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Abstract 
A set of dolphin echolocation signals previously collected from an Atlantic bottlenose dolphin in 
Kaneohe Bay, Hawai’i are decomposed using a matching pursuit algorithm to further investigate 
the role of four types of echolocation signals outlined elsewhere [1]. The method decomposes the 
echolocation signals into optimal linear expansions of waveforms, which are Gabor functions de-
fined in a dictionary. The method allows for study of the changes in frequency content within a 
dolphin’s functional bandwidth during discrimination tasks. We investigate the role of the func-
tional bandwidth in terms of the signal energy levels and echolocations task performance. Fur-
thermore, ROC analysis is applied to the relative energies of the matched waveforms to determine 
probability of discrimination. The results suggest that dolphins may discriminate by inspection of 
the relevant frequency differences between targets. In addition, the results from the ROC analysis 
provides insight into the role of the different classes of dolphin signals and of the importance of 
modification of the outgoing echolocation clicks, which may be fundamental to a dolphin’s ability 
to identify and discriminate targets. 
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1. Introduction 
Using echolocation an Atlantic bottlenose dolphin, Tursiops truncatus, can make fine distinctions in the proper-
ties or features of targets such as size, shape, and material composition [2] [3]. The results of Au et al. [4] indi-
cate that dolphins may have developed a unique way to process complex broadband transient sonar (acoustic) 
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echoes for target discrimination. Traditionally, discrimination hypotheses have been developed by examining 
how dolphins may be using temporal or spectral cues in received echo signals for target discriminations. Du-
brovskiy and Krasnov [5] suggested that dolphins discriminated spherical targets with different material compo-
sitions by difference in average oscillation period of the target echo frequency spectra. Au and Hammer [6] and 
Hammer and Au [7] proposed dolphins may use time separation pitch cues to discriminate targets. Au [3] hy-
pothesized that the use of short-time frequency analysis may be a plausible method for target discrimination. 
Time-frequency analysis of dolphin echolocation signals provides a time-evolving representation of the signal 
frequency content as reported by Gaunaurd et al. [8] who used a Wigner-Ville representation. Muller et al. [1] 
reported that four classes of echolocation clicks are involved in the echolocation process of the Tursiops trunca-
tus; moreover, the specific role of the different classes is not well understood. Although it may be possible for 
the dolphin to discriminate between time-frequency representations of different echolocation signals, it is diffi-
cult to quantify and detect subtle frequency and energy differences within a time frequency plot. 

The matching pursuit algorithm decomposes a signal into a linear expansion of waveforms that are selected 
from a redundant dictionary of waveforms called time-frequency atoms [9]. By investigating the frequency con-
tent of the atoms, subtle frequency and energy differences between signals can be detected. Matching pursuit 
decomposition (MPD) [9] provides improved spectral resolution for time varying signals [10] and may be a 
useful tool for detecting subtle frequency differences in dolphin echolocation signals.  

Previous studies have shown that matching pursuit decomposition is an effective method for detecting differ-
ences in signals. Gribonval and Bacry [11] used matching pursuit to decompose audio sound recordings with 
transient and sustained components and found matching pursuit to be an efficient method for detecting the indi-
vidual components of the recording. MPD has also been shown to effectively detect frequency changes in a va-
riety of biomedical signals [12]-[16]. Matching pursuit has not been previously applied to the decomposition of 
individual dolphin echolocation signals.  

Dolphin echolocation signals are decomposed using matching pursuit to detect frequency and energy changes 
in the signals that may otherwise go undetected using traditional methods. The frequencies of the best matching 
waveforms (atoms) are investigated to determine subtle frequency changes of the echolocation signals. This 
provides novel insight into the frequency differences of the click and echo signals that are not readily revealed 
through Fourier or time-frequency representation methods. The results may provide an alternative method for 
investigation of dolphin sonar in terms of frequency and energy differences during echolocation and formulation 
of a discrimination strategy hypothesis.  

Furthermore, receiver operating characteristic (ROC) analysis is utilized to evaluate overall detection and 
classification performances. ROC is a graphical analysis technique for binary classification systems with varia-
ble discrimination thresholds [17]. ROC curves have previously been used in detection studies involving marine 
mammal subjects and biomedical discrimination studies. Schusterman et al. [18] used ROC to show that the 
isosensitivity curves of the auditory detection sensitivity of marine mammals could be obtained by varying the 
response bias of the animals. Au and Turl [19] also used the technique of varying the response bias of an echo-
locating dolphin to obtain data that when plotted in ROC format could be fitted by an isosensitivity curve. In ad-
dition, Au and Pawloski [20] determined that the performance of an ideal receiver can be estimated by obtaining 
the isosensitivity curve that best fits the dolphin’s performance data plotted using a ROC curve.  

2. Methods 
2.1. Data Collection and Processing 
The dolphin echolocation clicks were collected from previously described phantom echolocation experiments 
[21]. The subject used in the experiments was a 21-year-old female Tursiops truncatus named BJ. The animal 
was born in the laboratory and used in a variety of echolocation experiments [22]-[24]. The clicks were recorded 
by a Brüel and Kjaer 8103 hydrophone with a flat frequency response (±3 dB) up to 120 kHz. The recorded 
clicks were amplified and sent to a Measurement Computing Corporation PCI-DAS4020/12 analog to digital 
input board which digitized the signals at a sampling rate of 1 MHz. The clicks from both successful and non- 
successful discrimination trials were collected. The dolphin echolocation clicks were then clustered into four 
classes using spectral measurements and a clustering model based on the Bayesian Information Criterion [25]. 
The four classes are similar to those reported by Au et al. [26] and the characteristics of the classes are given 
elsewhere [1]. The echolocation clicks were incorporated into an acoustic scattering model [27] to obtain the 
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echo signals for each click incident upon a steel, brass, iron, and lead spherical target of equal diameter. A de-
tailed description of the click classification and the scattering model results are given by Muller et al. [1]. The 
echo signals from 400 incident clicks (100 from each class) are then decomposed by the matching pursuit algo-
rithm.  

2.2. Matching Pursuit Method 
The matching pursuit decomposition is based on expanding a signal s(t) in the form of a linear expansion of 
waveforms xn from a dictionary of functions: 

( )
1

N

n n
n

s t a x
=

= ∑                                       (1) 

where the coefficients an are given by the inner products of the dictionary’s functions with the signal. In the first 
step of the procedure, the waveform xn which best matches the signal s(t) is chosen from a stochastic dictionary 
of normalized functions (|xn| = 1). The stochastic dictionary is generated before decomposition and consists of 
cosine packets [28]. In each of the consecutive steps, the waveform xn is matched to the residual signal Rns(t) by 
taking the inner product of the waveform xn and Rns(t) and multiplying by the waveform xn, which is the residual 
left after subtracting results of previous iterations:  

( ) ( ) ( )1,n n n
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The waveform xn is chosen by the maximum absolute value of the inner product of the residual Rns(t) and the 
waveform xn. The procedure is repeated on the residual vector Rns(t) until the signal s(t) is decomposed into a 
series of time-frequency atoms in decreasing energy order. The frequency atoms which have a relative energy of 
0.1 or higher after decomposition, which are denoted as the relevant atoms, are included in the post-processing 
analysis. The relevant atom data are presented in the form of time-frequency tile plots with shading indicating 
Heisenberg cells of atoms that make significant contributions to the signal. The intensity of the shading corres-
ponds to the significance of the atom. The signals were decomposed using Wave Lab 850 [29] for MATLAB. 

2.3. Functional Bandwidth 
Ibsen [30] showed that for phantom echo signals, the dolphin utilizes frequencies between 29 and 42 kHz when 
performing discriminations, thus making the frequency band of 29 - 42 kHz her functional bandwidth. This was 
found by a discrimination experiment involving a stainless-steel phantom target as a standard stimulus. The 
comparison stimuli consisted of frequency filters applied to the standard stimulus to eliminate particular fre-
quency bands from the standard phantom echo signal. The upper limit of the functional bandwidth corresponds 
with the animal’s upper frequency hearing limit of 45 kHz [30]. Since this is the only study to the author’s 
knowledge on determining a dolphin’s functional bandwidth, a direct comparison with other dolphins is not 
possible. Indeed the functional bandwidth of other dolphins could be different depending on the animal’s hear-
ing abilities, echolocation strategies, and habitat. However, previous studies on the time frequency content of 
scattered dolphin waveforms did not examine this restriction [1] [8]. Each of the time-frequency tile plots of the 
atoms is truncated to indicate the relevant frequencies within animal’s functional bandwidth. This allows inves-
tigation of frequency changes and differences within the functional bandwidth and provides insight on the ani-
mal’s echolocation strategy.  

2.4. Receiver Operating Characteristic Curves  
ROC analysis is applied to the dolphin echolocation signals to provide insight on discrimination based on the 
relevant frequencies and corresponding relative energies of the signals. The atoms above the relative energy 
threshold of 0.1 are investigated in terms of frequency; all relevant atoms with frequencies not within the ani-
mal’s functional bandwidth are excluded from the computation. The relative energies of the remaining relevant 
atoms (atoms with frequencies within the functional bandwidth) are evaluated for each click. The relative ener-
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gies from 100 clicks from each click class for each of the targets are then summed. The true positive and false 
positive rates between the positive class (standard target) and a negative class (comparison target) are calculated 
and plotted in ROC space. The steel sphere is used as the standard target as it has been traditionally used as the 
standard target in echolocation studies [21] [30] [31].  

In order to quantify the significance of the ROC curves, the area under the ROC curve (AUC) and corres-
ponding p-values are calculated for each case. Green and Swets [17] showed that the AUC value corresponds to 
the probability of correctly identifying a standard stimulus from a comparison stimulus. The ROC curves and the 
AUC values are used here to determine if a comparison target can be identified from a standard target based on 
the relevant frequencies and corresponding relative energies of the dolphin echolocation signals. All ROC 
curves and AUC values presented were computed using a MATLAB toolkit [32].  

3. Results 
An echo waveform from an echolocation click incident upon a spherical steel target and the corresponding 
time-frequency representation of the signal are displayed elsewhere [33]. Examples of cosine waveforms used in 
the dictionary for decomposition in decreasing matched energy and the echo signal reconstructed from the 
matched waveforms above the 0.1 threshold level is also displayed elsewhere [33].  

Figure 1 displays time-frequency tile plots of atoms after decomposition of each type of click incident upon a 
steel sphere. Figure 2 displays time-frequency tile plots of atoms after decomposition of each type of click inci-
dent upon a brass sphere. Figure 3 displays time-frequency tile plots of atoms after decomposition of each type 
of click incident upon an iron sphere. Figure 4 displays time-frequency tile plots of atoms after decomposition 
of each type of click incident upon a lead sphere. Each of the tile plots is band passed filtered to only include the 
animal’s functional bandwidth. The shading of the cells indicates the significance of the atom’s contribution to  
 

 
Figure 1. Time-frequency tile plots of atoms after decomposition of (a) type I, (b) type II, (c) type III, and (d) type 
IV clicks incident upon a steel sphere. The intensity of the shading is proportional to the significance of the atom’s 
contribution to the signal.White indicates the least significance and black represents the highest significance. The 
dashed lines represent the functional bandwidth.                                                           
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Figure 2. Time-frequency tile plots of atoms after decomposition of (a) type I, (b) type II, (c) type III, and (d) type 
IV clicks incident upon a brass sphere. The intensity of the shading is proportional to the significance of the atom’s 
contribution to the signal. White indicates the least significance and black represents the highest significance. The 
dashed lines represent the functional bandwidth.                                                           

 

 
Figure 3. Time-frequency tile plots of atoms after decomposition of (a) type I, (b) type II, (c) type III, and (d) type 
IV clicks incident upon an iron sphere. The intensity of the shading is proportional to the significance of the atom’s 
contribution to the signal.White indicates the least significance and black represents the highest significance. The 
dashed lines represent the functional bandwidth.                                                           
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Figure 4. Time-frequency tile plots of atoms after decomposition of (a) type I, (b) type II, (c) type III, and (d) type 
IV clicks incident upon a lead sphere. The intensity of the shading is proportional to the significance of the atom’s 
contribution to the signal. White indicates the least significance and black represents the highest significance. The 
dashed lines represent the functional bandwidth.                                                           

 
the signal. The intensity of the shading corresponds to the relevance of the atom; the darker the shading, the 
more relevant an atom is to the contribution of the signal. 

Upon inspection of Figure 1(a) there is a distinct dark cell followed by a less intense cell across the same 
frequencies. These cells may correspond to the primary and secondary highlights of the echo signal. Figure 1(b) 
displays four distinct cells; Figure 1(c) displays an initial cell followed by a longer duration cell, and Figure 1(d) 
contains only two distinct cells with the second cell having a lower intensity than the first. A comparison of the 
brass target to the steel target indicates that Figure 2(a), Figure 2(b) are similar to Figure 1(a), Figure 1(b). 
Upon investigation of Figure 2(c) and Figure 1(c), there appears to be a significant difference between the re-
levant atoms based on observation. Figure 2(d) is similar to Figure 1(d) however the intensities of the cells are 
reversed. A comparison of the iron target to the steel target indicates general similarities between the tile plots 
(Figure 1 and Figure 3) which is expected to certain extent due to the similar material properties of the two 
metals. The comparison between the steel target and the lead target again illustrates similarities between Figure 
1(a), Figure 1(b) and Figure 4(a), Figure 4(b). Comparison of Figure 1(c), Figure 1(d) and Figure 4(c), Fig-
ure 4(d) indicates significant differences in the functional bandwidth. The lead target produces long duration 
single relevant frequencies as most of the frequency content of the echo is in a higher frequency range, outside 
of the functional bandwidth. The shading level of the Heisenberg cells provides a novel method to indicate fre-
quency differences. Table 1 indicates the center frequencies of the matched waveforms displayed in the tile 
plots (Figures 1-4). 

Figure 5 shows the ROC curves of relative energies of relevant atoms between a steel target and a brass target 
for 100 clicks from each class. Figure 6 shows the ROC curves of relative energies of relevant atoms between a 
steel target and an iron target for 100 clicks from each class. Figure 7 shows the ROC curves of relative ener-
gies of the relevant atoms between a steel target and a lead target for 100 clicks from each class. The dashed line 
in each of the plots represents the line of no discrimination. For each case, the ROC curve moves further away  
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(a)                                                      (b) 

 
(c)                                                      (d) 

Figure 5. ROC curves of relative energies of relevant atoms between a steel target and a brass target for (a) 100 class I clicks; 
(b) 100 class II clicks; (c) 100 class III clicks; and (d) 100 class IV clicks. The dashed line represents the line of no 
discrimination.                                                                                              
 
Table 1. Center frequencies in kHz of the matched waveforms (atoms) within the animal’s functional bandwidth. A blank 
means the center frequency of the matched waveform at that specific energy level is outside the animal’s functional 
bandwidth.                                                                                               

Atom St. 
I 

St. 
II 

St. 
III 

St. 
IV 

Br. 
I 

Br. 
II 

Br. 
III 

Br. 
IV 

Ir. 
I 

Ir. 
II 

Ir. 
III 

Ir. 
IV 

Ld. 
I 

Ld. 
II 

Ld. 
III 

Ld. 
IV 

1 34 36      36 34 37   34 36   

2 30 30  37 29 30   29 35 33 36  41   

3 31 35 36 36 35 37 30 35  30 36 35 39 36 31 37 

4 33 29 31 32 37 36 42 40 35 36 29 30 29 30 29 31 

5 37 36 37 30 30 41 34 30 31 41 30 36 34 29 39 41 

6  36 30  36 36 35 30 36 34 35 35 33 40 42 39 

7  33 39  29 30 42   30 34  38 34 41 36 

8   38  30 34 30          

9   41              
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(a)                                                      (b) 

 
(c)                                                      (d) 

Figure 6. ROC curves of relative energies of relevant atoms between a steel target and an iron target for (a) 100 class I clicks; 
(b) 100 class II clicks; (c) 100 class III clicks; and (d) 100 class IV clicks. The dashed line represents the line of no 
discrimination.                                                                                              
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(c)                                                      (d) 

Figure 7. ROC curves of relative energies of relevant atoms between a steel target and a lead target for (a) 100 class I clicks; 
(b) 100 class II clicks; (c) 100 class III clicks; and (d) 100 class IV clicks. The dashed line represents the line of no 
discrimination.                                                                                              
 
from the line of no discrimination as the average center frequency and rms bandwidth of the incident clicks are 
increased. The AUC values for each of the plots are given in Table 2 and the AUC values consistently increase 
for each of the cases as the average center frequency and rms bandwidth of the incident clicks are increased. 

4. Discussion 
The tile plots provide time-frequency representations of the relevant atoms and their respective contributions to 
the signal. This represents an improvement over the visual inspection of the time frequency plots presented ear-
lier in [1]. Furthermore, in this study we examine the signal content within the animal’s functional bandwidth. 
Upon investigation of the time-frequency differences of the relevant atoms, the most significant energy differ-
ences occur near the limits of the animal’s functional bandwidth. For example, from visual inspection the steel 
and iron targets appear the most similar in terms of time-frequency characteristics. However, the tile plots reveal 
the largest energy differences from atoms centered at frequencies at 30 and 40 kHz. The energy differences oc-
cur for the same frequencies for all four types of clicks. However as the center frequency and bandwidth of the 
clicks increase, the differences become greater and thus more significant with the exception of the comparison 
of the class IV click incident upon the steel and iron spheres. It is difficult to distinguish the steel sphere from 
the iron sphere based on inspection of the RIDs of the class IV click (see [33]). However, upon inspection of the 
MPD tile plots between these cases, the iron target exhibits a higher energy primary atom and an additional atom 
with a center frequency of 35 kHz which the steel target lacks (see Table 1). By examining this atom decompo-
sition within the animal’s functional bandwidth better insight into discrimination methods might be developed as 
its ability to detect these differences is examined in future experiments.  

Au et al. [4] suggested that during echolocation, dolphins perform like an energy detector with an integration 
time of approximately 264 μs. The auditory integration time is the temporal window over which a dolphin inte-
grates an echo signal. The integration time was determined experimentally using a staircase procedure and mul-
ti-component signals with varying separation times. If the animal is behaving as an energy detector during 
echolocation, then it may be possible that the dolphin can detect the energy differences of the relevant atoms. 
These results support the hypothesis that if the animal is focusing on the relevant frequencies of the echo signal, 
the lower frequency, narrower band clicks may be used as search type clicks whereas the higher frequency, 
broader band clicks are utilized to ascertain more information about the target.  

The ROC curves provide insight on the probability of discrimination based on the energies of the relevant 
atoms and role of the four different types of clicks. The results from the ROC analysis indicate that as the center 
frequency and the rms bandwidth of the incident clicks are increased, the probability of discrimination between 
targets is increased. The analysis was based on the relative energies of the corresponding relevant atoms. If the  
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Table 2. AUC values.                                                   

Click Class Steel v. Brass Steel v. Iron Steel v. Lead 

I 0.4885 0.5854 0.6174 

II 0.6207 0.6884 0.6339 

III 0.6788 0.7266 0.7678 

IV 0.7500 0.8323 0.8794 

 
dolphin is monitoring the energy density of the received echo signals within her functional bandwidth, then it 
may be difficult to discriminate targets using only class I type clicks thus requiring a shift to higher frequencies. 
If this is the case, the class I clicks may be used to determine the location of a target and the clicks from classes 
II, III, and IV may be used to provide more information about the target to aid the animal during the discrimina-
tion task. The ROC results provide an explanation as to why the dolphin increases the rms bandwidth and center 
frequency of the incident clicks during discrimination tasks.  

The results of this study show that significant frequency differences between various echolocation signals 
within a dolphin’s functional bandwidth can be extracted by the use of the matching pursuit algorithm. The 
MPD approach incorporates adaptive signal processing and atom decomposition which is advantageous in in-
vestigating the time-frequency content. Although subtle frequency differences can be discerned using MPD, the 
question remains whether the dolphin’s auditory system can detect this level of frequency differences. Herman 
and Arbeit [34] and Thompson and Herman [35] reported a dolphin could discriminate between a pure tone and 
a FM signal with at least a 1% difference limen across frequencies from 1 to 140 kHz. To best of the author’s 
knowledge there have been no experiments conducted in which a dolphin is asked to perform a frequency dis-
crimination task using click-like signals though this appears to be a promising topic for further study. Moreover, 
it can only be hypothesized that these frequency differences may be detected and utilized by a dolphin during a 
discrimination task. A discrimination experiment might be designed using a phantom echolocation system which 
uses a standard target and comparison targets in which predetermined relevant frequencies are eliminated from 
the standard target. This type of experiment might quantify and determine the importance of relevant frequen-
cies during a discrimination task and the frequency discrimination resolution of a dolphin’s clicks. 
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