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Abstract 

The starting point of this study is the theory of tonal consonance by Plomp and Levelt. The major 
reference point is the theory of Critical Band and its use for evaluating consonance of simple tones. 
On the basis of such empirical criterion, our aim consists in providing a method of estimating the 
value of consonance of complex tones, by taking account not only of the number of harmonics, but 
also of the intensity of the partials which contribute to forming the tone. By introducing a specific 
algorithm, the level of consonance of a chord of complex tones is expressed in terms both of fre-
quency differences and sound intensity of the partials. The results give rise to a series of consid-
erations and applications, ranging from displaying the order of consonance of all intervals within 
the octave up to evaluating the hierarchy of chords in the frame of a musical scale. 
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1. Introduction 

It is a common experience to perceive an agreeable acoustic sensation when tones with simple frequency ratios 
are sounded simultaneously. The musical theory denotes such intervals as unison (ratio 1:1), fifth (2:3), fourth 
(3:4) as perfect consonances and major third (4:5), major sixth (3:5), minor third (5:6) and minor sixth (5:8) as 
imperfect consonances. The association of consonance with simple ratios goes back to Pythagoras who, accord-
ing to tradition, discovered the euphonic concordance of a vibrating string with a part of it, whose length was in 
a simple ratio with respect to the whole string (half, one third, ...). The same concept is formulated in terms of 
frequency in the 17-th century, when the dependence of pitch on the number of vibration in a unit time was clear. 
The experimental proof about existence of the harmonic partials (by J. Sauveur in 1701) forming a complex 
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sound provided, in some sense, a scientific confirmation of the simple ratio theory of consonance: since the first 
partials (i.e. the first terms of the series of harmonics) correspond to the division of the string into small integer 
ratios, we may say that the pleasant sensation of two tones matches a physical explanation in the fact that one 
tone is somehow included into the other, by means of the overtones series. The relation between consonance and 
partial has been deeper investigated during the XIX century. The theory developed by H. von Helmholtz [1] 
aimed to explain consonance in terms of beats: the leading idea consists in realizing that a very small frequency 
difference produces few beats which are individually heard and not unpleasant. On the other hand, a large fre-
quency difference gives rise to a considerable number of beats, so that they cannot be heard. Between the two 
opposite situations, von Helmholtz identified the frequency difference of 30 - 40 Hertz (independently of fre-
quency) as the maximum of roughness produced by two simple tones. 

The hypothesis of von Helmholtz was essentially confirmed by Plomp and Levelt [2], with the important ad-
ditional modification that the frequency at which maximum dissonance occurs actually varies over the frequency 
range. In order to evaluate the dependence of the maximum roughness of intervals on their mean frequency, 
Plomp and Levelt refer to the critical bandwidth experimentally measured by Zwicker, Flottorp and Stevens [3]. 
In a few words, we may define the critical band as a range (changing over the frequency range) of frequencies 
within which two pure tones (say 1ν  and 2ν ) are perceived as one rough sound. The graphic in Figure 1 
shows the width of the critical band [3], as a function of the mean frequency ( )0 1 2 2ν ν ν= +  of two pure 
tones. 

It can be remarked that for 0 650 Hzν >  the bandwidth keeps a bit under the minor third interval, while it 
ranges over the whole octave interval for values of the mean frequency 0ν  below 650 Hz. The minimum and 
maximum consonance, according to the hypothesis made by Plomp and Levelt [2] occur respectively at 25% and 
100% of the critical bandwidth. As a matter of facts, the data summarized by Plomp and Levelt and achieved 
from laboratory experiments, led to the consonance curve plotted in Figure 2, which essentially confirms their 
conjecture. 

It can be observed that the minimum consonance occurs approximately at one fourth of the critical bandwidth. 
On the other hand, we remark that the maximum consonance corresponds both to the unison and to the value 

*h h= , which is not exactly 1, but * 1.2h  . 
 

 
Figure 1. The curve passing through the circles is the critical bandwidth, vs the mean 
frequency of the two tones sounded at the same time. The straight lines correspond re-
spectively to the interval of major second and interval of minor third.                  



A. Bernini, F. Talamucci   
 

 
80 

 
Figure 2. The consonance curve with respect to the critical band (unit lenght), according to 
Plomp and Levelt [2].                                                          

2. Evaluation of Consonance 

The two curves of Figure 1 and Figure 2 can be used in order to give an evaluation of consonance of two sim-
ple tones of frequencies 1ν  and 2ν , according to the following scheme  , derived from [2]:  
• calculate the mean frequency ( )0 1 2 2ν ν ν= + ,  
• find the critical bandwidth ( )0ν∆  by means of the curve in Figure 1,  
• calculate the ratio ( )1 2 0h ν ν ν= − ∆ ,  
• if *h h≤ , then evaluate the consonance c  (or, equivalently, the dissonance 1d c= − ) according to the 

curve plotted in Figure 2, else 1c =  ( )0d = .  
In order to make the algorithm effective, we need an analytical expression for the critical bandwidth (Figure 

1). For this purpose, we fit the data marked with a circle in Figure 1 in a least-squares sense. Fixing the degree 
of the approximating polynomial as 4, the following expression was found:  

( ) 5 2 9 3 13 4
1 91.43 0.0257 5.2393 10 7.0515 10 3.5803 10 , 0 5500P x x x x x x− − −= + + × − × + × ≤ ≤     (1) 

The same procedure is applied to the curve of Figure 2 and the polynomial of degree 5 fitting the data marked 
with a cross is the following:  

( ) 2 3 4 5
2 0.9994 10.461 36.422 48.808 29.693 6.8823 , 0 1.2P x x x x x x x= − + − + − ≤ ≤        (2) 

The scheme   can be easily extended to complex tones. Referring to Ohm’s acoustical law, which states 
that the human ear carries out an analysis of the harmonic components of a complex tone [1], one may argue that 
the degree of consonance of two complex tones is simply obtained by considering the simoultaneous single oc-
currences of beats between the partials, taken two by two, and summing up all the contributes. In [2] such an 
argument is used in order to evaluate the consonance of complex tones. The procedure we deduce from their 
paper is the following. Let 1f  and 2f  be two complex tones each one with partials ( )1

1ν , ( ) ( )1 1
2 12ν ν= , 

( ) ( )1 1
1, n nν ν=  and ( )2

1ν , ( ) ( )2 2
2 12ν ν= , ( ) ( )2 2

1, n nν ν= , respectively. The algorithm   is then applied treating 
each partial as a simple tone and applying the algorithm   to all the possible matches between any pair of par-
tials. The total dissonance relative to 1f , 2f  is finally obtained by summing up the partial values. We inciden-
tally remark that the same procedure could be obviously applied in case of non-harmonic (i.e. non proportional) 
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tones. In the spirit of Ohm’s law, according to which each partial is analyzed as it were a single sinusoidal sound, 
we find it coherent to take rigorously account also of the possible presence in the critical band of two partials 
belonging to the same complex tone. However, in actual cases (that is 8n ≤  and range of fundamental fre-
quencies between 250 Hz and 6000 Hz) such an occurence is practically non-existent. 

By considering that the match of a single partial with itself produces no contribution to the total dissonance,  

we find the number of matches that the algorithm   checks being 
2
2
n 

 
 

. In a more general case of chords 

formed by N  complex tones with n  partials each, the number of checks is 
2

Nn 
 
 

. It is evident that the total  

value of dissonance d  is hardly affected by the number of partials n  and the number of tones N . Anyway, 
we do not find it essential to normalize the value d . 

One of the most relevant applications of the procedure consists in plotting the “consonance” curve of an oc-
tave interval, as illustrated in Figure 3. 

A lower complex tone 1f  is fixed, while the upper tone 2f  varies from the unison ( ) ( )( )1 1
2 1ν ν=  to the up-

per octave ( ) ( )( )1 1
2 12ν ν= . The curve we obtain ( )6n =  is the same as the one in [2], page 556. As it is evident, 

the local minimum values of the curve correspond to the tonal interval with simple frequency ratios. The hie-
rarchy of tonal intervals we deduce from the procedure of Plomp and Levelt is, in decreasing order of conson-
ance, 1:1 and 1:2 (unison and octave), 2:3 (fifth), 3:5 (major sixth), 3:4 (fourth), 5:6 (minor third), 4:5 (major 
third). It is worth stressing that the choice of a larger value n , that is considering a wider range of harmonics 
which form the complex tones, entails the following facts:  
• the maximum value of dissonance increases if n  increases, since a larger number of matches in the critical 

bandwidth are expected,  
• extra minimum values in the consonance curve will appear, as well as the superimposition of new simple 

tones in the series of harmonics determines the presence of new intervals (e.g., the seventh partial gives rise, 
among others, to the interval of minor seven).  

 

 
Figure 3. Minimum values of dissonance, corresponding to simple frequency ratios marked 
with the tones c, e♭,  , according to the Just Intonation scale.                           
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The presence of minima and, more generally, the properties of the consonance curves are studied in a exten-
sive way by Sethares [4]. 

A further application of the procedure   consists in evaluating the consonance of tonal chords, i.e. the si-
multaneous emission of N  complex tones, 2N ≥ . Formally, let kf , 1, ,k N=   be N  complex tones 
each one with partials ( )

1
kν , ( ) ( )

2 12k kν ν= , ( ) ( )
1, k k

n nν ν= . The algorithm   is then applied to each of the pairs 
of simple tones ( )k

iν , ( )h
jν , with 1 ,i j n≤ ≤ , 1 k h N≤ ≤ ≤  (when h k=  the control for i j=  is skipped), 

obtaining the partial values of dissonance ( ),h k
ijd , corresponding to the matching of the i-th harmonic of the 

complex tone h  with the j-th harmonic of the complex tone k . The total dissonance is given by  
( ),

1 , 1

n
h k

ij
k h N i j

d d
≤ ≤ ≤ =

= ∑ ∑  (obviously, when 2N =  we find again the procedure relative to two complex tones ex-

plained above). An application of such a procedure will be presented and commented in Section 4. 

3. Complex Tones with Different Loudness of Partials 

As it is known, the timbre of a complex tone is mostly determined by the proportions in which the partials enter. 
In the ideal situation we described in Section 2, it is assumed for simplicity that all the partials forming the com-
plex tone are heard at the same intensity. However, it is quite natural to think that the sensation of dissonance 
produced by two tones depends somehow on the relative intensity of them: the roughness of an unpleasant in-
terval is expected to vanish if one of the two tones is deadened and to expand if the loudness increases. The ex-
perimental setup made by Plomp and Levelt [2] planned a constant sound pressure of about 65 dB for each tone 
produced. In [5] the aspect of different sound intensities has been introduced, by considering a sound-pressure 
level for each single tone. On the other hand, Sethares [4] considers the amplitude of the simple sound-waves as 
a parameter which takes account of the intensity. The formula calculating the dissonance contains directly the 
amplitude. 

We are going to suggest an alternative method to evaluate consonance which involves directly the scale of 
loudness, instead of sound pressure or amplitude, which refers to an objective measurement of intensity. The 
first and fundamental step consists in “correcting” the dissonance d  produced by the algorithm   for two 
simple tones 1ν  and 2ν . Formally, our aim is to find a suitable factor f , depending on the intensities, say x  
and y , of the two tones so that the new value of dissonance will be ( ),d f x y× . Once f  is established, the 
total dissonance of two complex tones will be simply the sum of all the revised terms, in the same way we de-
scribed in Section 2. At this point it is important to specify the scale of sound intensity we refer to. For our pur-
pose it is quite natural to refer to the scale of loudness with phon as unit of measure, in the spirit of evaluating a 
subjective perception of consonance. Actually, a pair of tones with frequencies under the threshold of hearing 
(even if with non-zero decibel) will not produce any dissonance. Therefore, any possible data at our disposal 
expressed in decibel, corresponding to an objective scale of sound intensity, will be converted into phons by 
means of curves of equal loudness, which can be found, for istance, in [6]. The values 0x = , 0y =  corres-
pond to the threshold of hearing. We notice that the use of the Fletcher-Munson curves is properly suggested by 
Sethares [4]. 

We are going now to discuss the choice of the weighting function ( ),f x y . First of all, it is natural to require 
that if one of the two tones 1ν  or 2ν  cannot be heard, then the resulting dissonance is null. Hence, we for-
mally require  

( ) ( ),0 0, 0.f x f y= =                                   (3) 

Besides that, it is quite natural to speculate that the sensation of roughness proceeds in the same direction as 
loudness. More specifically, we say that a second requirement consists in selecting f  such that, whenever one 
of the two intensities is kept constant, then the dissonance increases (decreases) if the second intensity increases 
(decreases). In other words, f  must increase along the straight line directions x  constant, y  constant, that 
is  

( ) ( ) ( ) ( )1 2 1 2 1 2 1 2, , if 0, and , , if 0.f x y f x y x x f x y f x y y y> > ≥ > > ≥            (4) 

Let us consider now the special case of equal sound intensities x y= . Basing ourselves on the statements in 
[6], where the overall loudness of two simultaneous sounds is discussed, we deduce that when two simple tones 
are produced at the same sound intensity and their frequencies are within the critical band, then the total intensi-
ty remains the same. Along the direction x y=  the function f  is assumed to be  
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( ),f x x x=                                       (5) 

By imposing the linear profile (5), we state simply that if the intensity of the tones x  is doubled, tripled, re-
duced by half and so on, then the dissonance of the mixed sound (which is at the same intensity) increases or 
decreases by the same factor. We notice that in that case the maximum value of dissonance 1 (see Figure 2) is 
replaced by x  on the dissonance scale, which is anyway arbitrary. A question arises about the possible simme-
try of the function f . The experiments carried out by Kameoka and Kuriyagawa [5] on the consonance sensa-
tion show that two simple tones are more consonant when the higher frequency tone is louder with respect to the 
lower frequency tone than the opposite case (lower frequency stronger). In our scheme, x  represents the inten-
sity of the sound with lower frequency. Let us first consider the case x y≤ . The selection for f  can be fur-
ther confined if we require that f  depends on x  and y  by means of the arithmetic and geometric means in 
the following way:  

( ) ( ), 0
2

x yf x y xy x y
α

β+ = ≤ ≤ 
 

                           (6) 

where α  and β  are non-negative real numbers. Any function of Type (6) verifies the properties (3) and (4). 
Owing to (5) it must be  

10 1, .
2
αα β −

≤ < =                                  (7) 

Notice that for 0α =  we get the geometric mean, while for 1α =  we would get the arithmetic mean, 
which is however not consistent with (3). Furthermore, the set of functions depending on the parameter α   

( ) ( )( )1 2, , 0 1
2

x yf x y xy
α

α
α α−+ = ≤ < 

 
                         (8) 

is such that:  

• ( ),
2

x yxy f x yα
+

≤ < ,  

• ( ) ( )
1 2

, ,f x y f x yα α≤  if 1 2α α≤ ,  

• for α  tending to 0 (resp. 1) ( ),f x yα  converges uniformly to the geometric mean xy  (not uniformly 

to the aritmetic mean ( ) 2x y+ ).  
The opposite case x y>  can be treated in the same way, by introducing a function of the same Type (8), 

with possibly a different exponent. We expect [5] an exponent 1α α> , since a stronger lower frequency tone is 
claimed to determine a weaker consonance. In this way, we obtain the definition of the function ( )

1, ,f x yα α   

( ) ( )( ) ( )

( )( ) ( )

1

1
1

1 2
,

1 2

1 sign
,

2 2

1 sign
, , 0

2 2

x yx yf x y xy

y xx y xy x y

α
α

α α

α
α

−

−

− −+ =  
 

− −+ + ≥ 
 

               (9) 

where sign  is the sign-function ( ( )sign 1z =  if 0z > , 0 if 0z = , 1−  if 0z < ). In order to give a better 
idea of the function, we plotted in Figure 4 ( )

1, ,f x yα α  with a specific choice of the parameters. 
It can be noticed that the slope of f , as x  or y  tends to zero, is “infinite”. Moreover, the larger is α , 

the more vertical is the function, in proximity of the axis. In terms of the real meaning of the variables, this 
means that the larger is α  the more abrupt is the deadening of the perception of the dissonance. If the conjec-
ture of linearity (5) does not appear consistent with experience, then, still maintaining the structure (6) for f , 
we would get ( ),f x x xγ=  for x y= , where 2γ α β= +  gives the nonlinear dependence of dissonance on 
intensity x . 

4. Some Applications of the Procedure 

For the sake of clearness, we summarize the procedure we are going to follow:  
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Figure 4. The function 

1,fα α , with 0.2α = , 1 0.8α = .                                  

 
• given N  complex tones kf , 1, 2, ,k N=   each of them with n  harmonics ( ) ( ) ( )

1 2, , ,k k k
nν ν ν , 

• by algorithm   compute the value of dissonance ( ),
,
h k

i jd  produced by ( )h
iν  and ( )k

jν , 

• correct each term ( ),
,
h k

i jd  multiplying it by the factor ( ) ( )( )1, ,h k
i jf x yα α  (9) where ( )h

ix  (resp. ( )k
jy ) is the 

intensity of ( )h
iν  (resp. ( )k

jν ); 

• the total dissonance is given by ( ) ( ) ( )( )1

,
,

1 , 1
,

n
h k h k

ij i j
k h N i j

d d f x yα α
≤ ≤ ≤ =

= ∑ ∑ .  

As far as the choice of the parameters α  (corresponding to x y≤ ) and 1α  ( )x y>  is concerned, we con-
sider in our simulation the values 0.2α = , 1 0.8α = . Nevertheless, any value in [ )0,1  for α  and 1α  can 
be considered in order to fix f , whenever further speculations or experimental data lead to some specific 
choice. 

The first instance we consider consists in drawing the curve of consonance relative to the interval of octave 
middle c  (261.6 Hz) - c′  (523.2 Hz), considering 8n =  harmonics, with their specific sound intensities. We 
need at this point some data relative to the spectrum of a specific instrument. The values (in Decibel, then con-
verted in phon by means of the Fletcher and Munson curves) deduced from [6] allowed us to fill Table 1, where 
the sound intensities of the i-th harmonic iν , 1, ,i N=   of c  and c′  of piano are listed. 

In completing the values of harmonics intensities for the intermediate tones within the central octave c-c' we 
actually found the difficulty of no data available. We fill this gap by interpolating the existing data in a linear 
way: such an assumption was motivated by the fact that the energy is well distributed between the harmonics in 
the central octave of piano (as we deduced from [7]). As we expect, the timbre does affect the evaluation of 
consonance: for such reason, we avoid to maintain the same harmonical spectrum of each complex sound, inde-
pendently of the frequency of the fundamental tone, as assumed by Sethares [4]. The evaluation of consonance 
with the second tone, ranging in frequency from 261.6 Hz to 523.2 Hz (upper octave), is checked at intervals of 
approximately 0.26 Hz (1000 steps), via a program in MATLAB. The curve of consonance we obtained is plotted 
in Figure 5. 

Once again, the simple ratios intervals correspond to the minimal values of dissonance. As it was already ob-
served in Section 2, the increase in number of partials n  gives rise to the appearance of further minimum  
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Table 1. Sound intensities (in phon) of the first 8 harmonics, c  and c′ , piano.                                     

harmonic: I II III IV V VI VII VIII 

c  (261.6 Hz) 9 12 11 10 10 10 10 7 

c′  (523.2 Hz) 13 15 15 11 10 10 9 6 

 

 
Figure 5. Curve of consonance, with different luodness of tones. The vertical lines corres-
pond to the twelve semitones of Equal Temperament. The symbols  , ◇ , ×  correspond 
to the intervals c - e♭ (minor third), c - e  (major third), c - f  (fourth), c - g  (fifth), 
c - a♭ (minor sixth), c - a  (major sixth) according to the Just Intonation, Meantone and 
Werck III, respectively.                                                         

 
values of dissonance (compare with Figure 2, where 6n = ). Actually, the local minimum at 457.8 Hz corres-
ponds to the seventh harmonic of c  (a tone between a  and #a  in the Equal Temperament). The combina-
tion of such partial with some other harmonics gives rise to the two minimum values appearing between the ver-
tical lines d  and #d . 

As it is known, the simple ratios give rise to the Just Intonation tuning. For practical reasons (concerning 
mainly with keyboard instruments), many systems of tunings have been introduced over the past centuries. We 
will consider the probably most diffused (ancient and modern) systems of tunings for keyboards: Quarter (syn-
tonic) Comma Meantone Tuning, Werckmeister Temperament III and Equal Temperament. An introduction to 
the various scales we consider is, for istance, in [8] and in [9]. In Figure 5 the discrepancies of a single interval 
tuned according to each specific scale (Meantone, Werck III and Equal Temperament) with respect to the Just 
Intonation simple ratio (corresponding to the minimum values on the curve) have been marked. 

Comparing the curve with the curve of Figure 3 (where the intensities are the same for all harmonics), we 
remark that in the hierarchy the perfect consonances 1:1 (unison), 1:2 (octave), 2:3 (fifth) and 3:4 (fourth) do 
come before the imperfect consonances 3:5 (major sixth), 5:8 (minor sixth), 4:5 (major third), 5:6 (minor third). 

As a second instance of the procedure, we find it interesting to test the consonance of chords in different tun-
ing. We consider the major chords starting from c-e-g, up to g-b-d', in the Just Intonation, Meantone, Werck III 
and Equal Tempered tunings. For the sake of clearness, we are going to write the values of tuning (expressed in 
cents) in each of the systems, starting from c . Let us assume to have a keyboard with twelve tones from c  to 
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b , namely c , #c , d , e♭, e , f , #f , g , a♭, a , b♭, b . We recall that the interval in cents between 
the frequencies 1f  and 2f  ( )1 2f f<  is given by the formula  

( ) ( )( )2 2 1 10 2 1cents 1200log approximately cents 3986log .f f f f= =            (10) 

For the Just Intonation tuning, we consider the dodecatonic chromatic scale c (0 cents), #c  (71 cents), d 
(204), e♭ (316), e (386), f (498), #f  (568), g (702), a♭ (814), a (884 ), b♭ (1018 ), b (1088), c′  (1200). 
The Meantone tuning scale is c (0 cents), #c  (75.5), d (193), e♭ (310.5), e (386), f (503.5), #f  (579), g 
(696.5), a♭ (814), a (889.5), b♭ (1007), b (1082.5), c′  (1200). The Werck III tuning is c  (0 cents), 

#c d= ♭ (90), d (192), #e d=♭  (294), e (390), f (498), #f g= ♭ (588), g (696), #a g=♭  (792), a (888), 
#b a=♭  (996), b (1092), c′  (1200). As it is known, fixing c  as zero cents, the twelve chromatic tones of the 

equal tempered tuning #, , ,c d c′  correspond to 100, 200,  , 1200 cents. The values in cents have been 
calculated directly by means of (10). The ratios of frequencies will be explained in more details throughout the 
following discussion. 

We evaluate the consonance of the major chords (four semitones plus three semitones) taking as fundamental 
tone , #, ,c c g  by means of the algorithm summarized above, with 3N = , 8n = . Having twelve tones in 
the octave at our disposal, the triad on #c  for the non-enharmonic tunings (Just Intonation and Meantone) is 

#c - f - a♭, and so on. The results are summarized in Table 2, where the values correspond to the corrected 
dissonance ( ),d f x y× . 

It is evident that in the Just Intonation system there is a remarkable difference in the value of dissonance 
among the triads. In particular, the triads which mantain the same proportions of major third (4:5, corresponding 
to 386 cents) and of fifth (2:3, corresponding to 702 cents) as the fundamental tone c  show a value of disson-
ance very close to the triad over c : namely, a♭, f , g . The triads corresponding to non-usual chords (name-
ly #c , e  and #f ) show higher dissonances. Obviously, if we introduce the seventeen tones of the Just Into-
nation scale (sharp and flat tones), such dissonances would be appreciably milded: for istance, considering e -

#g - b  ( #g  corresponds to 772 cents), the value of dissonance of the triad would be 99.91. The triad over d  
is altered with respect to the natural proportion both in the third (364) and in the fifth (680): the high value of 
dissonance of such triad is not surprising. According to the Just Intonation tuning, only few tonalities would be 
comparable in terms of dissonance: this explains the necessity of different tunings (second, third and fourth 
columns in Table 2), at least for keyboard instruments equipped of not more than twelve keys in a octave. Ac-
tually, we see that the triad over d  evidently shows a lower dissonance in the Meantone tuning: this is due to 
the preservation of the major third intervals in that system. As a matter of facts, the Meantone scale consists in 
reducing the four fifths c - g , g - d ′ , d - a , a - e′  by a quarter of syntonic comma, so that the tone e  has 
the simple ratio 5/4 with respect to c . The resulting tuning is a chromatic scale where all the major thirds are 
natural (4:5) and all the fifths are tuned at 696.5 cents, except for #c - a♭, which corresponds to 738.5 cents. 
This chord corresponds indeed to the most dissonance triad. Once again, the triads with natural thirds ( c , d , 
e♭, f g ) give rise to the lower dissonant chords in the column. The tuning system Werck III uses the quarter 
Pythagorean comma to reduce the four fifths c - g , g - d ′ , d - a , b - #f ′ , so that the overlap in the circle of 
fifhts is closed. In this system no major third is natural not all the fifhts are tuned at 702 cents, so no major chord  
 
Table 2. Values of dissonance produced by major triads.                                                        

 Just Int. Meantone Werck III Equal Temper. 

triad over c  102.08 107.58 110.08 110.72 

triad over #c  130.26 130.23 110.31 109.92 

triad over d  121.67 106.30 111.55 109.43 

triad over e♭ 100.31 106.03 108.07 109.23 

triad over e  108.75 111.59 108.07 109.30 

triad over f  100.54 106.40 102.69 109.55 

triad over #f  109.14 112.67 110.31 110.05 

triad over g  101.69 107.60 113.01 110.76 
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will play as well as a perfect major chord in the Just Intonation tuning. Werck III was introduced, as the Mean-
tone tuning, in order to make easier the modulation from one tonality to another. The data of Table 2 show a 
further balancing of dissonance among the triads tuned in Werck III, even if some chords “play” better than oth-
ers (namely c , d  and g , the only ones with natural proportions of third and fifth). The levelling effect is fi-
nally much more evident in the Equal Temperament, where no interval is natural (the major third is always 400 
cents, the fifth is always 700 cents). The values of dissonances are practically the same. The decreasing in dis-
sonance with higher frequencies (last column) reflects in a consistent way the fact that the distance between the 
interval of third and the critical bandwidth tends to reduce, as the mean frequency increases (see Figure 1). 

We tested the algorithm also for minor triads. The values are plotted in Table 3. We remark that in this case 
triads are more dissonant than in major mode. The values read along both rows and columns of the table suggest 
the same considerations and comments we made for the major mode. 

A second category of multiple sounds we can consider are chords of sevenths of different species ( 8n = ,
4N = ). Table 4 summarizes the values we obtained from the algorithm. 

As we have already noticed, the values of dissonance are manifestly higher with respect to the triads, since 
N  is increased and more matches in the critical band are expected. However, we find it more interesting a rela-
tive comparison of the data table by table, rather than referring to a concept of absolute dissonance. Even though 
the partials we are considering refer to the modern piano (whose tuning is, from its appearance, the Equal Tem-
perament), the data of Table 2 may be interpreted in order to make some comments. First of all, the seventh of 
II species (second row in Table 4) shows the minor dissonance in any system: actually, it has been largely used 
by composers starting from the Renaissance and many examples could be exhibited (Palestrina, Monteverdi, ...). 
Moreover, the tones forming such chord appear in melodic sequences even since the Middle Ages, namely in the 
first mode (dorian mode: d - e - f - g - a - b - c′ ). A second interesting aspect is that the seventh of V species is 
far and away the most dissonant chord in the Meantone and Werck III tunings, while it is comparable with the 
other species in the Equal Temperament. This could explain, besides any harmonic and stilistic reason, its large 
use in the XVIII century, contemporaneously with the spreading of Equal Temperament. 

Another interesting test is made for the diminished chord B-d-f, whose results are in Table 5. 
 
Table 3. Values of dissonance produced by minor triads.                                                        

 Just Int. Meantone Werck III Equal Temper. 

triad over c  103.35 108.97 116.70 112.77 

triad over #c  132.91 132.73 110.31 112.07 

triad over d  120.51 107.90 110.68 111.64 

triad over e♭ 111.07 114.09 112.05 111.49 

triad over e  101.84 107.74 107.71 111.48 

triad over f  102.05 108.04 112.27 111.72 

triad over #f  102.31 108.38 110.31 112.15 

triad over g  103.09 109.13 114.95 112.75 

 
Table 4. Values of dissonance produced by chords of seventh.                                                    

 Just Int. Meantone Werck III Equal Temper. 

c - e - g - b♭ (I species) 224.44 229.18 229.34 229.46 

d - f - a - c′  (II species) 210.47 205.75 203.55 206.52 

d - f - a♭- c′  (III species) 223.21 230.33 232.74 231.52 

c - e - g - b  (IV species) 210.08 219.42 222.43 227.19 

#c - e - g - b♭ (V species) 245.81 251.89 251.56 248.50 

c - e♭- g - b  (VI species) 235.94 240.69 249.86 247.79 
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Table 5. Values of dissonance produced by diminished chord B-d-f.                                              

 Just Int. Meantone Werck III Equal Temper. 
B-d-f (fundamental) 132.71 133.01 134.29 133.81 

d-f-b (inversion) 115.02 113.11 120.25 122.67 

 
As we expect, the dissonance is larger with respect to major and minor chords. However, we remark that the 

inversion (sixth chord) is less dissonant than the fundamental chord. This reflects the practical rule according to 
which the inversion is more used in the harmonic sequences and cadences of the musical repertory, especially in 
the Eighteen century. On the other hands, if we detect the dissonance values of inversion chords, we realize that 
the major chords are more dissonant in the inversion than in the fundamental chord, while the minor chords 
present the opposite situation. We found indeed the following values (Table 6), which have to been compared 
with the corresponding fundamental chords (same tones) of Table 2 and Table 3. 

As we see, if on the one hand the major inversions are just a bit more dissonant than the fundamental chords, 
on the other hand the inverted minor chords are remarkably less dissonant than the corresponding fundamental 
chords. This is in correspondence with the practical musical rule of using the inverted minor chords in cadences. 

5. Conclusions and Remarks 

The procedure we suggested in order to evaluate the consonance of two or more simple or complex tones aimed 
to generalize the method of Plomp and Levelt [2], by encompassing the important aspect of the sound intensity. 
The main point of reference we used is the curve of Figure 2, which determines the degree of dissonance in 
terms of the critical bandwidth. Our method is based on the conjecture that the most dissonant interval is propor-
tional to the critical bandwidth, independently of the loudness of tones. This point requires a special comment. If, 
on the one hand, it is reasonable to assume that the critical bandwidth does not show sensible change with sound 
pressure level [3] [5], so that the upper boundary in Figure 1 fits for a large range of intensities, on the other 
hand one may conjecture that the most dissonant frequency does increase with sound pressure level, as it is 
clearly stated in [5]. In that case, the algorithm we presented needs a slight modification, consisting in setting the 
frequency difference of maximum dissonance bf  as a function of the lower frequency and of the intensities. 
Actually, in [5] we find ( ) 0.477

11 57 40 2.27bf L f= + − ×   , where L  is the sound pressure level of the varia-
ble tone and 1f  the frequency of the lower tone. In our opinion, the choice of the scale of sound intensity in 
phon is appropriate for our purposes: frequencies below the threshold of hearing cannot give a contribution to 
dissonance. Undoubtedly, a major difficulty consists in determining (via experiments) an appropriate value of 
the parameters α , 1α  entering the correcting function (8), which we speculated to have such a shape. By the 
moment, in our simulations we observed very slight differences in changing the values of the parameters: for is-
tance, the simmetric case 1 0α α= = , corresponding to the pure geometric mean of the two values x  and y , 
produces essentially the same curve. Nevertheless, a series of experiments in order to get information about the 
parameter will be carried out in the frame of a degree program in our Department. On the other hand, the me-
thod we explained requires the knowledge of the harmonic spectrum of any complex tone involved in the pro-
cedure: as a matter of facts, there is not an easy availability of such data. In any case, the method presents the 
non-negligible advantage of ascribing to a specific instrument (with a specific spectrum of harmonics) a proper 
hierarchy of consonances, as it is expected to be. Actually, different relative intensities of the harmonics forming 
a complex tone will surely affect the profile of the curve in Figure 5, being understood that the minimum values 
of dissonances should always appear in correspondence of simple ratios frequencies. In this sense, an application 
we are going to carry out consists in drawing the curves of consonance for different instruments, once the data 
concerning their partial intensities will be at our disposal. Moreover, it will be interesting to detect the inverse 
problem, investigated by Sethares [4]: once the spectrum of an instrument is given, find the most appropriate 
scale. In such a context it is important to consider the real (i.e. non-harmonic) series of partials; the presence of 
local minima in the dissonance curve will locate the intervals of the peculiar scale. The theorical and numerical 
apparatus we presented could be used with very slight modifications in order to solve the problem. 

In our procedure we did not distinguish “sensory consonance” (as the graded absence of annoying factors) 
from “harmony” (as music-specific principles of tonal affinity), according to the concept explained in [10]. Un-
doubtedly, an important component of musical consonance does refer to tonal affinity, compatibility, cognition. 
However, in our mind some conflicts appearing in psychoacoustic evaluation and musical theory or musical  
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Table 6. Values of dissonance produced by inversion major and minor chords.                                       

 Just Int. Meantone Werck III Equal Temper. 

e - g - d ′  103.84 109.04 111.65 112.79 

B - d - g  106.16 111.36 116.75 115.07 

#f - a - d ′  120.31 110.03 115.44 113.83 

f - a - d ′  115.94 102.36 105.87 107.91 

a♭- g - c′  95.95 101.77 111.69 107.08 

 
experience have to be put in the right perspective of considering the specific spectrum of a single instrument. In 
this sense, it must not be surprising that an interval of seventh (dissonant according to musical theory) is more 
agreable than an interval of fourth (consonant according to conventional rules) for a specific spectrum of har-
monics. The curve of consonance we obtained in Figure 5 suggests a different hierarchy of consonant intervals 
with respect to the curve in Figure 3, where the contribution of each partial is the same: although the number of 
pics depends essentially on the number of harmonics, the degree of consonance in each minimum is affected by 
the intensities of harmonics. 

An interesting test of our method, which we extended from intervals to chords, may consist in examining 
various practical rules about making music which are in the knowledge of composers and musicians. An in-
comparable example in this sense is the Book II (“On the Nature and Properties of Chords; and Everything 
which may be used to make Music perfect”) of the Treatise on Harmony by Rameau [11]. The question of con-
sonance and dissonance is largely discussed by the author. A first glance of this project consisted in the test of 
the inversion chords. A future research will consist in detecting more instances of the Treatise of Rameau (such 
as the position of notes in a chord, the suppression of some of them, or some particular rule of preparing and re-
solving dissonances) by the help of the procedure we presented. 
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