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ABSTRACT 

Industrial noise can be successfully mitigated with the combined use of passive and Active Noise Control (ANC) 
strategies. In a noisy area, a practical solution for noise attenuation may include both the use of baffles and ANC. When 
the operator is required to stay in movement in a delimited spatial area, conventional ANC is usually not able to ade- 
quately cancel the noise over the whole area. New control strategies need to be devised to achieve acceptable spatial 
coverage. A three-dimensional actuator model is proposed in this paper. Active Noise Control (ANC) usually requires a 
feedback noise measurement for the proper response of the loop controller. In some situations, especially where the 
real-time tridimensional positioning of a feedback transducer is unfeasible, the availability of a 3D precise noise level 
estimator is indispensable. In our previous works [1,2], using a vibrating signal of the primary source of noise as an 
input reference for spatial noise level prediction proved to be a very good choice. Another interesting aspect observed in 
those previous works was the need for a variable-structure linear model, which is equivalent to a sort of a nonlinear 
model, with unknown analytical equivalence until now. To overcome this in this paper we propose a model structure 
based on an Artificial Neural Network (ANN) as a nonlinear black-box model to capture the dynamic nonlinear behave- 
ior of the investigated process. This can be used in a future closed loop noise cancelling strategy. We devise an ANN 
architecture and a corresponding training methodology to cope with the problem, and a MISO (Multi-Input Sin- 
gle-Output) model structure is used in the identification of the system dynamics. A metric is established to compare the 
obtained results with other works elsewhere. The results show that the obtained model is consistent and it adequately 
describes the main dynamics of the studied phenomenon, showing that the MISO approach using an ANN is appropriate 
for the simulation of the investigated process. A clear conclusion is reached highlighting the promising results obtained 
using this kind of modeling for ANC. 
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1. Introduction 

Considering performance requirements, requested in many 
current applications that use mathematical models, the 
behavior of the most physical phenomena can be repre- 
sented by linear systems. The procedures for parametric 
identification for linear systems are well established and 
show many theoretical and practical results [3,4]. Some 
systems fail to have their behavior well described by lin- 
ear models if their frontiers or ranges of values where 
they are excited are extended. In these cases, it is neces- 
sary to use a nonlinear model, and the identification of 
nonlinear systems using neural networks has been at- 
tracting interest and it has been applied successfully else- 
where [5-7]. 

Modeling techniques which use Artificial Neural Net- 
works (ANNs) have been widely investigated and suc- 
cessfully applied to identification and control problems 
over the last twenty years. Specifically in vibro-acoustic 
systems, ANNs have been used in speech recognition [8], 
in the quality of the sound evaluation in urban areas [9], 
in the identification of geometric shapes through the 
identification of natural frequencies in an acoustic re-
sponse [10] and in the diagnosis of faults [11]. Their 
great advantages are to work as a “black box” and also to 
have the ability to approach complex nonlinear mappings, 
adapting to nonlinearities that exist in behavior patterns 
(already known) of a system. This nonlinear mapping, 
which is performed by ANNs is based on the measures of 
input and output of the process that is going to be mod-
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eled. Because of these characteristics, ANNs are being 
quite well exploited in the identification of nonlinear 
dynamic systems currently [12], modeling this nonlinear 
input/output relationship of the identified process, with 
the variables changing over time. In these cases, the rep- 
resentation of the dynamics can be characterized through 
the supplying of the signals set (input and output of the 
process), which are backward in time at the entrance of 
the ANN, to include in the modeling the dead time, the 
memory of the input and the feedback that are associated 
with the phenomenology of the system, resulting in an 
input/output representation according to a recurrent ar- 
chitecture [13,14]. 

ANN is also being used for applications in Active 
Noise Control (ANC). Bambang [15] developed an ap- 
plication in ANC using recurrent neural networks, where 
the author presents a learning algorithm for recurrent 
neural networks based on the Kalman filter. The overall 
structure for the proposed ANC was formulated using 
two recurrent neural networks: the first neural network is 
used to model the secondary source of the ANC, while 
the second network is used to generate the control signal. 
Chang [16] proposed a structure based on neural net- 
works in a filtered LMS algorithm, or NFXLMS (Neural- 
based Filtered-X Least-Mean-Square algorithm), which 
is associated with a method to prevent the premature 
saturation of the backpropagation training algorithm us-
ing a best adjustment rate. Zhang [17] studied an ANC 
system with nonlinearities and proposed unconventional 
structures of neural networks for modeling the nonlinear- 
ity of the acoustic propagation of the primary source in 
the system. Bouchard [18] introduced a LMS-based al- 
gorithm to devise several neural network controllers. The 
main evaluation criterion used was computation time, 
aiming at the application of the algorithm in multichan-

nel ANC systems. 
We present in this paper a methodology for building 

an ANN model to estimate the noise level in a certain 
spatial region subjected to noise emissions from a single 
vibrating source. The proposed model is designed to run 
in real-time, providing noise level estimation to be used 
by an ANC control system. 

The neural network is trained to estimate the noise 
level at any point in the contained space in our acoustic 
system and uses as variables of input of the spatial coor- 
dinates of that point and the vibration signal, which is 
measured at the primary source. 

The objective function used in network training is the 
sum of square errors (difference between the measured 
value for the noise level and the value predicted by the 
model in each spatial point). A set of experimental data is 
chosen for training, using the least squares metric and the 
obtained neural network is validated through simulations, 
comparing predictions with another set of data obtained 
from our experimental platform. 

2. Materials and Methods 

2.1. Experimental Apparatus and Methodology 
for Data Collection 

The vibro-acoustic system under study is composed of a 
centrifugal pump installed in a room (Figure 1(a)). The 
centrifugal pump is driven by a simple single-phase in- 
duction motor and this set is assumed to be our primary 
source of noise. In this experimental set-up two sensors 
are used: a fixed ICP (Integrated Circuit Piezoelectric) 
accelerometer which measures the vibrating signal gen- 
erated by the primary source and a mobile microphone 
that measures the sound noise level inside the room, at 
each point of a previously defined mesh. Figure 2 shows  

 

    
(a)                                                           (b) 

Figure 1. Acoustic field mapping generated by a rotating machine operating in a closed room identified by coordinates 

   , , : , , , . ; , , , . ;    X Y Z X Y1 2 7 0 44m 1 2 10 0 44m  and  , , , . Z 1 2 5 0 44m . Microphone displacement (passive 

sensor): (a) Experimental setup; (b) Mesh of the 350 collected data (7 × 10 × 5 positions assumed by the passive sensor). 
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(a)                                                (b) 

Figure 2. Experimental apparatus: (a) System input, primary source sensor: pump accelerometer 100mV g  signal; (b) 

System output, passive sensor: microphone 50mV Pa  signal. 

 
details of both the accelerometer and the microphone 
installation. Considering the data collected by the accel- 
erometer installed in the pump, and varying the position 
of a microphone per 350 predetermined points in the 
room (they are identified by its coordinates 

   , , : 1,2, ,7 0.44m ; 1,2, ,10 0.44mX Y Z X Y     ; 

and  350 pattern pairs were col-  1,2, ,5 0.44mZ   ),
d lecte ,p pu y  which repre

 transm

e used to

sent the dynamic of the vi- 
bro-acoustic ission between the input signal that 
comes from the accelerometer (u) and the output signal, 
which comes from the microphone (y). The collected set 
of pairs   , , 1, 2, ,350p p p u y  defines the group of 
standard that will b t ANN net- 
work that can best describe the dynamic of the vibro- 
acoustic transmission in the proposed experimental plat- 
form. 

 train a recurren

2.2. Model Structure: Characteristics of the Used 

Since R Ns have been used to model 

Neural Network 

osenblatt [19], AN
and simulate nonlinear systems of diverse nature in digi- 
tal computers or in hardware boards. According to 
Masson [20], and expressed in Figure 3(a), the topology 
of an artificial neural network can be expressed through a 
directed graph characterized by a set of vertices, a set of 
directed arcs and a set of weights to these arcs  W . 
Each vertex in the graph represents a processing unit. A 
processing unit has 1 2, , , Ru u u  inputs. Based on these 
inputs and the set of syn ghts, 1,1 ,, , ,S RW W  the 
neurons are evaluated, generally throu tion 
function applied to a weighted sum of inputs using the 
synaptic weights as weighting factors [20]. A network 
with a single layer having S neurons with an arbitrary 
activation function and with R inputs is shown in detail 
in Figure 3, which also illustrates its processing unit 
(neuron). Neural networks frequently have one or more 
hidden layers of sigmoid neurons (for example, tansig or 
logsig) [21-23] following by an output layer of linear 
neurons. If a two-layer network is considered, we have: 

 one hidden layer with SI sigmoid neurons with biase

aptic wei
gh an activa

s 

by a linear 

ber of neurons (SI) in the 
hi

b1 which are associated with each neuron; 
 one layer with SL output neurons activated 

function with biases b2, which are associated to each 
neuron. 

By using a sufficient num
dden layer of a two-layer network it is possible to ap- 

proximate any function with a finite number of disconti- 
nuities within an accuracy that is arbitrarily specified 
[24,25]. This structure is shown in Figure 4 and it can be 
used as a universal approximator of functions. The rep- 
resentation of the system dynamics was characterized 
through the use of the set of input and output of the 
process (u and y), backward in time, placed in the ANN´s 
input, as mentioned previously [13,14] and shown in 
Figure 5, which also illustrates the internal structure of 
the adopted ANN (an intermediate layer and an output 
layer). In this figure  u n  is a sampling of the input 
signal at time n,  y n the sampling of the output 
signal at time n, d is the delay (dead time) of the system 
output, relating to the input u and q is the forward shift 
operator. The scheme shown in Figure 4 (general ap- 
proximator of functions) is used, therefore this ANN is 
able in principle to approximate any function with a fi- 
nite number of discontinuities using a sufficient number 
of neurons 

 is 

 IS  in the hidden layer. 
The chos ders for u and y in Figureen or  5 are the same 

as those adopted in the work of Magalhaes [1] that pre- 
sents an extensive discussion about the dynamic behavior 
expected for the acoustic problem studied. Thus, consid- 
ering that the X, Y and Z coordinates of any point in a 
room are also inputs to the net work (in this case static 
and therefore of zero order), we can conclude that the 
dynamic ANN to be configured to estimate the  ˆ py n  
acoustic pressure in an arbitrary spatial position ha  
entries. For the time delay the same procedure of 
Magalhaes [1] is adopted, where d is calculated on a 
theoretical basis, using sound velocity (v) and longitude- 
nal distance (Y) between primary source and the grid 
measurement point. 

s eight
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(a)                                                   (b)       

 
(c) 

Figure 3. Neural network with a single layer (a), its processing unit (b) and its diagram (c). 
 

 

Figure 4. Structure of a network with one hidden layer with sigmoid function and an output layer with linea  function (func-

Magalhaes [1] presented the development of the ma- 
ch

the identified models was applied. This procedure re- 

r
tion universal approximator). 
 

ine room transfer function (Machine-Room Transfer 
Function—MRTF), which simulates the acoustic trans- 
mission between the primary source and a receiver in a 
room, including the spatial distribution of 350 MRTFs 
(Machine-Room Transfer functions) and a total of 1750 
parameters. In order to reduce the number of parameters 
of the models used to describe the spatial behavior of the 
acoustic system, an interpolation process on a subset of 

sulted in a model with 135 parameters, a significant re- 
duction (about 93%) in the total number of parameters, 
maintaining a good description of the dominant dynamic 
of the system, with no degradation in the output signal. 
The output signal was considered degraded when the 
Average Euclidean norm [26] of the errors of the esti- 
mated output model was greater than 80% of the Euclid- 
ean norm of the output signal (Table 1). This reduction   
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(a)                                     (b) 

Figure 5. ANN structure ( al structure adopted (b). 
 

Table 1. Comparison of the Euclidean norm of the errors. 

Errors Euclidean Norm (Pa2): 
Average Minimum Maximum Number of parameters 

    

long-range prediction) (a) and details of the intern

Models: 

Euclidean norm of the output signal 11.8 4.9 21.6 - 

Identified ARX without delay (350 MRTFs) 1750 

s) 

7.3 3.6 15.8 

Identified ARX with delay (350 MRTFs) 7.1 4.1 13.3 1750 

Interpolated ARX with delay (27 MRTF 9.3 4.6 20.8 135 

Interpolated ARX with delay (18 MRTFs) 9.8 4.6 22.0 90 

Interpolated ARX with delay (9 MRTFs) 10.8 5.0 19.9 35 

Interpolated ARX with delay (4 MRTFs) 11.0 5.0 19.9 20 

ANN with delay 9.3 4.9 16.7 80 

 
llows future implementation of this model structure in 

aring the present structure 
w

            (1) 

where R is the number of network in I

in hidden layer was equal to 8. 

er Estimation: 
Training of the Recurrent Network 

 neces- 
sary  was for- 

a
control systems in real-time. 

For the purpose of comp
ith that obtained in the work of Magalhaes [1], the 

maximum number of parameters for the current network 
was established to be less than 135, the number of pa- 
rameters adopted by Magalhães and coworkers. This 
assumption is supposed to produce no hammering in the 
quality obtained for the proposed model, nor in the com- 
parison outcome with the previous model. The total 
number of parameters in an ANN (Figure 4) with one 
hidden layer (intermediate) and one neuron in the output 
layer is given by:  

N 2 1p I IR S S      

puts and S  is the 
number of neurons of the hidden layer. In this work, 

80pN   was adopted in order to keep the resulting 
of parameters less than 135, as stated earlier. 

With the input layer defined according to the Figure 5 
 8R   and using Equation (1), the number of neurons 

2.3. Procedure for Paramet

number 

Once the network topology is characterized, it is
 to establish the training procedure, which

mulated through the optimization procedure shown in 
Figure 6, where  e n  represents the simulation error. 

Thus, the training of the network was formulated as a 
general problem of nonlinear optimization with con- 
straints [27,28]: 

 min f x

 
 

subject to

0, 1, ,

0, 1, ,

x

i e

i e

G x i m

G x i m m

 

  





          (2) 

where x is the vector of parameters of length n,  f x
value, and 

 is 
the objective function, which gives a scalar 
the vector function  G x  gives a vector of  m     length
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Figure 6. Recurrent ANN training (long-range prediction). 
 
ontaining the values of equalities and inequalities con- c

straints which are evaluated at x. Constraints are usually 
used to achieve certain desired properties for the network 
or to restrict the search region to avoid convergence 
problems. For both the topology and the experimental 
data used in our ANN model, no constraints were neces- 
sary because the optimization algorithm behaved smoo- 
thly in most of the runs. 

The solutions of the Khun-Tucker (KT) [29], equa- 
tions are the basis for many nonlinear programming al- 
gorithms. The methods that use these algorithms are 
commonly referred to as Sequential Quadratic Program- 
ming (SQP). SQP methods, described in [30-32] works, 
offer a good method for solving the problem of ANN 
dynamic optimization. A SQP overview can be found in 
[33]. 

The training was performed using MATLAB®. The 
availability of a good initial estimate is an important req- 
uisite for success in solving these problems. In this case, 
an initial guess was used to train the model according to 
the scheme shown in Figure 7 which consists of an iden- 
tification procedure based on one-step ahead prediction. 
A set of patterns was used made up of pairs that were 
collected in the experiment   , , 1,2, ,350p p p u y   
which defines the input vector f  
to Equation (3). A network able to do one-step ahead 
prediction is not the final network of interest rather a 
dynamic model able to perform long-range prediction is 
desirable (Figure 6). However, the one-step ahead pre- 
diction network (Figure 7) provides a good initial esti- 
mate for the optimization procedure shown in Figure 6. 
Thus, the parameters (weights and bias) obtained through 

training (Figure 7) are used as initial condition for the 
optimization procedure defined for the recurrent ANN 
training (long-range prediction) (Figure 6). In the opti- 
mization procedure used here (Figures 6 and 7), the ob- 
jective function, which is used in the networks training, 
is the average of the square root of the sum of square 
errors (difference between the measured value and the 
value that was estimated by the model for each output 
value, which is given by 

or each time n, according

the one-step ahead optimization procedure for the ANN 

 e n ), for 1, ,390n   . 

   
  

350
1p p

p p

 

 
 

Input

2

1

p p


 

1

1 2

2 3 
p

p

p

p

p

p

u n d u n d

u n d u n d

n du n u

n

d

X

Y

Z

y n

y n


       
      
 
      
 
 
 
 
 
 

 
  

    (3) 

3. Results and Discussion 

As stated earlier, it is necessary to establish a metric 
his met- 

 in the determination of 

 

(criterion) to be used in the objective function. T
ric can have a decisive influence
the optimal point as the optimization procedure will seek 
the parameters that lead the model to the best possible 
performance in relation to these established criteria. In 
this article Euclidean distance is used [34], a metric that 

Copyright © 2013 SciRes.                                                                                  OJA 



R. S. MAGALHÃES  ET  AL. 20 

   

 

Figure 7. ANN training (one-step ahead prediction). 
 
is commonly used in the treatme
rder to obtain an objective function that gives the dis- 

nt of causal events in 
o
tance of functional responses (responses of the models) 
in relation to its target profile (experimental output). 
Euclidean distance is also commonly called the error 
vector norm (EVN) and is given by: 

    2

, Mod , Exp ,

TP

s TD s n s nEVN y y 
1

, 1, ,
n

s SP


    (4) 

for the time domain, and by: 

    

   
   

   
   

   

2

, Mod ,s FD sEVN Y Y  Exp ,
1

2 π 1 1
Mod , Mod ,

1

2 π 1 1
Exp , Exp ,

1

, 1, ,

e , 1, ,

e , 1, ,

2 π 1

TP

s
k

TP
j k n TP

s s n
n

TP
j k n TP

s s n
n

s SP

Y y k TP

Y y k TP

k
h k

TP











      



      





 

 

  
 










  (5) 

for the frequency domain, where SP and TP are the 
numbers of points in space and in time, respectively, y 

ed by the objective f
tio

ons, obtaining equivalent models. 
Here, for the purpose of numerical comparison between 

 the best and the worst results of the models in 
th

hted: 
 

agalhaes [1], the maxi- 

y reduction superior to 

of the error norm to higher values compared to the  

and Y are the outputs in the time and in the frequency 
domains respectively, the subscripts Mod and Exp refer 
to the model and to the experimental output respectively, 
the subscript s defines a specific spatial position, k and ω 
are the discrete time and frequency, respectively, the 
subscripts TD and FD refer to the domains of time and 
frequency, respectively, and h symbolizes the functional 
relationship between ω and k. 

In the optimization procedure used here (Figures 6 
and 7), both metrics establish unc- this takes the average, minimum or maximum values 

ns described in Equations (4) and (5) were tested, as 

the different modeling approaches, Equation (4) was as- 
sumed. 

The resulting models were used to predict the dy- 
namic and spatial behavior of the system´s output signal 
(acoustic power measured by microphone). From Fig-
ures 8-10

well as their combinati

e estimation of the output signal for plans Z=1, 3 and 5 
can be seen, as well as a qualitative comparison with 
estimated results with the models that were obtained in 
the work of Magalhaes [1]. It can be seen that even the 
worst results with the ANN models provide an adequate 
dynamic representation of the experimental data, captur- 
ing the main trends of the system behavior, although the 
amplitudes at higher frequencies have a strong attenua- 
tion, as can be seen in Figure 11, which shows the aver- 
age PSD (Power Spectral Density) for 350 mesh points. 
The ANN model provides a good system dominant dy- 
namic description (PSD peaks), where most of the signal 
energy is concentrated). 

Table 1 compares the result of the model structure 
proposed in this work with the results obtained by 
Magalhaes [1]. Based on these results, the following 
conclusions may be highlig

Smaller errors are obtained when considering the de- 
lays in each XZ plane to identify the models in the 
various grid points collected; 

 According to the results of M
mum possible reduction in the mesh for the applica- 
tion of the interpolation was a reduction to 27 MRTFs. 
As can be seen in Table 1, an
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Figure 8. Best and worst adjustments for plane Z = 1 × (0.44 m): time response of ARX identified models and ANN models. 
 

   

Figure 9. Best and worst adjustments for plane Z = 3 × (0.44 m): time response of ARX identified models and ANN models. 
 

   

 . Z 5 0 44mFigure 10. Best and worst adjustments for plane : time response of ARX identified models and ANN models. 
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Figure 11. Average PSD for the output. 
 
respective Euclidean norm values of the experimental 
signal (the objective function, which is used in the net-
works training, is the average of the square root of the 
sum of square errors);  
 The ANN model performed equivalent to the ARX 

model (27 MRTFs, 135 parameters), with the advan- 
tage that it used fewer parameters (80 parameters). 

4. Conclusion 

This paper presented the development of an Artificial 
Neural Network (ANN) to describe the vibrate-acoustic 
transmission between a primary source of noise and a 
receiver in a room. The obtained dynamic ANN model 
captured the main dynamics of the system and performed 
equivalent to the performance presented by an ARX- 
interpolated model [1]; however, with fe

onsidering that these two model struct

 
ber of model parameters, requiring 

fort to simulate the outputs of 

models with low computational cost, and therefore mod-
els with increased number of neurons would not satisfy 
this requirement. 
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