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Abstract 
Using the transfer matrix method we calculate the frequency dependence of 
the transmission of longitudinal elastic waves for a layered structure where the 
specific acoustic impedance of the layers with odd numbering follows a Gaus-
sian distribution, while the inserted even layers have the same impedance as 
the propagation medium. The structure presents intervals of low-pass, band- 
stop, and band-pass. The characteristics of the bands depend on the number 
of layers, on the contrast between the maximum and minimum impedances of 
the structure, and on the ratio of the width of the inserted layers to the width 
of the layers with a Gaussian distribution of impedances. 
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1. Introduction 

Since many decades ago, the search for energy, electronic, optical and acoustic 
filters is an active field. In the area of acoustic, studies by Rayleigh opened an in-
terest in the exploration of sound [1]. Pupins, Cambell and Wagner made the 
first studies to transmit information, where they proposed a transmission line 
and filtered the signals through simple configuration, known as T and π [2] [3] 
[4]. Later, the work development by Stewart in 1922 [5] [6], began the study by 
acoustic filters. Stewart focused in the study on the relationship of the acoustic 
transmission between different media and applied the concepts of acoustic im-
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pedance, thus and analogy related to electrical circuits [7] [8]. Subsequently 
there was a series of works such as Peacock, Mason and Lindsay with which 
deepened and broadened the investigation of acoustic filters, then using the 
broad term studies of transmission line and varying conditions [9]-[14]. Today 
there extended literature on these issues. However, they have combined a group 
of applications, not only in acoustic but also in other research field, like signal 
processing, telecommunications, medicine, etc. [15]-[63]. In particular, there are 
proposals of energy band-pass filters using quantum superlattices with Gaussian 
potential profile [64] [65]. These structures allow the incident electrons to be 
nearly totally transmitted when the impinging energy is in the stop-band. The 
characteristics of the bands can be adjusted modifying the parameters of the su-
perlattice and of Gaussian distribution. On the other hand, following the pre-
ceding idea, there is also a proposal of a multilayer optical structure where re-
fractive index varies according to the envelope of Gaussian functions [66]. This 
structure acts as an omnidirectional mirror. For sound, the difference between 
acoustic impedance values between two media causes reflection at the interface. 
We propose in this work a multilayer acoustic filter where the specific acoustic 
impedance of the layers with odd numbering is modulated by a Gaussian func-
tions. The acoustic impedance of the inserted provides a slow impedance for the 
layers, which can improve the transmission of the structure. We make a theoret-
ical study of the transmission for this structure following a formalism of transfer 
matrix used for electromagnetic waves, which we have adapted to acoustic waves 
[67]. The 100% reflectivity and practically 100% transmission can be obtained 
when the frequency lies within the respective bands. The bands are flat and their 
positions and bandwidths are adjustable. This type of filter can be constructed 
experimentally using layers with composite materials where the acoustic im-
pedance can be tailored by varying the volume fractions of the components in 
the composite [68] [69]. Another possible way to construct this filter is by using 
layers of porous silicon. This material has been widely used for the fabrication of 
optical devices, including optical filters where the refractive index can be varied 
through a variation of the porosity [66]. There are also studies of the variation of 
acoustical properties, including the acoustical impedance, due to the variation of 
the porosity [70] [71]. Recently, acoustic multilayer mirrors have been made us-
ing porous silicon [72]. In previous work, studies on acoustic, electronic and 
optical properties were made [73] [74] [75]. In this work we propose an alterna-
tive for generating acoustic filter from the modulation of the acoustic impedance 
and it is an effective method for making a better coupling of the acoustic im-
pedances. 

2. Theoretical Model and Calculation Method 

For calculate the transmittance, we use the theory of references [67] [76] [77]. 
We consider a structure of N plane multilayers. The layers are perpendicular to 
the x axis. Each j-layers has a width dj and acoustic Zj given by 
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j j jZ cρ=                            (1) 

where ρj and cj, the density and the acoustic longitudinal speed for the j-materi- 
al, respectively. We consider longitudinal elastic plane waves propagating in the 
x-z plane, coming from left in a propagation medium with impedance ZPM. The 
plane wave is incident on the structure of N plane multilayers. At the right side 
of the structure, the propagates in a medium PM with impedance ZPM. We can 
write the wave function for each layer in the following form,  

( ) ( )e ej ji t i t
j j jP A Bω ω′⋅ − ⋅ −
= +

k r k r
� �� �

                    (2) 

where Pj presents the propagating wave pressure perturbation. The first and the 
second terms on the right-hand side Equation (2) represent propagation to the 
right and to the left, respectively, i.e. the forward and the backward waves. The 
index j = 0 represents the propagation medium at the left of the structure with 
impedance ZPM. In the medium PM with j = N + 1 we consider only propagation 
to the right, consequently BS = 0. kj and jk′  are the forward and backward wave 
vectors for medium j, t is the time, ω the angular frequency, and i the imaginary 
unit. A solid can support both longitudinal and transverse elastic wave, and a 
fluid only transmits elastic longitudinal waves. If a longitudinal wave in a fluid is 
incident obliquely on the interface with a solid, both type of waves can be trans-
mitted in the solid. However, at normal incidence, the character of the longitu-
dinal wave is preserved, without generation of transverse wave in the solid. 
Then, for oblique incidence, our theory is valid only for fluid layers. If wave is 
incident at an angle θ0 with the normal to the structure, law of Snell gives,  

0 1
0 1

1 1 1 1 1sin sin sin sin sinj N S
j N Sc c c c c

θ θ θ θ θ= = = = = =� �       (3) 

The wave propagation from medium 0 to medium S through the multilayer 
structure is described propagation wave by,  

0 11 12

0 21 22 0
SA M M A

B M M
     

= ⋅     
   

                    (4) 

where the (2X2) transfer matrix is given by [67], 

11 12 1 1
0

21 22

N

j j j S
j i

M M
D D P D D

M M
− −

=

  
=   

   
∏                   (5) 

The matrix Dj is called the dynamical or transmission matrix, and arises from 
the continuity conditions on the pressure and the displacement normal to the 
interface between media j-1 and j. The matrix Pj is the kinematical or propaga-
tion matrix inside the j layer. If it supposed that the media are lossless, the ma-
trix are given by,  

1 1
cos cosj jj

j j

D
Z Z
θ θ

 
 =  −
  

                      (6) 

https://doi.org/10.4236/oja.2017.73005


J. Madrigal-Melchor et al. 
 

 

DOI: 10.4236/oja.2017.73005 42 Open Journal of Acoustics 
 

( )
( )

exp cos 0

0 exp cos

j j
j

j j

ik d
P

ik d

θ

θ

 
 =
 − 

             (7) 

where dj is width layer in the structure. We define the transmission coefficient T 
as the transmitted power by the waves through the structure [78], normal to the 
structure, divided by the power of the incident waves, normal to the structures. 
It is given in terms of the transfer matrix by,  

ˆ
ˆ

t

i

P n
T

P n
⋅

=
⋅

                            (8) 

where Pt is the vector of transmitted power, Pi the vector of incident power, and 
n̂  the unit vector normal to the structure. The angle brackets denote average 
over time. P is similar to the Poynting vector in electromagnetism, which is giv-
en by = ×S E H , where S  is the vector of Poynting, E  is the vector of the 
electric field and H  is the vector of the magnetic field intensity, units are 
(W/m2). Similarly, the acoustic Poynting vector is given by v= −TΞ , where Ξ  
is the acoustic Poynting vector, T  is the stress to which the studied material is 
subjected and v is the particle velocity, the units of the acoustic Poynting vector 
are (W/m2) [79]. Its temporal average is given by [68], 

21 ˆ
2

AP u
Z

=                           (9) 

here, A is the amplitude of the pressure wave and û  the unit vector in the di-
rection of propagation of the wave. The transmission T, in terms of the transfer 
matrix, is given by, 

0

0 11

cos 1
cos

S

S

ZT
Z M

θ
θ

=                        (10) 

The reflectance R is given by,  
1R T= −                            (11) 

The specific acoustic impedance for the layers with odd numbers (Gaussian 
layers) in modulated by the Gaussian function,  

( ) ( )
( )20

2

max min mine
x x

Z x Z Z Zσ

 − − 
 
 = − +               (12) 

where Zmax is the maximum impedance for the Gaussian values and Zmin is the 
impedance of the medium where the structure is situated, which is the same as 
the medium of the inserted even layers. 

3. Results and Discussion 

We consider that the structure is located in a propagation medium such as wa-
ter, because later in the experimental stage, it can minimize signals or unwanted 
information (noise), compared to use in the air, as propagation medium. The 
following parameters are proposed with a minimum and maximum impedance. 
The proposed material is a composite, which has a range of minimum and 
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maximum acoustic impedance, which are, Z0 = Zmin = 1.509 MRayls, ρ0 = ρmin = 
1000.0 kg/m3, c0 = cmin = 1509.0 m/s, Zmax = 3.5 MRayl, ρmax = 1500.0 kg/m3, cmax 
= 2333.0 m/s. The total thickness of the structure is fixed, with a value Δ = 1 in 
arbitrary units. For the Gaussian function, we use a value of σ = Δ/4, which for 
our calculations gives an efficient transmission. For the calculations, it is neces-
sary to know for each value of Z calculated by Equation (12), the corresponding 
values of ρ and c for the Gaussian layers. For that purpose, we also make a Gaus-
sian interpolation for ρ between the values of ρmax and ρmin, and find the corres-
ponding values of c using Equation (1). The Gaussian layers have a width dG and 
the inserted layers have a width dI. The impedance profile of the structure is 
show schematically in Figure 1. 

The spectrum of allowed frequencies for an acoustical multilayer structure 
consists of quasi-bands of discrete values of eigenfrequencies, separated by gaps 
or stop-bands, where there is no transmission of sound [80].  

We present in Figure 2 the transmittance for normal incidence for a structure 
with a total of 45 layers, where 23 follow the Gaussian profile, with three differ-
ent values of the ratio dI/dG = 1, 3, 5 as a function of wD/cwater, where cwater is the 
speed of sound for water, when the ratio dI/dG increases, there is better transmis-
sion in the pass-band, their width increases and size of the stop-bands decreases. 

The reason of this improvement of the transmission, is that the fraction filled 
by Gaussian layers which have larger values of impedance than the water.  

In Figure 3 we make a comparison of the transmission spectra between a 
structure with Gaussian profile of impedances and a structure with a regular 
profile, where the layers with odd numbers have constant value of impedance Z 
= 3.0 MRayls. The structure with regular profile of impedances has the expected 
gaps of frequencies (stop-bands) but it does not have flat pass-bands as the 
structure with Gaussian profile. The oscillations that occur in the transmission 
spectrum for the regular structure (a), correspond to the eigenfrequencies. We 
observe 23 oscillations in each quasi-band, which correspond to the 23 layers 
that have the Gaussian profile (b). 
 

 
Figure 1. The impedance profile of the structure, with the gray layer follows a Gaussian 
profile and has a width dG. 
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Figure 2. Transmission coefficient for normal incidence for a structure with a total of 45 
layers, with Zmin = 1.509 MRayls and Zmax = 3.5 MRayls and where 23 follow the Gaussian, 
with three different values of the ratio (a) dI/dG = 1, (b) dI/dG = 3 and (c) dI/dG = 5. 
 

 
Figure 3. Transmission coefficient for a (a) regular profile and (b) Gaussian profile with dI 
= 3dG and 45 total layers. 
 

The transmission in the pass-bands for the structure with regular profile is 
poorer due to the more abrupt change of impedances. A structure with regular 
profile can work as an acoustic mirror, but it is bad as an acoustic filter.  

In the Figure 4 we show the spectra of transmission for two structures with 
different number of layer. If we put more layers in the structure, the bands move 
upwards. This behaviour is similar to that of the quasi-bands of energies for an 
electron is a superlattice when the wells and barriers are narrower. 

Also, the pass-bands are wider because the number of eigenfrequencies in-
creases. At the same time, the reflectance for the stops-bands is improved due to  
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Figure 4. Transmission coefficient for a ratio dG/dI = 3 the structure with (a) 29 layers and 
(b) 45 layers. 
 
the fact that there are more layers with large impedance. We present in Figure 5 
the transmittance for two values of Zmax = 3.5 y 7.5 MRayls. When the difference 
between Zmin and Zmax is larger, the pass-bands area narrower because there is a 
more abrupt change for the impedance of the Gaussian layers, which causes 
more reflection. We stress that the positions of the pass-bands and widths of the 
bands can be adjusted changing the parameters of the structure. 

Finally in Figure 6 we show the transmittance of oblique incidence for four 
values of incidence angle (0, 45, 70 and 80) for the structure with 45 layers. 
When the angle of incidence increases the bands move towards intervals of 
higher frequencies and the transmission is poorer, as expected.  

At the same time, the low-pass band becomes wider. About 80 the transmis-
sion practically disappears. We emphasize our calculations for oblique incidence 
is valid only for fluid layers. 

4. Conclusions 

Using a method of transfer matrix for electromagnetic waves, we have made stu-
dies in order to propose a layered acoustic filter where the characteristic imped-
ance of the layers with odd numbers follows a Gaussian distribution and the in-
serted layers with even number have a constant value of acoustic impedance. 
Adjustable flat transmission bands and reflection bands are obtained by properly 
choosing the structure parameters, when a longitudinal plane wave of sound is 
incident on the layered structure, is practically transmitted totally if the 
frequency lies in a pass-band and fully reflected if the frequency lies in a 
stop-band. These properties have a wide area of application, such as in acoustic 
mirrors and filters. The latter allows to select specific frequency ranges to pass 
through them, for example in applications of medical ultrasound and the pho-
toacoustic spectroscopy; also in the exploration and study of food to meet their 
properties and to apply the acoustic tools for food processing, as is the high 
intensity ultrasound. 
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Figure 5. Transmission coefficient for a different value of dZ on the structure with 45 lay-
ers and for a ratio dG/dI = 3. 
 

 
Figure 6. Transmission coefficient for oblique incidence for four values of the incident an-
gle of the incident acoustic wave on the structure with 45 layers and for a ratio dG/dI = 3. 
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