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Abstract 
This study attempted to interpret differential item discriminations between individual and cluster 
levels by focusing on patterns and magnitudes of item discriminations under 2PL multilevel IRT 
model through a set of variety simulation conditions. The consistency between the mean of indi- 
vidual-level ability estimates and cluster-level ability estimates was evaluated by the correlations 
between them. As a result, it was found that they were highly correlated if the patterns of item 
discriminations were the same for both individual and cluster levels. The magnitudes of item dis- 
criminations themselves did not affect much on correlations, as far as the patterns were the same 
at the two levels. However, it was found that the correlation became lower when the patterns of 
item discriminations were different between the individual and cluster levels. Also, it was re- 
vealed that the mean of the estimated individual-level abilities would not be necessarily a good 
representation of the cluster-level ability, if the patterns were different at the two levels. 
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1. Introduction 
Multilevel modeling has become a popular data analysis technique in psychological and educational measure- 
ment. Traditional psychometric models, such as classical test theory and item response theory (IRT) models, do 
not account for a nested structure of the data. Multilevel modeling becomes important when researchers analyze 
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nested data, because it takes into account of both within and between cluster variations of the data. One of pop- 
ular multilevel modeling techniques is a hierarchical generalized linear model (HGLM). However, when HGLM 
is applied to multilevel IRT [1], one limitation is that all item discriminations are assumed to be equal. In other 
words, the relationships between the observed measurement indicators and the latent factor are assumed to be 
equal for all items in a test, which is sometimes an unrealistic assumption. If item discriminations are allowed to 
freely vary, the model may more closely resemble the observed data.  

IRT models define the relationship between observed item scores and latent constructs for dichotomous and 
polytomous item response data. An IRT framework has been extended to a multilevel data structure [1]-[3]. A 
multilevel IRT model is desirable when item response data have been collected from a sample with a nested data 
structure. In addition to the benefit of modeling data variations both at between and within cluster levels, rela- 
tionships between variables at different levels can be estimated better as well.  

One popular form of an IRT model for dichotomously scored items is a 2-parameter logistic (2PL) model, 
where the probability of an individual correctly responding to an item depends on individual’s ability, item dif- 
ficulty, and item discrimination. The 2PL IRT model can be written as  
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where ( )j iP θ  is the probability that individual i with ability iθ  answers item j correctly, iθ  is an ability lev- 
el for individual i, ja  is an item discrimination parameter for item j, and jb  is an item difficulty parameter 
for item j. The numerator and the second term in the denominator ( )exp j i ja bθ −   correspond to the odds ra- 
tio of a correct response ( ) 1j iy θ = . 

The 2PL IRT model also allows the item discriminations to vary freely across items in a test. Its extension to a 
multilevel IRT model has been investigated and documented by several authors [4]-[9]. However, not much at- 
tention has been given to what it means when patterns and/or magnitudes of item discriminations are different 
between individual and cluster levels. For example, Fox [4] illustrated the importance of taking measurement 
errors from different sources into account by a multilevel analysis. Although the author presented a new ap- 
proach to multilevel modeling with three real data sets of mathematics by using 2PL IRT model, difference in 
item discriminations between levels were beyond his focus. Fox [5] focused on measuring latent dependent and 
independent variables of a multilevel model, where manifest variables consisting of binary, ordinal, or graded 
responses. This extension made it possible to model relationships between observed and latent variables on dif- 
ferent levels using dichotomous and polytomous IRT models. However, different item discrimination patterns 
between levels were not a focus of this study. Natesan [7] studied the accuracy and precision of the item para- 
meter estimates of the 2PL multilevel IRT model by varying test lengths, sample sizes, correlation between the 
predictor variable and the ability parameter, and the distribution shape of the predictor variables interact to im- 
pact the accuracy and the precision. Again, differential item discrimination patters between levels were not a fo- 
cus of this study.  

Some authors investigated a cluster-level IRT modeling. For example, Mislevy [6] proposed a notion of the 
cluster-level IRT model by exploring the relationships between individual-level and cluster-level IRT models, as 
well as the parameter estimates under the cluster-level IRT model. Results showed that when item response data 
are gathered in a design of one item per scale from each individual, it is possible to define a cluster-level IRT 
model. The cluster-level ability estimate was analogous to the individual-level ability estimates. The cluster- 
level IRT model parameters specified the probability of a correct response to a given item from an individual 
selected at random from a given cluster. The cluster-level IRT model parameter estimate was a straightforward 
generalization of an individual-level IRT model technique. Tate [8] studied whether the cluster-level IRT model 
was robust to typical violations of distributional assumptions under the two-parameter cluster-level IRT dicho- 
tomous model through a simulation study. Results showed that the estimated precision was always either ap- 
proximately consistent with the actual precision or a conservative estimate of the actual precision. When the 
items were replaced to target high-ability schools, the conservatism increased as school ability moved away 
from the target ability range. Also, Tate [9] extended to a similar study with a polytomous model. Results were 
similar to findings from [8]. It is notable that Tate [9] concluded that the estimate of cluster-level ability for a 
specific cluster could be viewed as the mean of the individual-level ability of all individuals in that cluster if the 
individual abilities within each cluster are normally distributed with a mean equal to the cluster-level ability, and 
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the cluster-level ability is also normally distributed. However, no discussion was provided regarding the effect of 
differential item discriminations between individual and cluster levels. Our concern was whether the patterns 
and the magnitudes of the item discrimination between levels would affect the estimates of individual or cluster 
level abilities differently.  

Assuming we fit a 1PL multilevel IRT model. The pattern of item discrimination would be exactly the same 
for both individual and cluster levels. In other word, it obtains only one pattern of the item discriminations for 
both levels (e.g., same pattern of item discrimination across both levels). The magnitudes of item discrimination 
would be exactly the same for both individual and cluster levels (e.g., 1.0 for all items across both levels). On 
the other hand, once the 2PL IRT model is applied to the multilevel model, the patterns and the magnitudes of 
the item discrimination could be different across levels. While the item discriminations may have the same pat- 
terns and the same magnitudes for both individual and cluster levels, the item discriminations may have the 
same patterns but different magnitudes between individual and cluster levels. The item discriminations may also 
have different patterns and different magnitudes between individual and cluster levels. However, effects of the 
difference in different patterns and magnitudes of item discrimination have not been demonstrated in literature 
yet with the multilevel IRT modeling perspective.  

If differential patterns or magnitudes of item discriminations between levels affect estimates of individual and 
cluster level abilities differently, the conclusion that Tate [9] has made may not be always correct. Namely, esti- 
mated cluster-level ability should not always be viewed as the mean of the individual-level abilities in the cluster. 
Therefore, the mean individual level abilities may practically over- or under-estimates the cluster-level ability. In 
practice, it is not uncommon to estimate the cluster-level ability from the mean of the individual-level ability of 
all individuals in that cluster. For example, it is very common to evaluate school level performance by compu- 
ting the mean of estimated student abilities in each school. For these reason, we attempted to investigate how the 
patterns and the magnitudes of the item discrimination between individual and cluster levels would behave un- 
der the 2PL multilevel IRT model. It was also our intention to provide some insights on how we should interpret 
the differential item discriminations between individual and cluster levels.  

An item discrimination indicates a quality of an item, because it dictates how strongly each item correlates 
with the ability being measured. A higher discrimination corresponds to a greater correlation with the ability, 
which also leads to a higher scoring weight for the item. Therefore, individuals who answer items with high dis- 
criminations correctly would have a higher estimated ability than individuals who answer items with lower dis- 
criminations correctly, given the same raw scores. In other words, it matters not only how many items were 
answered correctly, but also which items were answered correctly. Under the 2PL single-level IRT model, the 
individual ability estimates are weighted by item discriminations, such that 

( ), ,
N N

j i j j j j
j j

a P a b a uθ =∑ ∑ ,                              (2) 

where iθ  is an ability level for individual i, ja  is an item discrimination parameter for item j, jb  is an item 
difficulty parameter for item j, and ju  takes the values 0 and 1 corresponding to incorrect and correct res- 
ponses of individual i on item j (j = 1, 2, …, N). However, it may or may not be a case under the 2PL multilevel 
IRT model.  

Since 2PL multilevel IRT model allows item discriminations to vary both at the individual and cluster levels, 
we hypothesized that different patterns of item discriminations between the levels affect patterns of scoring 
weights to be different between the levels. For this reason, our hypothesis was that the aggregated mean indi-  

vidual-level abilities ( )( )2
îθ  should be very close to the estimated cluster-level ability ( )( )3

k̂θ , if the patterns of  

item discriminations are the same between the individual and cluster levels. However, if the patterns of item 
discriminations are different between the levels, we hypothesized that the aggregated mean individual-level abil-  

ities ( )( )2
îθ  will be different from the estimated cluster-level ability ( )( )3

k̂θ . We evaluated these hypotheses by 

computing the Pearson’s product moment correlation between the aggregated mean individual-level abilities 
( )( )2

îθ  and the estimated cluster-level ability ( )( )3
k̂θ . Note that literature on cluster-level IRT model [6] [8] [9] 

has suggested that the use of the aggregated mean individual-level abilities ( )( )2
îθ  in lieu of the estimated clus-  
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ter-level ability ( )( )3
k̂θ  is discouraged, due to inappropriate estimation of its standard errors. However, this 

study focused on the relationship between the aggregated mean individual-level abilities ( )( )2
îθ  and the esti-  

mated cluster-level ability ( )( )3
k̂θ  with respect to patterns of item discriminations at the individual and cluster 

levels, as an attempt to provide an insight on how one should interpret differential item discrimination parame- 
ters between the levels.  

2. Design of the Simulation Study 
2.1. Modeling 
The 2PL multilevel IRT model was investigated under this study for both data generation and fitting the model. 
In IRT, the response outcome data are treated as categorical with binomial distributions. The idea of a 2PL mul- 
tilevel IRT model is to measure each latent variable incorporated in the multilevel model with the IRT model. 
The 2PL multilevel IRT model can be written as  

( ) ( ) ( ) ( )2 2 3 3*
ijk i i k k j ijky a a b eθ θ= + − + ,                            (3) 

where *
ijky  is the latent continuous response variable with the observed response 1ijky =  if * 0ijky ≥ , or 

0ijky =  if * 0ijky < . On the other hand, ( )2
ia  is the item discrimination parameter for individual level i, ( )2

iθ  
is the unobserved latent ability level for individual i, ( )3

ka  is the item discrimination parameter for the cluster  
level k, ( )3

kθ  is the unobserved latent ability level for cluster k, jb  is the item difficulty parameter for item j,  

and ijke  is the error term with the logistic distribution. Both ( )2
iθ  and ( )3

kθ  were generated from standard  
normal distribution with the mean of zero and the standard deviation of 1.0.  

2.2. Simulation Conditions 
It was assumed that the test consisted of 12 items with item difficulties ranging from −2.0 to 2.0. These item dif- 
ficulties were fixed across conditions. The biserial correlations between the ability estimate and the propensity 
for correct response were used to set up the item discriminations for individual and cluster levels. These five 
item discriminations (0.8, 1.0, 1.2, 1.6, and 2.2) represented biserial correlations of 0.40, 0.50, 0.55, 0.66, and 
0.77 between the latent trait and the propensity to a correct answer. They created 16 sets of item discriminations 
classified into three patterns (see Table 1). The first pattern (Pattern A) was for conditions with the same pat- 
terns and the same magnitudes of discriminations for both levels. The second pattern (Pattern B) was for condi- 
tions with the same patterns but different magnitudes of discriminations between the levels, and the third pattern 
(Pattern C) was for conditions with different patterns and different magnitudes of discriminations between levels. 
Also, the number of clusters (2 levels; 50 and 100) and cluster size (2 levels; 50 and 100) were manipulated, and 
these three simulation factors were crossed and created a total of 16 × 2 × 2 = 64 simulation conditions.  

Based on these specifications, the dichotomous item response data were randomly generated and fit by the 
2PL multilevel IRT model as shown in Equation (3). The Mplus software, using the Maximum Likelihood esti- 
mator with robust standard errors was used to estimate model parameters ( ( )2

ia , ( )3
ka , and jb ), while assuming 

ijke  are randomly drawn from the standard logistic distribution. On the other hand, ( )2
iθ  and ( )3

kθ  were esti- 
mated by empirical Bayes estimator, also by the Mplus software. The variances of the latent variables were fixed 
to be 1.0 for both individual and cluster levels. This way, the magnitudes of item discriminations were directly 
comparable. 100 replications were generated for each simulation condition. Then, the aggregated mean individ-  

ual-level abilities ( )( )2
îθ  and the estimated cluster-level ability ( )( )3

k̂θ  were estimated. Finally, we further  

evaluated the consistency of the aggregated mean individual-level abilities ( )( )2
îθ  and the estimated cluster-  

level ability ( )( )3
k̂θ  by computing the Pearson’s product moment correlation between ( )( )2

îθ  and ( )( )3
k̂θ .  

3. Results and Discussions 
Results demonstrated three primary scenarios regarding Pearson’s product moment correlation between the ag-  

gregated mean individual-level abilities ( )( )2
îθ  and the estimated cluster-level ability ( )( )3

k̂θ  (see Figure 1).  
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Table 1. Item discriminations.                                                                               

  Item Discriminations 
Set Pattern Individual Level Cluster Level 

  Items 1-6 Items 7-12 Items 1-6 Items 7-12 
1 A 0.8 0.8 
2 B 0.8 1.2 
3 B 0.8 2.2 
4 B 1.2 0.8 
5 A 1.2 1.2 
6 B 1.2 2.2 
7 B 2.2 0.8 
8 B 2.2 1.2 
9 A 2.2 2.2 
10 A 1.0 1.6 1.0 1.6 
11 C 0.8 1.0 1.6 
12 C 1.2 1.0 1.6 
13 C 2.2 1.0 1.6 
14 C 1.0 1.6 0.8 
15 C 1.0 1.6 1.2 
16 C 1.0 1.6 2.2 

 
First, conditions with the same patterns and the same magnitudes of item discriminations for both levels (Pattern 
A), and conditions with the same patterns of item discriminations but the magnitude of item discriminations 
were higher for individual level (Sets 4, 7, and 8 under Pattern B), the correlations were very high. They were in 
the range of [0.757, 0.928]. These results indicated that the patterns and the magnitudes of item discriminations 
between levels affected the estimates and the correlations between the aggregated mean individual-level abilities  

( )( )2
îθ  and the estimated cluster-level ability ( )( )3

k̂θ . In other words, the cluster-level ability could be viewed as  

the mean of the individual-level ability of all individuals in that cluster. This statement also holds for the 1PL 
multilevel IRT as a special case. This result suggested that it is reasonable if one estimates the cluster-level abil- 
ity by computing the mean of the individual-level ability of all individuals in that cluster under these circums- 
tances. Both approaches would produce similar results. Also, within this pattern, the correlations slightly in- 
creased as the number of clusters and the cluster size increased.  

Second, for conditions with the same patterns of item discriminations between levels but the magnitudes of 
item discriminations were lower for individual level (Sets 2, 3, and 6 under Pattern B), the correlations were 
moderately high. They were in the range of [0.497, 0.799]. These results showed that the individual level needed 
to be at least at the same level of item discriminations for cluster level for the aggregated mean individual-level  

abilities ( )( )2
îθ  and the estimated cluster-level ability ( )( )3

k̂θ  to be similar, given the same patterns for both 

levels. In other words, the item discriminations for individual level played significant role over the item dis- 

criminations for cluster level to obtain similar estimates of the aggregated mean individual-level abilities ( )( )2
îθ   

and the estimated cluster-level ability ( )( )3
k̂θ . This result makes sense to us because it is suspected that we lose  

some information when we aggregate the mean individual-level abilities ( )( )2
îθ . Thus, the aggregated mean in-  

dividual-level abilities ( )( )2
îθ  estimates slightly differ from the estimated cluster-level ability ( )( )3

k̂θ .  

Third, for conditions with different patterns and different magnitudes of item discriminations between levels 
(Pattern C), the correlations were much lower. They were in the range of [0.174, 0.462] among the six Pattern C  

conditions. In this scenario, it became obvious that the aggregated mean individual-level abilities ( )( )2
îθ  and  

the estimated cluster-level ability ( )( )3
k̂θ  were inconsistent. These results confirmed that differential patterns of  
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item discriminations had a huge impact on the estimates of the aggregated mean individual-level abilities ( )( )2
îθ   

and the estimated cluster-level ability ( )( )3
k̂θ , whereas the magnitudes of item discriminations did not affect  

much on the estimates of the aggregated mean individual-level abilities ( )( )2
îθ  and the estimated cluster-level  

ability ( )( )3
k̂θ . As can be seen from sets 11, 12, and 13 that the item discriminations for individual level in- 

creased from 0.8 to 1.2, and 2.2, however, the correlations for all three sets were almost identical. Similar to the 
correlations obtained from sets 14, 15, and 16. In other words, the individual level abilities are not the same as 
the cluster-level abilities, which means that the estimated cluster-level ability ( )( )3

k̂θ  is not a straightforward  

generalization of the aggregated mean individual-level abilities ( )( )2
îθ . These results confirmed differential  

item discriminations under the 2PL multilevel IRT model behave differently from the differential item discrimi- 
nations under the 2PL single-level IRT model. 

Overall, the Pearson’s product moment correlations between the aggregated mean individual-level abilities 
( )( )2

îθ  and the estimated cluster-level ability ( )( )3
k̂θ  demonstrated that differential patterns of item discrimina- 

tions between levels had huge impact on the estimates of the aggregated mean individual-level abilities ( )( )2
îθ   

and the estimated cluster-level ability ( )( )3
k̂θ  over the magnitudes of item discriminations between levels. The 

patterns of item discriminations have to be at least the same between levels to obtain similar estimates between 
 

       

        
Note: C = number of cluster, CS = cluster size, A = conditions with the same patterns and the same magnitudes of 
item discriminations for both levels, B = conditions with the same patterns but different magnitudes of item discrimi-
nations between levels, C = conditions with different patterns and different magnitudes of item discriminations be-
tween levels, and 1, …, 16 = simulation sets 1 to 16. 

Figure 1. Correlations between the aggregated mean individual-level abilities ( )( )2
îθ  and the esti- 

mated cluster-level ability ( )( )3
k̂θ .                                                      
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the aggregated mean individual-level abilities ( )( )2
îθ  and the estimated cluster-level ability ( )( )3

k̂θ . Thus, the  

individual traits have different meaning than the cluster-level traits under conditions where the patterns and the 
magnitudes of the item discriminations differ. 

Regarding the effect of simulation factors (see also Figure 1), for conditions with the same patterns and the 
same magnitudes of discriminations for both levels (Pattern A) and conditions with the same patterns but differ- 
ent magnitudes of discriminations between the levels (Pattern B), the correlations slightly increased as the num- 
ber of cluster and the cluster size increased. On the other hand, for conditions with different patterns and differ- 
ent magnitudes of discriminations between levels (Pattern C), the correlations slightly decreased as the number 
of cluster and the cluster size increased. These results demonstrated that the estimates of the aggregated mean  
individual-level abilities ( )( )2

îθ  and the estimated cluster-level ability ( )( )3
k̂θ  were affected by sample sizes;  

however, not necessarily in the way we typically understand the effect of sample size.  
Regarding the effect of item discrimination magnitudes, first, for conditions with the same patterns and the 

same magnitudes of item discriminations for both levels (Pattern A), the correlations increased as the magni- 
tudes of either item discriminations for the individual level or item discriminations for the cluster level increased. 
These results were not surprising to us because the item discrimination indicates a quality of an item. A higher 
item discrimination corresponds to a greater correlation with the ability, which also leads to a higher scoring 
weight for the item.  

Second, for conditions with the same patterns but different magnitudes of discriminations between the levels 
(Pattern B), the correlations increased as the magnitudes of item discriminations for the individual level in- 
creased, given the same magnitudes of item discriminations for the cluster level. On the other hand, the correla- 
tions decreased as the magnitudes of item discriminations for the cluster level increased, given the same magni- 
tudes of item discriminations for the individual level. Also, the correlations were much lower when the magni- 
tudes of item discriminations of the individual level were much lower than the magnitudes of item discrimina- 
tions of the cluster level. Thus, the difference in magnitudes of item discriminations between levels affected the  
Estimates of the aggregated mean individual-level abilities ( )( )2

îθ  and the estimated cluster-level ability ( )( )3
k̂θ .  

This result confirmed that the patterns of item discriminations have to be at least the same between levels to ob- 
tain similar estimates between the aggregated mean individual-level abilities ( )( )2

îθ  and the estimated cluster- 
level ability ( )( )3

k̂θ . The magnitudes of item discrimination is related to the magnitude of the variances of latent 
factor, in our case, the variances of individual-level ability ( )( )2

iθ  and cluster-level ability ( )( )3
kθ . Since latent 

factors do not have fixed scales, item discriminations do not have fixed scales. Their scales depend on how the 
latent factors are scaled. Therefore, it makes sense that our results showed that the differential magnitudes of 
item discriminations did not affect the results, as far as patterns are the same between the levels. 

Third, for conditions with different patterns and different magnitudes of item discriminations between levels 
(Pattern C), the correlations decreased as the magnitudes of either item discriminations for the individual level 
or item discriminations for the cluster level increased. These findings were interesting, because they were dif- 
ferent from what we typically understand the effect of item discrimination; that is, higher item discrimination 
leads to a higher scoring weight for the item. If this statement is true under the 2PL multilevel IRT modeling, the 
aggregated mean individual-level abilities ( )( )2

îθ  and the estimated cluster-level ability ( )( )3
k̂θ  should be 

highly correlated, when the magnitudes of either item discriminations for the individual level or item discrimi- 
nations for the cluster level increased. It is important to note that this statement is always true for a 2PL single- 
level IRT model, but it is not always the case once we fit the 2PL IRT model under the multilevel modeling (e.g., 
2PL multilevel IRT model), as evident from low correlations between the aggregated mean individual-level abil-  
ities ( )( )2

îθ  and the estimated cluster-level ability ( )( )3
k̂θ  when both levels have different patterns of item dis-  

criminations and the magnitudes of either item discriminations for the individual level or item discriminations 
for the cluster level increased. This result also demonstrated that the patterns of the item discriminations had 
substantial effect on ability estimates under the 2PL multilevel IRT model.  

Finally, it should be noted that there were interaction effects between our simulation factors. Namely, the cor-  
relations between the aggregated mean individual-level abilities ( )( )2

îθ  and the estimated cluster-level ability  
( )( )3
k̂θ  slightly increased as the number of clusters, the cluster size, and the item discrimination magnitudes in- 
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creased under conditions with the same patterns and the same magnitudes of item discriminations for both levels 
(Pattern A) and for conditions with the same patterns but different magnitudes of discriminations between the 
levels (Pattern B). On the other hand, the correlations slightly decreased as the number of cluster, the cluster size, 
and the item discrimination magnitudes increased for conditions with different patterns and different magnitudes 
of item discriminations between levels (Pattern C).  

4. Conclusions  
Our investigation demonstrated one way to interpret differential item discriminations between individual and 
cluster levels in the 2PL multilevel IRT context. We found that the patterns of item discriminations between le- 
vels are more important than the magnitudes of item discriminations to obtain consistent estimates of the aggre-  
gated mean individual-level abilities ( )( )2

îθ  and the estimated cluster-level ability ( )( )3
k̂θ . As Mislevy [6] and 

Tate [8] [9] among others point out, it is not uncommon in educational research to use the aggregated mean in- 
dividual-level abilities ( )( )2

îθ , instead of the estimated cluster-level ability ( )( )3
k̂θ . However, our finding re-  

vealed that this would be justifiable only if the magnitudes of item discriminations for both levels share the same 
patterns. For this reason, a caution should be made when aggregating individually estimated abilities, because  
the mean of the estimated individual-level abilities ( )( )2

îθ  is not necessarily a good representation of the cluster 
level ability ( )( )3

k̂θ .  
Although our investigation looked into three simulation factors over 64 simulation conditions, there are of 

course other factors and conditions that should be investigated. For example, it would be interesting to see how 
the number of items on each level would affect the estimates of the aggregated mean individual-level abilities  

( )2
îθ  and the estimated cluster-level ability ( )( )3

k̂θ  given the same or different patterns of item discriminations  
between levels. The item difficulty is another interesting factor. It would be interesting to see the effect of the 
interaction between the item difficulties and the patterns of item discriminations between levels. The extremely 
low or high item discrimination magnitudes under different patterns of item discriminations between levels 
should be of interest for future investigation. Also, it would be interesting to further algebraically demonstrate 
how the individual ability estimates are weighed by the differential item discriminations under the 2PL multile- 
vel IRT model.  
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