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Abstract 
We present in this paper a new formulation of the iterative method FWCIP “Fast Wave Concept 
Iterative Process” based on the wave concept. It calculates the electromagnetic parameters of a 
planar structure including a via-hole. This is modelled by the electromagnetic field that it creates 
in the structure. The validation of results found by this new formulation is ensured by comparison 
with those obtained by HFSS “high frequency structural simulator” software from Ansoft. They 
show that they are in good agreement. 
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1. Introduction 
The field of microwave and hyperfrequency which are based on planar structures, has been known in recent 
years as a very high-demand and technological progress. The application domain now affects different areas 
from professional applications such as high-precision navigation systems for terrestrial and space communica-
tions, remote sensing, radar (civil and military) and radiometry. The communication hyperfrequency has many 
public applications such as television, mobile phones, radio, alarm systems and security [1]. 

Indeed, the high cost of technology and time implemented for the realization of a function of analog electron-
ics make the traditional approach impossible to test several models for testing arriving at the necessary im-
provements. The designer of microwave circuit must have a simulation tool to predict the performance of a 
component or a circuit operating in different conditions [2]. 

http://www.scirp.org/journal/ojapr
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We were interested in this work to planar structures incorporating a via-hole. This technique will allow better 
use of both sides of a printed circuit substrate. To model this structure the iterative method [3] has been refor-
mulated to reflect the presence of the via-hole in the circuit. In this formulation the TE (Transversal Electric) 
modes, TM (Transversal Magnetic) and TEM (Transverse Electro-Magnetic) are used as digital basis of spectral 
domain in which the FFT (Fast Fourier Transform) [4] is projected. Subsequently, the concept of fast wave is 
introduced to reflect the boundary conditions and continuity of relationships in different parts of the interface in 
terms of waves. The iterative method consists of determining an effective relationship between the incident and 
reflected waves in different dielectric layers. The reflected waves are expressed in the modal domain and the in-
cident waves in the space domain. The iterative process is then used to move from one field to another using the 
FMT (Fast Modal Transform) and to speed up the iterative process and then the convergence of the method. 
This formulation retains the well-known advantages of the iterative method including ease of implementation 
and speed of execution compared to other methods. 

2. Reformulation of Method FWCIP 
2.1. Representation of the Study Structure 
The study of structure (Figure 1(a)) is a microstrip line dimensions (Lxw1), connected to the ground through a 
via-hole of dimensions (h2xw2). The thickness of the line and the via-hole is assumed to be negligible. The exci-
tation of the structure is provided by a source of localized electric fields S0{E0,J0}. The plan Ω (Figure 1(b)) is 
located between two dielectric media, relative permittivities εr1 and εr2 supposed without losses. 

Parameters of the study structure: 
80 mma b= = , 1 2 5 mmw w w= = = , 2.5 mmd = , 1 76.25 mml = , 1.25 mmL∆ = , 1 5 mmh = ,  

2 1.25 mmh = , 1 2 1r rε ε= = . 
Ω: Area (Or discontinuity plan) between the areas 1 and 2. 

2.2. Formulation of the Problem 
The analysis method is an iterative method. It has been described in various articles and thesis [5]-[7]. It is de-
veloped for modelling planar structures, single or multilayer, arbitrary shape, comprising passive or active 
components. It is based on two types of waves, incident (Ak) and reflected (Bk), respectively expressed in spatial 
and modal fields, relationships (1) and (2). The passage of these waves from one domain to another is provided 
by the iterative process using the FMT, which is none other than the weighted FFT on each mode. The use of the 
FMT, significantly reduces the computation time and accelerates the convergence of the method, but requires 
the description in pixels of different regions of discontinuity plan Ω. At any point of this interface is defined an 
associate wave vector of the electromagnetic field ( ),E H  by: 

( )0
0

1
2k k k k

k

A E Z J
z

= + ⋅                                (1) 
 

 
Figure 1. Structure of study (a) and plan of discontinuity Ω (b).                                                            
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( )0
0

1
2k k k k

k

B E Z J
z

= − ⋅                                (2) 

with: 

k k kn= ∧J H ,                                    (3) 

k : Indicates the area 1 or 2 and nk is a normal unit vector to Ω. 
,k kE H : Tangential components of the electromagnetic field. 

0kZ : Impedance of the characteristic area k. 
Operational equations on which this method is based are defined by: 

0

1

ˆ  (4)
ˆ (5)

n n
k k k

n n
k k k

A B A

B A
Ω

−

 = Γ +


= Γ
 

n: Number of iterations. 
0
kA : Incident wave initializing the iterative process, it is issued by an excitation source (level) on either side of 

the plane Ω. 
ˆ
ΩΓ : Diffraction operator giving the incident waves from the reflected waves in the spatial domain. It de-

scribes the boundary conditions and continuity of the different constituents regions plan Ω of structure. 
ˆ

kΓ : Modal reflection operator giving the waves reflected from the incident waves in the modal field, k is the 
area 1 or 2. 
• Area 1: 1Γ̂  described the nature of the walls of the box and the dielectric of the area 1 of the structure. 

,1
01

1 ,1
0, 0 01

1ˆ
1

mn
mn mn

n m mn

Z Y
f f

Z Y

α
α α

α
> >

−
Γ =

+∑                            (6) 

• Area 2: 2Γ̂  described the nature of the walls of the box and the dielectric of the area 2 of the structure. It also 
introduces the influence of the electromagnetic field created by the via-hole in the area 2. 

,
0

via-hole,
0, 0 0

1ˆ
1

k
k mn

k mn mnk
n m k mn

Z Y
f f

Z Y

α
α α

α
> >

−
Γ = + Γ

+∑                     (7)
 

via-hole 0 0 0
1,2,...,

i i i
i n

f f f fα α α α

=

Γ = Γ + Γ∑                    (8) 

The phrase reflects the electromagnetic field of the n modes created by the via-hole in the area 2. 
With: mnf α : Basic functions of box (in this case the box is in electrical walls). 

,k
mnYα : Admittance modes, upper and lower covers, reduced at the plane Ω. 

The modes of the rectangular waveguide are given according to the nature of the walls in the following Table 
1 and Table 2. 

Let that:              1 2 2

21 mnmN
a abm n

a b

σ
=

   +   
   

, 2 2 2

21 mnnN
b abm n

a b

σ
=

   +   
   

 

 
Table 1. Function modes of a rectangular waveguide with electrical walls.                                               

Electrical walls 
Modes functions 

Modes TE Modes TM 

( ), ,mn xf x y  2Cos Sinm nN x y
a b
Π Π   ⋅   

   
 1Cos Sinm nN x y

a b
Π Π   ⋅   

   
 

( ), ,mn yf x y  1 Sin Cosm nN x y
a b
Π Π   − ⋅ ⋅   

   
 2Sin Cosm nN x y

a b
Π Π   ⋅   

   
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Table 2. Function modes of a rectangular waveguide with magnetic walls.                                                       

Magnetic walls 
Modes functions 

Modes TE Modes TM 

( ), ,mn xf x y  2Sin Cosm nN x y
a b
Π Π   ⋅   

   
 1Sin Cosm nN x y

a b
Π Π   ⋅   

   
 

( ), ,mn yf x y  1 Cos Sinm nN x y
a b
Π Π   − ⋅ ⋅   

   
 2Cos Sinm nN x y

a b
Π Π   ⋅   

   
 

 

with:                                 
1     si  0
2     si  0mn

m n
m n

σ
⋅ =

=  ⋅ ≠
 

The structure is divided into pixels, we will proceed to the following variable change:  

01

x i
a N
=  and 

02

y j
b N
=  

N01 and N02 are the total number of pixels respectively according to (ox) and (oy). 
• If a top or bottom cover placed at a distance h from the discontinuity plane Ω. 

( ) ( )( ), Coth
k k

k
mn mn r mn rY Y hα α ε γ ε= ⋅ ⋅  

• For an open circuit (in the absence of the cover/guide infinity). 

( ),
k

k
mn mn rY Yα α ε=  

With: ( )kmn rYα ε  is the admittance of mode given for the modes:  

( ) ( )

( ) ( )

0

0

 :    

 :   

k

k

k
k

k

mn rTE
mn r

rTM
mn r

mn r

TE Y
j
j

TM Y

γ ε
ε

ωµ
ωε ε

ε
γ ε

=

=

 

( )kmn rγ ε : is the propagation constant expressed in the spectral domain according to the geometrical sizes and  

different characteristic elements of the considered area k. It is expressed by the following equation: 

( )
2 2

2 2
0k kmn r r

m n k
a b

γ ε εΠ Π   = + −   
   

 

if
α : Basic functions of the via-hole. 
via-holeΓ : Reflection coefficients of the via-hole. 
iΓ : Reflection coefficients modes { }1, 2, , n  of the via-hole. 
0f
α : Electric field of fundamental mode of via-hole.  

0
0

0

TEM

TEM

Z Z
Z Z

−
Γ =

+
: Reflection coefficient of the fundamental mode. 

01 02
0

01 02

Z Z
Z

Z Z
=

+
, we have for the area 2: 1 2r rε ε=  ⇒ 01 02Z Z=  ⇒ 01

0 2
Z

Z =  

0k
rk

Z η
ε

= : Intrinsic impedance of the area k. 

120η = Π : Vacuum impedance. 

2
TEM c

wZ Z
h

 
= × 

 
: Impedance of the mode TEM. 
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cZ : Characteristic impedance, w is the width of the via-hole. 

2.3. Modal Study of the via-Hole 
We present in this section an analytical calculation of the electromagnetic field created by the via-hole in the 
area 2 (Figure 2). 

To calculate the electric field created by the via-hole in the study of structure, we assume that it is placed in a 
rectangular waveguide with metal walls and filled with a dielectric substrate relative permittivity εr2 (Figure 3). 
The via-hole and the waveguide are considered infinite in length to eliminate side effects. We also neglect the 
losses in the conductor and the dielectric thereby further simplifies the problem formulation. 

The fundamental mode of propagation of such a support is not TEM because the cross section is not homoge-
neous. However, since the amplitudes of the longitudinal components of electric and magnetic fields are suffi-
ciently small to be neglected, one thus speaks by quasi-TEM mode. This makes it then possible modeling of the 
structure in the form of a characteristic line impedance Zc transmission immersed in an equivalent homogeneous 
medium characterized by an effective relative permittivity εr2. 

To define the position of the via-hole we split the area 2 of the structure into two regions “I” and “II” (Figure 
2 and Figure 3). 

2.3.1. Fundamental Electric Field Created by the Via-Hole 
1) General formulas of the electric field created by the via-hole along the axis (ox), in the regions “I” and “II” 

by Figure 3 are defined by: 

( ) ( )
( )( )

( )

( ) ( )
( )( )
( )

,
_

11 2

,
_

21 2

1,

1,

nI
x vh n nx

n nn n

nII
x vh n nx

n nn n

sh P y
x y a f x

sh P lY Y

sh P y b
x y a f x

sh P lY Y

α α α
α α

α α α
α α


=

+


− = +

∑

∑

E

E

                  (9) 

 

 
Figure 2. Presentation of the via-hole in the study structure (a) and the oxy plane (b).                                        

 

 
Figure 3. Study structure to calculate the electric field created by the via-hole.                                          
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( ) ( ) ( )
( ) ( ) ( )

, ,
_ _ _

, ,
_ _ _

, , ,

, , ,

I TE I TM I
x vh x vh x vh

II TE II TM II
x vh x vh x vh

x y x y x y

x y x y x y

 = +


= +

E E E

E E E
                         (10)

 
With 1l  the length of the metal strip and 2 1l b l= − . 
Or naα  designate the amplitude of the mode α  ( ,TE TMα = ), n IN∈  and ( )

,
n n IN

TE TM
f α

α
∈
=

 are the basic  

functions of an infinite waveguide: 

( )
2

2

πcos
π

TE n
nx

j n xf x
a an

a

σ β

β

 = −  
   + 

 

, ( )
2

2

π
2 πcos

π
TM

nx

n
n xaf x

a an
a

β

 =  
   + 

 

 

( )
2

2

π
πsin

π
TE n

nz

n
n xaf x

a an
a

σ

β

 =  
   + 

 

, ( )
2

2

2 πsin
π

TM
nz

j n xf x
a an

a

β

β

 = −  
   + 

 

 

With 1nσ =  si n = 0 
2nσ =  si n ≠ 0 

n: Modes indices TE and TM. 
a: Box dimensions along the axis (ox). 
β: Propagation constant. 
2) The following field via-hole axis (oz) is written as follows: 

( ) ( )
( )( )

( )

( ) ( )
( )( )
( )

,
_

11 2

,
_

21 2

1,

1,

nI
z vh n nz

n nn n

nII
z vh n nz

n nn n

sh P y
x y a f x

sh P lY Y

sh P y b
x y a f x

sh P lY Y

α α α
α α

α α α
α α


=

+


− = +

∑

∑

E

E

                     (11) 

( ) ( ) ( )
( ) ( ) ( )

, ,
_ _ _

, ,
_ _ _

, , ,

, , ,

I TE I TM I
z vh z vh z vh

II TE II TM II
z vh z vh z vh

x y x y x y

x y x y x y

 = +


= +

E E E

E E E
                         (12)

 
Note: To calculate the electric field created by the via-hole via-holeE  we must begin by calculating the ampli-

tude of TE and TM modes “ naα ” and the calculation of the propagation constant “β”. 
3) Knowing the components of the following electric field (ox) and (oz) we can determine the electric field 

component along the axis (oy) _y vhEα  from the following relationship:  
0div =E                                      (13) 

0yx zEE E
x y z

∂∂ ∂
+ + =

∂ ∂ ∂
                                (14) 

dx z
y

E EE y
x z

∂ ∂ ⇒ = − + ∂ ∂ 
∫                               (15) 

Which give: 

( )( )
( )
( )( )
( )

2
, 2

_
11 2

2
, 2

_
21 2

2 π 1 πsin (16)

2 π 1 πsin (17)

nI
via hole n

n n nn n

nII
via hole n

n n nn n

ch P yn n xy a
a a a P sh P lY Y

ch P y bn n xy a
a a a P sh P lY Y

α α
α α

α α
α α

β

β

     = +   +    


−    = +    +   

∑

∑

E

E
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( )( )
( )

,
_

2
, 2

_
11 2

0

2 1 sin

TE I
y vh

nTM I TM
y vh n TM TM

n n nn n

ch P yn n xa
a a a P sh P lY Y

π πβ

 =

    = +    +   

∑

E

E
            (18) 

( )( )
( )

,
_

2
, 2

_
21 2

0

2 1 sin

TE II
y vh

nTM II TM
y vh n TM TM

n n nn n

ch P y bn n xa
a a a P sh P lY Y

π πβ

 =

 −   = +    +   

∑

E

E
         (19) 

( ) ( ) ( )
( ) ( ) ( )

, ,
_ _ _

, ,
_ _ _

, , ,

, , ,

I TE I TM I
y vh y vh y vh

II TE II TM II
y vh y vh y vh

x y x y x y

x y x y x y

 = +


= +

E E E

E E E
                                (20) 

( )n rP ε : Is the propagation constant expressed in the spectral domain according to the geometrical sizes and 
different characteristic elements of the considered area k. It is expressed by the following relationship: 

2
2 2 2

0
π

n r
nP k
a

β ε = + − 
 

, with 2 2
0 0 0k ω µ ε=                      (21) 

0k
c
ω

= : Wave number in the vacuum. 

0 0

1c
µ ε

= : Speed of light ( )83 10 m s× . 

α : Indicator mode TE, TM. 
k : Area considered { }1,2k ∈ . 

rkε : Relative permittivity of the Area k. 
0ε : Permittivity of vacuum [F/m]. 
0µ : Permeability magnetic of vacuum [H/m]. 

ω : Angular pulsation equal to 2∏f [rd/s]. 
1 2,n nY Yα α : Admittance of mode returned to the interface Ω separating the Area 1 and 2, it depends on the di-

electric thickness “h1” and “h2” of the Area (Figure 2(a)). His expression based on TE and TM modes is: 

( ) ( )
0

n rTE
n r

P
Y

j
ε

ε
ωµ

=  and ( ) ( )
0TM r

n r
n r

j
Y

P
ωε ε

ε
ε

=                        (22) 

( )1 1cothn n nY Y P hα α= ⋅  and ( )2 2cothn n nY Y P lα α= ⋅                     (23) 

We have 
1 2

1
n

n n

z
Y Y

α
α α=
+

 than we can write: 

( ) ( )

( ) ( )

0

1 21 2

0 1 21 2

1
coth cothcoth coth

1
coth cothcoth coth

TE
n TE

n n nn n n

TM n
n TM

r n nn n n

j
z

P P l P lY P l P l
jP

z
P l P lY P l P l

ωµ

ωε ε

 = = ++⇒  − = =
 ++

           (24) 

4) Calculation of the amplitude of the mode naα : 
Is naα  the amplitude of the mode { }, ,TE TM n INα ∈ ∈  which will be calculated by applying the following 

definition: 

n n m n m
m

a f J b fα α α φ= = ∑                            (25) 

m: Index relative to the number of test functions. 
When m = 2: 

1 1 2 2n n na b f b fα α αφ φ= +                            (26) 
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We put b1 = 1 and we determine b2: 

1 2

1ˆ
n n

n n n

Z
Y Y

α α
α α= =
+∑E J f f J                            (27) 

With: nf
α


: Basic function of the box. 
We can write the current form: 

2211 φφφαα bbbfaJ
m

mm
n

nn +=== ∑∑
                             (28) 

α
αα

α
n

nnn
n f

YY
aE




21

1
+

=∑  

Test functions were chosen as follows: 

( ) ( )1 1
1 2

2π 4π
cos and cos

x x x x
w w

φ φ
− −

= =                       (29) 

With:                            1 2and
2 2

a w a wx x− +
= =  

On the metal we have: 
ˆ 0ZJ= ⇒ =E 0                                   (30) 

ˆ ˆ ˆ , , 0m m p m m p n n n m m
m m m n

ZJ Z b Z b f z f bφ φ φ φ φ⇒ = ⋅ = = =∑ ∑ ∑∑                 (31) 

1 1 1 2
1 11 12 1

2 21 22 22 1 2 2

, , , ,
0

. .
0, , , ,

n n n n n n
n n

m

n n n n n n
n n

f z f f z f
b a a b

M b
b a a bf z f f z f

α α α αα α

α α α αα α

φ φ φ φ

φ φ φ φ

 
         

⇒ ⋅ = = =         
       

 

∑ ∑

∑ ∑
 

M with a matrix mxm formed of the following elements: 

, ,p n n n q
n

f z fφ φ∑ , avec ,m p q= .                        (32) 

The components mb  are unknown and mφ  designates a test vector. 
The Galerkin method [8] allows us to conclude that Equation (31) admits a solution other than the trivial solu-

tion ( 0mb = ) if: 
det 0M =                                       (33) 

From this equation we can determine the propagation constant β  for each working frequency. 
In the expression of the determinant of M we notice the presence of two variables, the propagation constant 

and the frequency.  

11 21
11 22 12 21

12 22

det 0
a aM a a a a
a a

⇒ = ⋅ − ⋅ = ⇒ =  

11
11 1 12 2 1 2

12

21
21 1 22 2 1 2

22

0    :   1      

0    :   1      

aa b a b b b
a
aa b a b b b
a

 ⋅ + ⋅ = = ⇒ = −⇒ 
 ⋅ + ⋅ = = ⇒ = −


 

1 1 2 1

2
1 2 2 2

, , , ,

, , , ,

n n n n n n
n n

n n n n n n
n n

f z f f z f
b

f z f f z f

α α α αα α

α α α αα α

φ φ φ φ

φ φ φ φ

   
   

⇒ = − = −   
   
   

∑ ∑

∑ ∑
                (34) 

By definition: 
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( ) ( )
2

1 1
0

2

, d d

a w

n n
a w

f x f x x zα αφ φ

+
∞

−

= ⋅∫ ∫                            (35) 

The results of the scalar product in the Equations (32), (34) and (35) are as follows:  

1 2 22
2

π π2 π π, sin sin
2 2π ππ

2

TE n
nz

n n
n n wa af

a ann
a wa

σ
φ

β

 
 

    =               −+            

; 

2 2 22
2

π π2 π π, sin sin
2 2π ππ

4

TE n
nz

n n
n n wa af

a ann
a wa

σ
φ

β

 
 

    =               −+            

 

1 2 22
2

π22 π π, sin sin
2 2π ππ

2

TM
nz

n
j n n waf

a ann
a wa

βφ

β

 
 

    = −               −+            

; 

2 2 22
2

π22 π π, sin sin
2 2π ππ

4

TM
nz

n
j n n waf

a ann
a wa

βφ

β

 
 

    = −               −+            

 

Knowing b2 we can calculate the amplitude of the mode naα : 

1 1 2 2n n na b f b fα α αφ φ= +  

To calculate the via-hole fields we must also calculate the propagation constant β. 

2.3.2. Propagation Constant β 
The calculation of the electromagnetic field E  and H  created by the via-hole is based on the calculation of 
the propagation constant β. 

To calculate the electromagnetic field created by the via-hole with more precise, we must introduce all modes 
which influence the results. For this we need to calculate the propagation constant β for all modes. 

Then to determine the propagation constant β we proceeded as follows: in the expression of the determinant 
of M we notice the presence of two variables, such as the propagation constant β and the operating frequency f.  

First we need to calculate the cut-off frequencies of the study structure, then for a fixed value of the working 
frequency we need to solve the following equation: 

( )det 0M β =                                    (36) 

To trace the curve β depending on the frequency, the resolution of the Equation (36) takes place point by 
point (Figure 4). 

Figure 4 shows the first propagation constant of the six modes of a frequency band that ranges from 0 to 6 
GHz. In our work we chose a frequency of 5 GHz, and in that frequency the Figure 4 shows that there are 4 
modes present in the structure. 

To make sure the Figure 4 is good we compare our work (the fundamental mode) with results calculated by 
Line Calc software ADS version 11.1.1. 

Figure 5 shows the results of the propagation constant β of the fundamental mode are in good agreement with 
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those calculated by the Line Calc software ADS. This validates our calculation method. 
Figure 6 shows that the error between our results and those calculated by the ADS software Line calc was 

0.2% in the 5 GHz frequency. 
 

 
Figure 4. Presentation of β in function of the frequency.                                                                 

 

 
Figure 5. Variation of the propagation constant β of the fundamental mode as a function 
of the frequency.                                                                  

 

 
Figure 6. Error on the results of the propagation constant β the fundamental mode.                                             
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2.3.3. Normalization of Electric Field 
1) Normalisation of electric field in the Region I: 

( ) ( )
( )( )
( ) ( )

( )( )
( )

1 1
_ _

1 1

1 1,
2 2

n nI TE TE TM TM
n via hole n n n nTE TM

n nn nn n

sh P y l sh P y l
x y a f x a f x

sh P l sh P lY Y
− −

= +∑ ∑E  

To calculate the normalized electric field, we must apply the following definition: 

_ _ _ _ 1I I
n via hole n via holeα α =E E                                (37) 

( )
22

_ _ _ _ _ _
0 0

, d d 1
a b

I I I
n via hole n via hole n via hole x y x yα α α= =∫ ∫E E E  

We find: 

, ,

1
I TE I TMX X

α =
+

                                  (38) 

with: 

( )( )
( )

2

2
1, 2

22
0 0 12

π
1 2 sin d d

2 π

a b
nI TE TE

n TE
n n n

n
sh P y ln xaX a x y

a aY sh P ln
a

π

β

  
  
 −   =         +       

∑ ∫ ∫
 

( )( )
( )

2

2
1, 2

22
0 0 12

1 2 πsin d d
2 π

a b
nI TM TM

n TM
n n n

sh P y ln xX a x y
a aY sh P ln

a

β

β

  
  
 −   =         +       

∑ ∫ ∫  

2) Normalisation of electric field in the Region II: 

( ) ( )
( )( )
( ) ( )

( )( )
( )_ _

1 1,
2 2

n nII TE TE TM TM
n via hole n n n nTE TM

n nn nn n

sh P y b sh P y b
x y a f x a f x

sh P b sh P bY Y
− −

= +∑ ∑E
 

( )
22

_ _ _ _ _ _
0 0

, d d 1
a b

II II II
n via hole n via hole n via hole x y x yα α α= =∫ ∫E E E  

We find: 

, ,

1
II TE II TMX X

α =
+

                                 (39)
 

with:        
( )( )
( )

2

2
, 2

22
0 02

π
1 2 πsin d d

2

a b
nII TE TE

n TE
n n n

n
sh P y bn xaX a x y

a aY sh P bn
a
π β

  
  
 −   =         +       

∑ ∫ ∫  

( )( )
( )

2

2
, 2

22
0 02

1 2 πsin d d
2 π

a b
nII TM TM

n TM
n n n

sh P y bn xX a x y
a aY sh P bn

a

β

β

  
  
 −   = ⋅        +       

∑ ∫ ∫  
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2.3.4. Convergence of the Via-Hole Field According to the Number of Basic Functions 
In our work, the convergence of results is a very important step to achieve the desired accuracy. We see from the 
above formulas that the electric field created by the via-hole depends on the number of basic functions “n” and 
the number of test functions “m”. 

From Figure 7 we see that the electric field created by the via-hole converges from “n” equal to 150 basic 
functions. 

2.3.5. Convergence of the Via-Hole Field Depending on the Number of Test Function 
In this part we have increased the number of test functions for even what value of “m” electrical field converges 
to a specific value. 

When we increase the number of test function we must recalculate the amplitude of mode naα , the propaga-
tion constant β and thereafter the electric field _via hole

αE , for each “m” chosen. 
From Figure 8 we see that the electric field created by the via-hole converges almost from m = 2. 

2.3.6. Magnetic Field Created by the Via-Hole 
We express the magnetic field H, created by the via-hole, from the following equation:  

0rotE j Hωµ= −                                      (40) 

0

x y z

x y z

rotE E rotE j H
x y z

E E E

ωµ∂ ∂ ∂
= ∇× = ⇒ = −

∂ ∂ ∂
 with: 

x

y

z

H
H

H

 
 

=  
 
 

H   

 

 
Figure 7. Convergence field created by the via-hole according to the number of basic 
function.                                                                         

 

 
Figure 8. Field of convergence via-hole according to the number of test function.                                  
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By definition the rotational is written: 

y yx xz zE EE EE ErotE x y z
y z z x x y

∂ ∂   ∂ ∂∂ ∂ = − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    
                     (41) 

This allows us to write: 

0

0

0

1

1

1

yz
x

x z
y

y x
z

EEH
j y z

E EH
j z x

E E
H

j x y

ωµ

ωµ

ωµ

 ∂ ∂
= − −  ∂ ∂ 

 ∂ ∂  = − −  ∂ ∂ 
 ∂ ∂ = − −  ∂ ∂ 

                               (42) 

In the region “I” of the study structure (Figure 2) the calculated magnetic field along the axis (ox) gives: 

,

2
0 11 2 2

2
2

,

2 2
0 11 2 2 2

π
1 1 πsin

π

ππ
1 1 2 πsin

π π

TE I TE n n n
x n TE TE

nn n

TM I TM n n
x n TM TM

n nn n

n
P chP yn xaH a

j a a shP lY Y n
a

nn
aP chP yn xaH a

a P a shP lY Y n n
a a

σ
ωµ

β

β
β

ωµ
β β


  = −  +     +   
     +     = +   +      + +        

∑

∑





 (43) 

In the region “II” of the structure the magnetic field is written:  

( )

( )

,

2
0 21 2 2

2
2

,

2 2
0 21 2 2 2

π
1 1 πsin

π

ππ
1 1 2 πsin

π π

n nTE II TE n
x n TE TE

nn n

nTM II TM n
x n TM TM

n nn n

n
P chP y bn xaH a

j a a shP lY Y n
a

nn
chP y baP n xaH a

a P a shP lY Y n n
a a

σ
ωµ

β

β
β

ωµ
β β


 − = −  +    + 

 
    +  −    = +   +      + +    

    

∑

∑













(44) 

Around “I” the magnetic field along the axis (oy) gives: 

2
, 2

0 11 2

,

2
0 11 2 2

1 1 π πcos

1 1 2 1 π π πcos
π

TE I TE n n
y n TE TE

n nn n

TM I TM n
y n TM TM

n nn n

shP yn n xH a
j a a a shP lY Y

shP yn n n xH a j j
j a a a a shP lY Y n

a

σ
β

ωµ

β β
ωµ

β

     = +    +    

    = −    +       +   

∑

∑
     (45) 

2
, 2

0 11 2
,

1 1 π πcos

0

TE I TE n n
y n TE TE

n nn n
TM I
y

shP yn n xH a
j a a a shP lY Y

H

σ
β

ωµ

     = +    ⇒ +    


=

∑                     (46) 
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In the region “II” the magnetic field is: 

( )

( )

2
, 2

0 21 2

,

2
0 21 2 2

1 1 π πcos

1 1 2 1 π π πcos
π

nTE II TE n
y n TE TE

n nn n

nTM II TM
y n TM TM

n nn n

shP y bn n xH a
j a a a shP lY Y

shP y bn n n xH a j j
j a a a a shP lY Y n

a

σ
β

ωµ

β β
ωµ

β

 −    = +    +    


−    = −    +       +   

∑

∑
  (47) 

( )2
, 2

0 21 2
,

1 1 π πcos

0

nTE II TE n
y n TE TE

n nn n
TM II
y

shP y bn n xH a
j a a a shP lY Y

H

σ
β

ωµ

 −    = +    ⇒ +    


=

∑                  (48) 

Then the results obtained give the relationship between the magnetic fields and electric fields as follows:  
, , ,TE I TE I TE I

x n y
n

H Eα= ∑ , , , ,TE II TE II TE II
x n y

n
H Eα= ∑                        (49) 

, , ,TM I TM I TM I
x n y

n
H Eβ= ∑ , , , ,TM II TM II TM II

x n y
n

H Eβ= ∑  

, , ,TE I TE I TE I
y n x

n
H Eχ= ∑ , , , ,TE II TE II TE II

y n x
n

H Eχ= ∑  

, , ,TM I TM I TM I
y n x

n
H Eς= ∑ , , , ,TM II TM II TM II

y n x
n

H Eς= ∑  

2.3.7. The Current J Crossing the Via-Hole 
Knowing the magnetic field H  we can calculate the current J  crossing the via-hole: 

y
x y

x

H
H H

H
 

= ∧ = − ⋅ + ⋅ =  − 
J H z y x                            (50) 

We also know that:  

Ŷ= ⋅J E                                        (51) 

It is ( )1n n n n n n
n n n

E a e E eα= = = + Γ∑ ∑ ∑  or ,n na j E=  then we can write the electric field as follows:  

,n n
n

E j E e= ⋅∑                                   (52) 

After that            ( ) ( )
( ) ( )
1

1 1
1

n
n n n n n n n n

n n n n

J j j jα α
−Γ

= = −Γ = + Γ
+ Γ∑ ∑ ∑  

1
,

1
n

n n n
n n

J j E j
−Γ

⇒ =
+Γ∑  

1
1

n
n n n

n n

J j j E
−Γ

⇒ =
+Γ∑                               (53) 

The reduced admittance is: 
1ˆ
1

n
n n

n n

Y j j
−Γ

=
+ Γ∑                                  (54) 

With:                        
1
1

n
n

n

y
y

−
Γ =

+
 and cotgn ny j lβ= −  
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And                            0 1 2
ˆ ˆ ˆ ˆ ˆ

nΓ = Γ + Γ + Γ + + Γ  
We prove that  

( ) ( )1 and 1n n n n n n n nE e J jα α= + Γ = −Γ                         (55) 

• It is 

( )1n n n n nE E E E+ − += + = + Γ                               (56) 

( )1n
n n n n

n n

E
E J E

J E

+
+ +

+ +
⇒ = +Γ  

We put: 

andn
n n n n

n n

E
e J E

J E
α

+
+ +

+ +
= =                          (57) 

We can write:                        ( )1n n n nE eα= + Γ  

• It is          ( ) ( )1 1n
n n n n n n n n n

n n

J
J J J J J E J

E J

+
+ − + + +

+ +
= + = −Γ ⇒ = −Γ   

We put: 

andn
n n n n

n n

J
j E J

E J
α

+
+ +

+ +
= =                          (58) 

nj : Reduced current. 
Finally we can write:                  ( )1n n n nJ jα= −Γ  
Knowing the magnetic field we can calculate the current J : 

is                             y
n x y

x

H H
 

= ∧ = − ⋅ + ⋅ =  − 

H
J H z y x

H
 

And also we can write the reduced current nj  in the normalization:  

n
n

n

J
j

E J
=  

The calculation of the scalar product of the normalization will by applying the formula: 

( ) ( )
0 0

, , d d
b a

n nE J E x y J x y x y∗= ∫ ∫  

So                    n nj f α=  and 
1
1

n
n

n

y
y

−
Γ =

+
 thus cotgn ny j lβ= −  

Which βn depend of the modes TE and TM. 

We can write          
,

,

I I
nxI y

n II
xny

J H
J

HJ

α

α

   
= =     −  

 and 
,

,

II II
nxII y

n IIII
xny

J H
J

HJ

α

α

   
= =     −  

 

So 

nx

x nx

n
ny

y ny

J

E J
j J

E J

 
 
 
 =
 
 
 
 

                                   (59) 
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The formulation of the current in the region “I”: 

( )

( )
( )

, ,

, , , ,,

, ,

, , , , ,

TE I TM II
y ynx

TE I TM I TE I TM II I
x x y yx nx

I
n I TE I TM I

ny x x

I I TE I TM I TE I TM I
y ny y y x x

H HJ

E E H HE J
j

J H H

E J E E H H

α

α

 +        + +  = =    +   −     + − +   

              (60) 

In the region “II” the current written: 

( )

( )
( )

, ,

, , , ,,

, ,

, , , , ,

TE II TM IIII
y ynx

TE II TM II TE II TM IIII II
x x y yx nx

II
n II TE II TM II

ny x x

II II TE II TM II TE II TM II
y ny y y x x

H HJ

E E H HE J
j

J H H

E J E E H H

α

α

 +        + +  = =    +   −     + − +   

            (61) 

2.3.8. Presentation of the Current and the Field at the Via-Hole 
Figures 9-11 for the fundamental mode, the appearance of the current J and E field at the via-hole, without the 
presence of the microstrip line. 
 

 
Figure 9. J current appearance at the via-hole for w = 5 mm. (a) in 3D, (b) in 2D for y = 63 pixels.                  

 

 
Figure 10. Appearance of the field E (x, y) at the via-hole for w = 5 mm. (a) in 3D, (b) in 2D for y = 63 
pixels.                                                                                         
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Figure 11. Appearance of the field E (x, y) at the via-hole for w = 15 mm. (a) in 3D, (b) in 2D for y = 
63 pixels.                                                                                                  

 
We note from this Figure 9 that the current is maximum at the via-hole and almost zero else. This clearly ve-

rifies the boundary conditions which validates the method of analysis used. 
We note from Figure 10 that the field is almost zero on the metal (at the via-hole). To better check the boun-

dary conditions we have increased the width of the via-hole 15 mm (Figure 11). We note that the field is zero on 
the metal. This clearly verifies the boundary conditions which validate even more the method of analysis used. 

3. Convergence of the Iterative Method 
The determination of the impedance input of the microstrip line, seen by the excitation source pass by a conver-
gence study. 

This Figure 12 shows that the number of iterations required for convergence of results is obtained from 200 
iterations for the imaginary part of the impedance input Ze and from 700 iterations for the real part of impedance 
input Ze. So the results obtained below are at the convergence. 

The speed of convergence of the iterative method FWCIP is solid compared to other numerical methods used 
to solve problems of electromagnetism. 

4. Validation of the Method 
4.1. Influence of Via-Hole on the Circuit Current 
The presence of the via-hole in the circuit changes the current waveform in the structure as shown in Figure 13 
and Figure 14. 

Figure 13 shows that the current is minimum at the end of the line open circuit (without the presence of the 
via-hole). Figure 14 shows that the current is maximum in the via-hole (the microstrip line connected to the 
ground through a via-hole). 

4.2. Validation of the Results of Different Simulations 
Figure 15 presents a comparison of the input impedance of a microstrip line connected to the ground through a 
via-hole with those calculated by the analytic formula ( )_ 1tgin cc cZ jZ l lβ= + ∆ . They show in good agreement. 
This provides the first validation of the analytical method used.  

Figure 16 shows that there is a good agreement between the results “variation of the input impedance ac-
cording to frequency” of a microstrip line short circuited by a via-hole and microstrip line short-circuited by the 
box through a metallic ribbon of the same size as the via-hole. This presents the second validation results. 

Figure 17 shows a comparison between the input impedance of a line connected to the ground through a 
via-hole and a line open circuit. 

Simulation results clearly show that it is a line short circuit “Ze_vh in the form jZc⋅tg(βL)” and a line open cir-
cuit “Ze_co in the form −jZc⋅cotg(βL)”. This validates even more the results of simulations found. 
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Figure 12. Convergence of the input impedance according to iterations for f = 1.8 GHz.                                  

 

 
Figure 13. Current presentation of a microstrip line in open circuit (without the pres-
ence of the via-hole).                                                                      

 

 
Figure 14. Current presentation of a microstrip line connected to the ground through a 
via-hole.                                                                 

 
Figure 18 shows a comparison between the input impedance calculated by our method and that calculated by 

Ansoft HFSS software that is based on the finite element method. The results show that they are in good agree-
ment. 

In our work we chose the frequency 5 GHz to calculate the electrical field present in the via-hole and we note 
the number of mode exists are 4 modes (Figure 4). 

Figure 19(a) shows the input impedance Ze according to the frequency and the number of modes. In this  
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Figure 15. Comparison Ze of a microstrip line connected to the ground through a via-hole with those calculated 
by the analytic formula.                                                                                                     

 

 
Figure 16. Variation of the input impedance of the microstrip line according to the frequency.                               

 

 
Figure 17. Variation of the input impedance of the microstrip line according to the frequency.                         
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Figure 18. Comparison between our results with those calculated by Ansoft HFSS software.                                 

 

 
Figure 19. (a) Variation of the input impedance of the microstrip line according to the fre-
quency; (b) Fluctuations similar to those observed by HFSS.                                       

 
Figure 19(a) we have presented a comparison between our iterative method while varying the number of mode 
(fundamental mode, two modes and then four modes). 

Based on the various simulations of Ze, we note that the convergence of our results to those of HFSS is  
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Figure 20. Resonance of the box.                                                        

 
observed from 4 modes over the entire frequency band used (domain resonance and off-resonance). However it 
was enough for only two modes to ensure the convergence of our results in the area off-resonance. 

Fluctuations observed in the result given by HFSS (Figure 19(a)) is basically caused by the resonance of the 
box (we even noticed this anomaly as shown in Figure 19(b)). 

In fact to justify this we perform the following operation: We took a metal box that contains only a planar 
source (without the microstrip line and the via-hole). 

The different results obtained by simulation, of the input impedance seen by the planar source at the input of 
the microstrip line (Ze) show the persistence of the same resonance in the absence of the microstrip line (Figure 
20), confirming the presence of a resonance of the box in the structure. 

Furthermore, the minimal difference observed between our results and those of HFSS (for the resonant fre-
quency of the box or line) (Figure 19(a) and Figure 19(b)) is mainly due to our initial hypothesis that is to neg-
lect the thickness of the metal strip of the line study, contrary to HFSS which requires a minimum thickness. 

5. Conclusion 
In this article we have presented an original extension of the iterative method “FWCIP” for the characterization 
of a planar circuit integrating a via-hole. The inclusion of the via-hole in the circuit has been well defined by 
writing the new formulation of the iterative process. This formulation is made by the construction of the reflec-
tion coefficients that takes into account the presence of the electromagnetic field created by the via-hole in the 
structure. The results of simulations satisfied the boundary conditions and the continuity of the field throughout 
the circuit. These results are also in good agreement with those calculated by HFSS software from Ansoft which 
validates the method of analysis used. 
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