 6 21.9485 7 1
22.1518 1 23.4191 2 24.1904 3 24.0471 4 24.5878 5 21.8365 6 21.8885 7 1
26.2768 1 27.2196 2

x x x x
x x x x x x x
x x x x x x x
x x

+ + + ≤
+ + + + + + ≤
+ + + + + + ≤
+ 28.4681 3 29.3033 4 28.6658 5 22.3676 6 21.7619 7 1

30.7296 1 32.9430 2 32.7119 3 34.4842 4 34.0827 5 23.0365 6 22.4974 7 1
36.4062 1 39.1675 2 42.2251 3 40.9433 4 38.8082 5 25.6101 6 25.8903 7 1
44.483

x x x x x
x x x x x x x
x x x x x x x

+ + + + + ≤
+ + + + + + ≤
+ + + + + + ≤

8 1 43.8093 2 40.0826 3 44.5303 4 42.8277 5 29.4292 6 27.5326 7 1
37.2820 1 39.6564 2 40.7454 3 40.1300 4 40.3427 5 34.2710 6 31.8429 7 1
33.5061 1 34.9832 2 37.5067 3 35.4358 4 35.9067 5 34.7583 6 25.3

x x x x x x x
x x x x x x x
x x x x x x

+ + + + + + ≤
+ + + + + + ≤
+ + + + + + 363 7 1

32.1347 1 33.3199 2 34.9466 3 34.5898 4 34.6139 5 34.6564 6 37.4958 7 1
32.2935 1 32.7914 2 31.6716 3 31.6230 4 32.0852 5 34.9456 6 36.6587 7 1
30.3029 1 33.4100 2 30.2847 3 30.8952 4 31.6720 5 3

x
x x x x x x x
x x x x x x x
x x x x x

≤
+ + + + + + ≤
+ + + + + + ≤
+ + + + + 8.4210 6 33.9243 7 1

32.0694 1 31.0215 2 32.0066 3 31.5910 4 31.2710 5 35.1093 6 34.3863 7 1
32.6619 1 31.7016 2 30.6373 3 30.5602 4 29.2036 5 35.7201 6 33.1212 7 1
33.2202 1 33.2513 2 28.8423 3 31.4552

x x
x x x x x x x
x x x x x x x
x x x x

+ ≤
+ + + + + + ≤
+ + + + + + ≤
+ + + 4 29.9035 5 35.9908 6 34.0931 7 1

33.3745 1 32.3060 2 31.0331 3 31.9017 4 29.5993 5 34.6630 6 34.1961 7 1
33.0741 1 30.5026 2 30.9420 3 32.1767 4 28.7542 5 35.3256 6 33.3463 7 1
32.9157 1 30.5962 2 29.83

x x x
x x x x x x x
x x x x x x x
x x

+ + + ≤
+ + + + + + ≤
+ + + + + + ≤
+ + 86 3 31.1844 4 29.9234 5 32.8237 6 33.7195 7 1

34.7797 1 32.7478 2 32.7313 3 31.8587 4 31.0841 5 32.7131 6 33.2156 7 1
32.2069 1 31.5432 2 32.0661 3 30.8912 4 29.9343 5 32.1901 6 32.2649 7 1
30.8112 1 29

x x x x x
x x x x x x x
x x x x x x x
x

+ + + + ≤
+ + + + + + ≤
+ + + + + + ≤
+ .9695 2 29.8010 3 29.2615 4 29.5747 5 32.1705 6 30.4433 7 1

30.0997 1 27.1236 2 27.6900 3 28.6936 4 27.5468 5 31.1264 6 29.9617 7 1
29.8034 1 28.7377 2 26.6000 3 26.7959 4 25.6304 5 31.1609 6 32.5136 7

x x x x x x
x x x x x x x
x x x x x x x

+ + + + + ≤
+ + + + + + ≤
+ + + + + + ≤1

31.6647 1 27.1587 2 28.6963 3 26.2556 4 28.4445 5 31.6943 6 29.3786 7 1
28.1087 1 26.4226 2 28.5040 3 26.6707 4 36.9958 5 30.4599 6 30.3961 7 1
27.9339 1 28.3682 2 28.7789 3 28.4718 4 27.7238 5 30.8574

x x x x x x x
x x x x x x x
x x x x x

+ + + + + + ≤
+ + + + + + ≤
+ + + + + 6 29.9319 7 1

29.8498 1 29.7899 2 28.5834 3 28.9063 4 30.6831 5 30.0002 6 30.7471 7 1
32.5346 1 32.0640 2 30.7927 3 30.6895 4 32.9890 5 31.9891 6 31.4353 7 1
35.2085 1 33.1100 2 33.1756 3 32.4497 4 34.3

x x
x x x x x x x
x x x x x x x
x x x x

+ ≤
+ + + + + + ≤
+ + + + + + ≤
+ + + + 692 5 31.4413 6 31.3976 7 1

34.8207 1 34.5622 2 34.7002 3 35.5451 4 36.0338 5 32.5638 6 34.7076 7 1
36.4513 1 36.8359 2 37.4703 3 36.2188 4 34.5814 5 34.2888 6 34.7784 7 1
37.2543 1 34.9004 2 37.8818 3 3

x x x
x x x x x x x
x x x x x x x
x x x

+ + ≤
+ + + + + + ≤
+ + + + + + ≤
+ + + 7.3004 4 34.8331 5 33.1371 6 36.5130 7 1

37.7609 1 34.7049 2 37.7119 3 37.9353 4 36.0665 5 34.7353 6 36.3382 7 1
35.4530 1 34.1571 2 37.7944 3 37.7750 4 34.0789 5 33.1041 6 36.9849 7 1
36.0047 1 33.1094

x x x x
x x x x x x x
x x x x x x x
x x

+ + + ≤
+ + + + + + ≤
+ + + + + + ≤
+ 2 34.2426 3 34.9891 4 33.0504 5 32.7393 6 34.7846 7 1

32.4036 1 33.6719 2 33.0700 3 32.6658 4 33.6535 5 31.9995 6 32.9181 7 1
32.3503 1 28.3440 2 29.0714 3 30.3921 4 29.6728 5 30.5725 6 31.6519 7 1
29.58

x x x x x
x x x x x x x
x x x x x x x

+ + + + + ≤
+ + + + + + ≤
+ + + + + + ≤

76 1 26.8952 2 29.0896 3 29.2341 4 27.5456 5 29.2795 6 29.1900 7 1
27.0080 1 25.5740 2 25.7405 3 27.5395 4 25.8128 5 28.9487 6 27.0588 7 1
24.9841 1 25.0066 2 25.4480 3 25.2465 4 25.5130 5 25.5799 6 25.

x x x x x x x
x x x x x x x
x x x x x x

+ + + + + + ≤
+ + + + + + ≤
+ + + + + + 7625 7 1x ≤               (11)
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Table 2. Winter energy consumption concentration matrix.                                                               

 Days Thu Fri Sat Sun 

Time Probabilities 0.0933 0.0786 0.6211 0.2070 

09.00 0.1208 44.1326 42.7080 39.21589 39.3082 

09.30 0.1460 38.4818 37.7524 39.86168 41.7991 

10.00 0.2311 36.4835 38.6264 40.30111 41.0489 

20.00 0.5021 41.0025 40.5711 40.02678 39.0969 

Game Value 39.9681 

 
Table 3. Results of winter week-day sensitivity analysis.                                                                 

 From Till 

Objective 0.0250199331361483 0.0250199331361483 

Variables   

1X  −∞ 1.03569583315223 

2X  −∞ 1.04397756219379 

3X  −∞ 1.00819201095926 

4X  0.994672313337416 1.01503531275992 

5X  0.991059745754735 1.00782112455324 

6X  0.986527203511101 1.00571855368084 

7X  0.98833593943488 1.02232335482563 

 

 
Figure 1. Post-Optimality algorithm for winter model.                                                                 
 
The optimal solution is as follows: 

1 0
2 0.00906091473154742
3 0
4 0
5 0.000330919431198716
6 0.00966675499545442
7 0.00929680391087571

x
x
x
x
x
x
x

=
=
=
=
=
=
=
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Figure 2. Relationships between the seasonal mean and post-optimality ener-
gy values.                                                                 

 

 
Figure 3. Relationships between the seasonal mean, post-optimality energy 
values and the tariff estimator.                                             

 
Table 4. Results of winter dual problem sensitivity analysis.                                                              

 From Till 

Objective 0.0250199331361483 0.0250199331361483 

Variables   

19 09H00t =  0.99418022 1.007099534 

20 09H30t =  0.990632894 1.004957712 

21 10H00t =  0.9958438 1.00606894 

41 20H00t =  0.990470928 1.004768121 
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and 
0.0283553930690763sD =  

For the summer season, the value of the game is obtained using Equation (12) below: 

1

s

p
D

=                                             (12) 

Thus, we have  

1 35.26665986
0.0283553930

p = =  

The comparative table of results for the summer season is as follows in Table 5: 
It is also observed that the above probabilities coincide with those earlier obtained from our game model [1] 

for the season as seen in Table 6. 

3.2. Summer Week-Day Sensitivity Analysis Results 
Running the LPSolve Sensitivity Analysis routine for the problem, we have the results as presented in Table 7. 

On dividing by 0.028355393sD = , the above gives the optimal range of energy values as follows (using zero 
(0) in place of −∞ for non-negative energy values): 

 
Table 5. Summer LPP and game model comparison.                                                                       

 LPP Model Game Model 

Optimal Objective 0.028355393sD =  
1 35.26665986

s

p
D

= =  

Variables jX  

j

s

X
D

 

Probabilities 

1X  0 0 

2X  0.009060915 0.319548198 

3X  0 0 

4X  0 0 

5X  0.000330919 0.011670423 

6X  0.009666755 0.34091416 

7X  0.009296804 0.327867221 

 
Table 6. Summer energy consumption concentration matrix.                                                              

 Days Tue Fri Sat Sun 

Time Probabilities 0.3195 0.0117 0.3409 0.3279 

7.30 0.0695 39.65638 40.34272 34.27103 31.8429 

9.30 0.1784 33.41002 31.67203 38.42097 33.92427 

19.00 0.2106 36.835885 34.58144 34.28885 34.77837 

20.00 0.5415 34.704865 36.06655 34.73525 36.33819 

Value 35.2666 
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Table 7. Results of summer week-day sensitivity analysis.                                                                 

Variables From Till 

Objective 0.0283553930690763 0.0283553930690763 

1X  −∞ 1.02422635412771 

2X  0.981537627468657 1.06062733133012 

3X  −∞ 1.03629009420123 

4X  −∞ 1.03412262609405 

5X  0.982292128971773 1.02150606857908 

6X  0.969765665592283 1.03416157676571 

7X  0.974735091792164 1.0145564767584 

 
1

2

3

4

5

6

7

0 36.12104245
34.61555364 37.40478333
0 36.54649026
0 36.4700509
34.64216239 36.02510706
34.20039587 36.47142456
34.37565093 35.78001817

X
X

X
X

X
X
X

≤ ≤
≤ ≤

≤ ≤

≤ ≤
≤ ≤

≤ ≤

≤ ≤

 

When the seasonal mean and post-optimality values in Figure 4 are superposed with the mixed-strategy game 
model tariff estimate value, we have Figure 5: 

3.3. Summer Time-Block Sensitivity Analysis Results 
The following time-block optimal range of values in Table 8 coinciding with the same optimal time-blocks in 
the game model are obtained from the Dual problem (using the LPSolve software). 

Using Equation (6), we obtain the corresponding post-optimality energy ranges by using Equation (13). 

i
i

s

t
T

T
=                                            (13) 

where iT  is the Time-Block optimal mixed-strategy and 0.028355393s sT D= = . 
Thus the ranges of energy values are as follows: 

1635.16175215 36.32470197t≤ ≤  

2033.60693822 35.77974053t≤ ≤  

3934.27879848 35.30868593t≤ ≤  

4135.20508294 35.35365461t≤ ≤  

4. Duality Results and Discussions on Utility Application 
4.1. Summer and Winter Dual Optimal Solutions 
Solving a linear programming problem usually provides more information about an optimal solution than merely 
the values of the decision variables. Associated with an optimal solution are shadow prices (also referred to as 
dual variables or marginal values) for the constraints. The shadow price on a particular constraint represents the 
change in the value of the objective function per unit increase in the right hand-side value of that constraint. 
Thus duality in linear programming is essentially a unifying theory that develops the relationships between a  



S. A. Reju, G. Gope 
 

 
543 

 
Figure 4. Relationships between the seasonal mean and post-optimality energy 
values.                                                                     

 

 
Figure 5. Relationships between the seasonal mean, post-optimality energy 
values and the tariff estimator.                                                 

 
Table 8. Results of summer dual problem sensitivity analysis.                                                            

 From Till 

Objective 0.025019933136 0.02501993313 

Variables   

16 07H30t =  0.997025303 1.030001202 

20 09H30t =  0.952937943 1.014548607 

39 19H00t =  0.971988805 1.001191668 

41 20H00t =  0.998253965 1.002466773 
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given (primal) linear programming problem and another related (dual) linear programming problem stated in 
terms of variables with this shadow-price interpretation 

The related dual problems to the week-day models for the two seasons have the time-blocks as the dual va-
riables. In Figure 6 and Figure 7 we have the dual problem model solution yielding the time-block optimal 
energy values plotted against the seasonal season means, the seasons’ Tariff Estimator game values and the four 
time-optimal energy consumption values for the winter and summer seasons, respectively. 

4.2. Discussions on Utility Applications 
From the foregoing model results, the following conclusions are drawn: 

1) The direct LPP models and their associated post-optimality analyses for the two seasons validate our earlier 
optimal mixed strategy game values, both for the week-day and time-block optimal values. 

2) The post-optimality analysis for each of the seasons provides additional information on the non-optimal 
week-day mixed strategies, specifically, the analysis shows the significant maximum energy values which are  

 

 
Figure 6. Winter comparison plots and dual optimal simulation.                                        

 

 
Figure 7. Summer comparison plots and dual optimal simulation.                                          
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not explicit in the game model results as summarised in Table 9: 
3) In each of the seasons, the tariff energy estimator obtained from the mixed-strategy model lies within the 

post-optimality ranges. This is clearly seen in the plots in Figure 2 and Figure 5. Thus this confirms the uni-
queness of the estimator as a very useful energy value for utility application, especially for determining a single 
uniform tariff estimate. 

4) While the Time-Block post-optimality results may not be of significant application from utility point of 
view, however, they equally validate our mixed-strategy game model values, and also specifically show the 
range of energy values within the optimal time-blocks that were not explicit from the game model. 

5) It is noteworthy to see that the time-optimal solution of the dual problem model reveals small deviations 
from each of the season’s means, globally. 

We had earlier [1] categorized the consumers into morning (workplace) and (evening) residential consumers. 
Thus the comparison plots in Figure 8 show two fairly convergence points for the two seasons that appear use-
ful for some estimates for the two periods of the day for the whole year. 

5. Conclusion 
Utilities, i.e. agencies in charge of distribution of electricity commonly face a serious challenge of determining a 
tariff policy as noted in [5]. This is even more challenging for consumers where provision of electricity meters 
(or metering) is not easily feasible, such as the informal settlements. Having determined a tariff estimate in our 
earlier game model as in [1], useful for utilities in determining a uniform tariff policy, knowing the range of 
energy demand (or consumption) values within which uniform tariff remains unchanged, becomes essential for  

 
Table 9. Summary of seasonal sensitivity analyses.                                                                       

Week-Day 
Winter Post-Optimality Week-Day Energy Range Summer Post-Optimality Week-Day Energy Range 

Tariff Estimator = 39.9681 Tariff Estimator = 35.2666 

Monday 10 41.3948284X≤ ≤  10 36.12104245X≤ ≤  

Tuesday 20 41.72583365X≤ ≤  234.61555364 37.40478333X≤ ≤  

Wednesday 30 40.29555199X≤ ≤  30 36.54649026X≤ ≤  

Thursday 439.75519492 40.56906598X≤ ≤  40 36.4700509X≤ ≤  

Friday 539.61080734 40.28072835X≤ ≤  534.64216239 36.02510706X≤ ≤  

Saturday 639.42965009 40.19669252X≤ ≤  634.20039587 36.47142456X≤ ≤  

Sunday 739.50194189 40.86035541X≤ ≤  734.37565093 35.78001817X≤ ≤  
 

 
Figure 8. Seasonal means and the dual LPP time optimal values.                                                           
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utility break-even analysis. This requires a post-optimality (or sensitivity) analysis as presented in this paper and 
reflected in the abstract. 
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