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ABSTRACT 

In this paper, one of analogies available in the literature between movement of a material particle and ray propagation 
of a sound in liquid is used. By means of the equations of Hamilton describing movement of a material particle, ana- 
lytical expression of a tangent to a trajectory of a sound ray at non-uniform ocean on depth is received. The received 
expression for a tangent differs from traditional one, defined under law Snelius. Calculation of trajectories, and also 
other characteristics of a sound field is carried out by two methods: first—traditional, under law Snelius, and sec- 
ond—by the analogy to mechanics method. Calculations are made for canonical type of the sound channel. In the region 
near to horizontal rays, both methods yield close results, and in the region of steep slope, the small distinction is observed. 
 
Keywords: Sound Rays; Material Particle; Analogy; Hamilton Equations 

1. Introduction 

The ray description of a sound field is widely applied in 
problems on sound propagation at ocean. It is because of 
the big accuracy with which the ray theory defines the 
basic characteristics of a sound field. Among modern 
computing means, the ray method of calculation of a 
sound field does not cause any difficulties. Advantage of 
this method consists that it contains a minimum quantity 
of approximations and can serve as the standard in an eva- 
luation of other methods. It proves to be true, for example, 
when calculation of a sound field of caustics is made [1,2]. 
Unique restriction of use of a ray method is performance 
of conditions of geometrical acoustics in non-uniform 
spaces [3]. 

Along with a traditional ray method of calculation of a 
sound field at the ocean, using Snelius’s law, other methods 
based on analogy between propagation of a sound wave at 
ocean and movement of a material particle are widely 
applied, see for example [4]. Calculation of a trajectory of 
a material particle is made on the equations of classical 
mechanics and the equations of Hamilton. The analogy be- 
tween movement of a sound wave and a material particle 
establishes connections between the functions describing 
their movement. In [4] and later works with a view of sim- 
plification, the following assumption is entered—the hori- 
zontal spatial co-ordinate of propagation of a sound wave 
is considered simultaneously and as time co-ordinate. 

Other ways of an establishment of analogy between 
propagation of a sound and movement of a mechanical 

particle are offered in [3]. In this paper, all co-ordinates of 
a sound trajectory, time and spatial, keep the number and 
functional value at definition of a trajectory of a sound 
wave on the equations of Hamilton. It provides visibly 
demonstration and reliability of conformity of two various 
physical phenomena and possibility of their description by 
means of the same mathematical apparatus. 

The purpose of the given work is to carry out one more 
variant of use of the equations of the classical mechanics, 
offered in [3], for calculation of a trajectory of propaga-
tion of a sound in a liquid. Analytical expression for a 
tangent to the ray trajectory, distinct from given by law 
Snelius is received. Comparison of calculation of trajec-
tories and other characteristics of a sound field in a wave - 
guide by two methods, traditional under Snelius law and 
by analogy to classical mechanics, [3] is spent. The short 
description of this method of calculation of a trajectory by 
analogy to mechanics is resulted in [5]. 

It is known that in isotropic, homogeneous space not 
changing in time plane sound waves propagate in a di-
rection of a wave vector k which does not vary neither on 
value, nor in a direction. At ocean, a sound speed depends 
on depth that makes the space not isotropic. It leads to the 
change of a wave vector k both on size, and in a direction. 
Therefore, the sound wave is not a plane one any more. 
However, representation about a plane wave can be used 
and in such space if on distances of an order of length of a 
wave, the value and a direction of a wave vector vary 
slightly. The method of replacement of a real sound wave 
with a set of plane waves is called as a method of geo- 
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metrical acoustics [3]. In those cases where we will apply 
a method of geometrical acoustics, it is possible to enter 
concept about rays as about lines, tangents to which 
coincide with a direction of propagation of a plane wave 
on small regions of space. Thus, justice of a method of 
geometrical acoustics reduces a problem of propagation 
of a sound in the anisotropy space to calculation of ray 
trajectories. 

2. Traditional Method Ray’s Calculation 

Let’s consider briefly traditional way of definition of ray’s 
trajectories at ocean with speed of a sound depending on 
depth (a method 1). We will accept, that the ocean is a 
plane- layered space in which speed of a sound varies with 
change depth z and does not depend on co-ordinates x, y. 
Thanks to uniform and isotropic space along axes x, y 
projections of a wave vector k on an axis , ,x yx y k k  
also do not depend on co-ordinates x, y, [3]. We will ac-
cept, that a plane of falling of a sound wave serves the 
plane x, z. Let θ—a corner between a vector direction k 
and an axis z. Then the running sound wave in a wave- 
guide is described by following expression: 
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Here a—amplitude of a wave,  , ,x z t —a wave 
phase (eikonal), k—a wave vector, k—its module (length), 
R—a vector of a trajectory of the wave, parallel to a vector 
k, R—the module (length) of a vector, co-ordinates of the 
beginning of vector R—x0, z0, end co-ordinates (current 
co-ordinates of a trajectory)—x, z. We will accept, that 
absorption of a sound is a little, the amplitude of a wave 
does not vary. 

According to Snelius law the component of a wave 
vector  sinxk   c z  remains invariable for a con- 
crete ray at non-uniform ocean on depth: 

   
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0

sinsin
constxk

c z c z
               (2) 

Here z0—depth of a source of a sound, θ0—an angle of 
an departure  of a ray from a source, —speed of a 
sound on depth of a source. According to Snelius law, 
Equation (2), if a refraction angle 

 0c z

πr 2    on depth 

r , where , “const” in Equation (2) is 
equal to 
z z    rc z c z

 1 rc z . Apparently from Equation (2), the 
constant xk   can be expressed through an angle of 
departure of a ray from a source θ0 and speed of a sound 

 0c z  too, “const”  0 0sin c z . We will accept, that 
on distances of several lengths of waves the module of a 
wave vector varies slightly, considerably its direction 
varies only. Therefore we will enter a single vector n1, 
coinciding on a direction with a wave vector, 1kk n . 
Components of a single vector n1 are expressed through 
an angle 1 1: sin , cosx zn n    .
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Equations (3) defines components of an single vector n1 
along axes of co-ordinates, and also a tangent to a trajec-
tory of propagation of a wave tgθ, coinciding on a direc-
tion with a vector k. From Equation (3) it is visible, that 
components n1x, n1z depend from z, n1x has the same de-
pendence on depth, as  c z . For a components of a wave 
vector taking into account Equation (3) we will receive: 

       2
, 1x r z rс k c z c z c z   k      (4) 

It is visible, that kx—a constant for the chosen ray with a 
turning point on depth zr, kz—depth function of z. Com-
ponents of a wave vector, Equation (4), are received in the 
assumption, that periodicity of a sound field at change 
 k z  is not broken, conditions of geometrical acoustics 

are applicable. Trajectory co-ordinates x, z and length of a 
trajectory l, are connected by known parities: 
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d cos ,
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l z
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                   (5) 

which allow to calculate with the big accuracy a trajectory, 
and also time of propagation of a sound along a trajectory. 
Convincing acknowledgement of accuracy of calculation 
of a sound trajectory by a ray method can be found in 
many works, for example, in [6] where the value of time 
of propagation of a sound on distance ~17000 km calcu-
lated under the ray theory and measured in experiment are 
resulted, coincided with each other. Thus, a method 1 of 
geometrical acoustics in partially isotropic space defines a 
tangent to a trajectory of a ray in the form of analytical 
function of speed of a sound on which the ray trajectory, 
time of propagation of a sound on a ray and the value of 
the sound field are calculated along a ray trajectory. 

3. The Method of Analogy to Mechanics 

Let’s consider another method, method 2, calculation 
of trajectories of the sound rays, based on analogy be- 
tween movement of a material particle and sound pro- 
pagation in approach of the geometrical acoustics, of- 
fered in [3]. 

Let us conceder briefly principal features of the clas-
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sical mechanics, describing movement of a material par-
ticle by the equations of Hamilton [7]. Position of a ma-
terial particle in the classical mechanics is defined by its 
generalized co-ordinates  and the gener-
alized impulses , equal m , where m—mass 
and a  projection of speed of a particle to an axis i, the 
index i means x, z. The generalized co-ordinate q in a 
homogeneous space is a particle radius-vector if the be-
ginning of its movement coincides with the beginning of 
co-ordinates [7]. In this case projections of length of a 
vector q on an axis of co-ordinates coincide with values x, 
z, since 0 0 . The same concerns and to a vector of 
the generalized speed. In the closed system where the 
particle is not exposed to any influence, a vector q is the 
straight line, and a vector p is a constant impulse of a 
particle, a constant value of speed. The big role in the 
classical mechanics plays the function of “action” S de-
fined as integral along a trajectory, taken on time from 
Lagrange’s function between two points of a trajectory 

 and  which the particle occupies during the set 
moments of time [7]. The derivative on time from action S 
defines Hamiltonian of material particle H, and on the 
generalized co-ordinate—a particle impulse. The equa-
tions of Hamilton can be received from a condition of 
existence of a minimum value of action S [7]. We bring 
these four equations which we use to establish correlation 
between movement of a material particle and propagation 
of a sound wave and for calculation of a sound trajectory: 
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At known function of action S from first two equations 
it is defined Hamiltonian H of particle and its impulse p. 
From second two differential equations which are equa-
tions of Hamilton, co-ordinates of a trajectory of a particle 
qi and components of its speed  are calculated. i

The equations of Hamilton define a particle trajectory, 
as well as Newton’s second equation. We will accept, that 
expression for eikonal 

q

 , ,x z t t  kR  in the defi-
nition of the sound wave’s field, Equation (1), is analogue 
of action S of a material particle. One of the functions 
entering in Equation (1), is a trajectory of a sound wave (a 
ray on which the sound wave propagates), vector R. It is 
natural to accept, that vector R is analogue of a vector of 
the generalized co-ordinate q of the particle, and projec-
tions to axes of co-ordinates of a vector of trajectory Ri - 
analogue qi. Continuing analogy between S and Ψ we will 
receive from Equations (6) the first equation, that ana-
logue Hamiltonian H is frequency of radiation, H   , 
and from the second equation—analogue of an impulse p 
of the particle is the wave vector k, pi - ki. It is already 
formal analogy between particle’s Hamiltonian H and 
frequency of a sound wave  kc z   and components 
of the generalized vector pi and a wave vector ki. The 

equations of Hamilton, 3, 4 in Equation (6), for a trajec- 
tory of a sound wave look like: 

d d ,d dt t      k r R k           (7) 

Let’s present a wave vector, as in a method 1, in the 
form of its module that don’t change on a distance of 
several wave’s lengths and single vector n2, that varies its 
direction, 2kk n . We will receive from the Equations (7) 
at stationary propagation of a sound in the motionless 
non-uniform space the equations for vectors n2 and R: 

 2 2d d ,d dt c z t c  n R n .             (8) 

Authors [3] bring the equation for vector definition n2, 
containing an additional member, in our designations 

  2 2 c zn n . This member has appeared at transition 
from d dtk  to 2d dn t , through derivatives 

  d d d dtRk R  and replacement  d dRk  on 
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from Equation (8), the second one. It is incorrect proce-
dure since the generalized functions q and p for a me-
chanical particle, together with their analogues R and k in 
a sound wave, depend by their primary definition only on 
variables x, z, t, but not from each other. Therefore the 
correct equation for vector’s definition n2 is the first in 
Equations (8). It is easy to show, that the decision of the 
equation for n2, resulted in [3] with an additional member 

  c zn n2 2 , is the following: 2 2 2
2 2 2

x zn n , i.e. is 
definition of an single wave vector, and its components 
values for a considered problem remain not defined. 
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Let’s write down system of the Equation (8) for pro- 
jections of vectors R and n2 on an axis x, z: 
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The decision of the third of Equation (8’) can be or 

2x constn   or  n f z
2

2x . The first decision according 
to existing connection 2xn  and 2

2zn  leads to 2zn const . 
This decision is fair only in the isotropic spaces. Remains 

 n f z2x . Since the component of a single vector n2x 
can be expressed through 2z  becomes known after 
definition n2z. Using a method of the decision of system of 
the ordinary stationary differential equations of 1st order, 
[8], after exception differential dt from Equations (8’) we 
will receive two equations: 

 zn f

   2 2 2 2d d , d dx z z zx z n n n n c z с z         (9) 

Solving the second of them, we will define a projection 
of a single vector n2z as function of depth  

 2
2 1z , where с1 – an integration constant. A 

constant с1 we will accept equal speed of a sound in a 
turning point of a ray, с1 = сr. As a result for n2x, n2z, we 
will receive following expressions: 

: 2 lnz n c c
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   2
2 22 ln , 1 2z r xn c c z n  zn        (10) 

The first equation from system Equetion (9) defines a 
tangent inclination to a trajectory of a sound ray 

2 2tg x zn n  . For calculation of a trajectory of a ray it is 
necessary to substitute value tgθ, expressed through n2x, 
n2z in Equation (5). From Equation (10) also, as well as 
Equation (4) it is visible, that the component of a single 
vector along an axis z becomes zero in a ray’s turning 
points at .    r rc z c z c 

Thus, at analogy use between the description of propa-
gation the sound along a ray and movement of a material 
particle (method 2) analytical expressions for components 
of a single vector along a trajectory of the ray, Equation 
(10), distinct from the expressions in Equation (3) re-
ceived by method (1) with use of Snelius law, Equation (2), 
are received. 

4. Calculation Ray’s Trajectories and Sound 
Field along Them with Two Methods 

Let’s spend comparison two ways of ray’s trajectory cal-
culation for a profile of a sound’s speed of a canonical 
form. We will accept, that the axis of the sound channel 
lays on depth of 1 km, depth of a wave- guide is 4 km, the 
sound source is on a channel axis. It is easy to show, that 
ratio  2xn c z  is not a constant. However, calculation of 
this ratio for various rays shows, that it differs from a 
constant on small size. We will compare horizontal 
components of single vectors n1x, n2x trajectories of the 
rays, calculated under formulas (3) and (10). In Figure 1 
values of n1x, n2x show as functions of depth z for the rays 
having turning points (ТP) below an axis of a wave guide 
on depths z1 = 1.75 km and z2 = 3.6905 km. In Figure 1 on 
a horizontal axis values n1x, n2x, are postponed, on vertical 
axis—depth z. In ТP  π 2,r rc c z   r  all 4 curves 
have the identical values equal 1, n1x = n2x = 1, see Equa- 
tions (3) and (10), on corresponding depths. Numbers 3,  
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Figure 1. Dependence of projections of single vectors 
, x xn n1 2sin sin  , from depth of a wave guide z for rays, 

curves 3, 4 with turning points at a bottom on depths z1 = 
1.75 km and z2 = 3.6905 km, curve 1, 2, θ—an angle along a 
trajectory. 

4 designate two curves coinciding on the scale of drawing 
having ТP on depth z1. Appreciable difference n1x, n2x is 
observed near to a wave guide axis, for steep rays, curves 
1, 2, π 2  , with ТP on depth z2. Figures in drawing 
near to these curves specify, what method calculates 
curves. Difference of curves is caused, obviously, not only 
distinction of the functions describing a ray trajectory (a 
vector n) in methods 1, 2, but also distinction of angles of 
departure at which rays have the same depth. 

On Figure 2 the length of a cycle of rays as function of 
an angle of departure θ0, calculated in two methods is 
shown. The divergence of curves on the scale of drawing 
also is observed only for steep rays (the least θ0). The 
lower curve is calculated by a method 2, upper—on a me- 
thod 1. It is visible, that length of cycle  1D   (a method 
1) more than that calculated by a method 2,  2D  . So, at 
depth of a tuning point a ray, z = 1.0005 km, angles θ0 

coincide for two methods to within 5 th sign, a difference 
of cycle’s lengths   1 2D D D  

00.16 , 312z D  
– 3

m
.2 m , at 

3.6905 km,  . 

Let’s consider vertical structure of a sound field z(θ) in 
the canonical wave guide, calculated in two ways. On 
Figure 3 angular distribution of vertical co-ordinates of 
the rays which have left a source towards a bottom, on 
distance from a source x = 500 km,  0 , constz x   is 
resulted. An axis of abscises –angles of ray’s departure θ0, 
ordinate—depth z arrival of a corresponding ray on dis-
tance x from a source. An initial (greatest) θ0 = 89.998˚. 
Extremes of curves is co-ordinates of the caustic’s centers 
on depth on the given distance x. The continuous curve on 
Figure 3 is received by a method 1, shaped—a method 2. 
It is seen, that with decrease of a θ0 the curves coinciding 
at the big angles θ0, diverge a little, caustic’s co-ordinates 
do not coincide. 

Similar curves with the caustic’s centers along an axis z 
only depending on time of arrival of rays, horizontal axis, 
are resulted in a number of works. On Figure 4 depth of  
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Figure 2. Dependence on an angle of departure of length of a 
ray’s cycle  D 0 , calculated in two ways, the bottom curve 

—a method 2. 
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Figure 3. Angular distribution of vertical co-ordinates of 
rays at distance x = 500 km, calculated by two methods; a 
continuous curve—a method 1, shaped—a method 2, θ0—an 
angle of departure. 
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Figure 4. Vertical co-ordinates of rays as functions of time of 
arrival at distance x the = 500 km calculated by two methods; 
a continuous curve—a method 2, shaped—a method 1. 
 
arrival’s rays which have left the source towards a bottom, 
depending on time of their propagation, horizontal axis, is 
shown. By a shaped line the co-ordinates of rays calcu-
lated by a method 2 are shown. Distinction of the curves is 
visible only in that range of time and depth, in which the 
rays calculated by a method 1, are absent. In other points 
curves on the scale of drawing coincide. In co-ordinates 
 ,t z  the centers of caustics are tops of points of bend of 
curves . Comparison of numerical values of times of 
ray’s arrivals on the same depth shows, that times of 
propagation of the near horizontal rays, calculated by both 
methods, are very close to each other, considerable dis-
tinction is observed for steep rays. So, for corners θ ≥ 88˚ 
times of ray’s rrivals differ on ~ 1 - 3.10−4 c, time of ar-
rival of the most steep rays calculated on a method 2 on ~ 
0.3с more than calculated on method 1. 

 z t

Let’s consider structure of the module of an acoustic 
field along a vertical, calculated by two methods, Figure 5, 
an abscise—an axis z, ordinate—the amplitude of field. 
The field calculates on frequency of 233.6 Hz. Continuous 
lines—calculation by a method 2, shaped—a method 1.  

z (км) 0 1 2 3
0
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Figure 5. Structure of the module of an acoustic field along a 
vertical axis of a wave-guide at distance x = 500 km, calcu-
lated by two methods; a continuous line—a method 2, sha- 
ped—a method 1. 
 
Distinction in caustic’s position and in value of ampli-
tudes is visible. 

5. Conclusions 

As a result of comparison of two methods of obtaining of 
analytical expressions for a tangent to a ray trajectory, it is 
possible to draw the following conclusions. Practical 
coincidence of calculation of trajectories by two methods 
is the confirmation of legitimacy of the decision of a 
problem on sound propagation in the non-uniform space 
with the decision in ray approach. When the general 
structure of an acoustic field in a wave guide without 
quantitative comparison of separate characteristics is re- 
quired, both methods of the account are equivalent. If it is 
necessary to compare calculated value with experiment, it 
is necessary to give preference to a traditional method 1. 
Under the physical concept, it is more proved than the 2nd 
method using formal analogy between action of a me- 
chanical particle and eikonal of a sound wave. 

The method of analogies is of interest as possibility of 
various comparisons by the nature of the physical phe- 
nomena, in which the general laws that promotes their 
deeper understanding can be found. In this case it is pos- 
sibility to receive one more analytical expression for a 
tangent vector to a ray trajectory in approach of the geo- 
metrical acoustics, distinct from traditional, under Sne- 
lius’s law. 
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