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Abstract 
Lima is the capital of the Republic of Peru. It is the most important city in 
the country and as other Latin America metropolises have multiple prob-
lems, including air pollution due to particulate material above air quality 
standards, emitted by 1.6 million vehicles. The “on-line” coupled model of 
meteorology and chemistry of transport and meteorological/chemistry, 
WRF/Chem (Weather and Research Forecasting with Chemistry) has been 
used in the Lima Metropolitan Area, and validated against data observed at 
ground level with ten air quality stations of the National Service of Meteor-
ology and Hydrology for the year 2016. The goal of this study was to esti-
mate the concentration of PM2.5 particulate matter in the months of Feb-
ruary and July of 2016. In both months, the model satisfactorily predicts 
temperature and relative humidity. The average observed PM2.5 concentra-
tions in the month of July are higher than in February, probably because the 
relative humidity in July is greater than the relative humidity in February. 
In the months of February and July the standard observed deviations of the 
model have a factor of 2.4 and 3.7 respectively, indicating a greater disper-
sion in the data of the model. In the month of July, the model captures the 
characteristics of transport, shows characteristic peaks during peak hours, 
therefore, the model estimates transport behavior better in July than in 
February. The quality of the air is strongly influenced by the vehicular 
transport. The PM2.5 particulate material in February had an average bias 
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that varied from [−13.2 to 4.4 μg/m3] and in July [−9.63 to 11.65 μg/m3] and 
a normalized average bias in February that varied from [−0.68 to 0.43] and 
in July of [−0.46 to 0.48]. 
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1. Introduction 

Lima is the capital of the Republic of Peru. It is located on the country’s central 
coast, on the shores of the Pacific Ocean at 77˚W and 12˚S. The Lima Metropol-
itan Area (AML) is the most extensive and populated metropolitan area of Peru, 
with 2819.3 km2 [1], a population of 10.4 million inhabitants [2] and 1674,145 
million vehicles [3]; (http://www.inei.gob.pe/). Cities with over 10 million inha-
bitants are considered megacities [4] [5] [6] [7]. These megacities are the engines 
of growing economies, but are also very large sources of air pollutants and cli-
mate-forcing agents [8]. Uncontrolled urban sprawl has led to rising environ-
mental problems due to high traffic volume, irregular industry, etc. [5]. The 
growing problems of congestion, accidents, and lack of security are also worri-
some. Yet transportation is also a critical enabler of economic activity and bene-
ficial social interactions [9]. Transportation is a major source of air pollution in 
many cities [9] [10], especially in developing countries [9]. Air quality at urban 
background sites is strongly influenced by road traffic emissions, which is the 
most important emission source concerning its contribution to ambient PM le-
vels [11] [12]. Emitted primary and subsequently formed secondary gas- or par-
ticulate-phase pollutants [13], cause substantial health problems especially in 
megacities with rapidly growing industry and low pollution control [7] [14]. 
Particles in the atmosphere arise from natural sources, such as windborne dust, 
sea spray, and volcanoes, and from anthropogenic activities, such as fuel com-
bustion. Whereas an aerosol is technically defined as a suspension of fine solid 
or liquid particles in a gas [15], atmospheric particulate matter (PM) is one of 
the primary concerns in megacities, due to their association with health effects 
and environment problems [16] [17]. Particulate air pollution is a mixture of 
solid particles and liquid droplets that vary in size, composition, and origin. On-
ly very small particles can be inhaled into the lungs, inhalable particles include 
particles with an aerodynamic diameter of less than 10 µm, and fine particles; air 
pollution includes particles with an aerodynamic diameter equal to or below 2.5 
µm [16] [18]. Deterioration in urban environmental conditions can have serious 
effects on human health and welfare, particularly for the poor [9]. Epidemiolog-
ical studies suggest that exposure to (PM2.5 and PM10) atmospheric particulate 
matter can cause adverse effects, including coughing, respiratory stress in asth-
matics, and reduced lung function [17], bronchitis, and conjunctivitis [19]. 
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These studies have also shown that air pollution exposure is related with general 
morbidity and mortality due to respiratory and cardiovascular diseases [18] [19]. 
The ambient air in Peru is contaminated at a high level compared to other Latin 
American countries, according to a report by the World Health Organization 
(WHO) [20]. Lima is the only municipality reporting to the World Health Or-
ganization and has high levels of particulate matter contributing to poor air 
quality. Short term symptoms resulting from exposure to air pollution include 
itchy eyes, nose and throat, wheezing, coughing, shortness of breath, chest pain, 
headaches, nausea, and upper respiratory infections (bronchitis and pneumo-
nia). It also exacerbates asthma and emphysema. Long term effects include lung 
cancer, cardiovascular disease, chronic respiratory illness, and developing aller-
gies. Air pollution is also associated with heart attacks and strokes [21]. A study 
that relates the impact of vehicle flow with adolescent asthma in the city of Lima 
can be consulted in [22], while in [23], some Peruvian cities with PM air pollu-
tion problems are indicated. Problems of indoor air pollution in the periurban 
community of Lima by vehicular transport can be consulted in [24]. Deficiencies 
in public transport, as well as air pollution and proposals for improvements for 
transportation in Lima can be consulted in [25]. The poor air quality in the AML 
and its relationship with human deaths and other health problems that affect 
the population due to PM and other air pollutants, can be reviewed in [26] 
[27], and [28]. The goal of this study was to estimate the PM2.5 particulate 
matter concentration in the Metropolitan Area of Lima (AML) using the Eule-
rian WRF-Chem Model, in the months of February (summer) and July (winter) 
and was validated with measurements at ground level in the ten air quality sta-
tions of the National Service of Meteorology and Hydrology (SENAMHI) Lima, 
Peru. In order to improve the results of the model’s output, the MOS statistical 
technique was applied. Model Output Statistics (MOS) is a type of statistical 
post-processing, a class of techniques used to improve numerical weather mod-
els’ ability to forecast by relating model outputs to observational or additional 
model data (https://www.weather.gov/mdl/mos_home) [29]. The MOS was de-
fined by [30] as a multiple linear regression technique in which predicands (ob-
served data) are statistically related to one or more predictors (forecasts from a 
numerical weather prediction (NWP) model). 

2. Methodology 
2.1. Study Area 

The study area corresponds to the AML, that is located at coordinates (Longi-
tude: 77˚1'41.66W, Latitude: S12˚2'35.45S). The air quality data was provided by 
the ten monitoring stations of the National Service of Meteorology and Hydrol-
ogy of Peru (SENAMHI). In Lima, climate is very peculiar: it is a subtropical 
desert climate, with a warm season from December to April, and a cool, humid, 
and cloudy season from June to October, with May and November as transition 
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months. During summer, from December to April, sunshine is frequent, at least 
during the warmest hours of the day, while in the early hours of the day, fog may 
still form. Even in this season, at times banks of low clouds can form, though 
that is more rarely. The temperature is pleasantly warm. During winter, from 
June to September, the sky is almost always cloudy, and there is a kind of mist, 
garúa [drizzle], which can leave a bit of moisture on the ground. Temperatures 
are mild, but the lack of sunshine and high air humidity increase the feeling of 
coldness, also because houses are not heated. Thermal inversion favors the ac-
cumulation of pollutants on the ground, despite the proximity to sea 
(https://www.climatestotravel.com/climate/peru/lima). The meteorological data 
is reported in the Jorge Chavez International Airport  
(http://www.enperu.org/clima-capital-de-peru-lima-temperaturas-ciudad-de-li
ma-altitud-latitud-capital-peru.html). The average annual temperature is 19˚C 
with an annual summer maximum close to 29˚C. Summers, from December to 
April, have temperatures that range between 21˚C and 29˚C. Winters go from 
June to mid-September with temperatures ranging between 12˚C and 19˚C [31]. 
Figure 1 shows the location of the air quality stations on AML and Table 1 in-
dicates the coordinates of these stations of the National Service of Meteorology 
and Hydrology of Peru (SENAMHI). 

2.2. Observed Data 

The equipment used by the National Meteorology and Hydrology Service of Pe-
ru (SENAMHI), for the data collection, was the TEOM 1405 monitor and Model 
5014i Beta Continuous Ambient Particulate Monitor. The TEOM 1405 monitor 
uses a Tapered Element Oscillating Microbalance (TEOM) to provide measure-
ments with excellent short-term precision and account for volatile and nonvola-
tile PM fractions. “The TEOM 1405 Monitor is a real-time device used for mea-
suring the particulate matter mass concentration of particulate matter”. “The  
 
Table 1. Location of air quality monitoring stations of the National Service of Meteorol-
ogy and Hydrology of Peru: SENAMHI-Lima. 

Station/district in AML Latitude Longitude Elevation (m) 

CMD/Jesus Maria 12˚04'14.5'' 77˚02'35.5'' 110 

ATE/Ate 12˚01'34'' 76˚55'07'' 362 

SBJ/San Borja 12˚06'31.06'' 77˚00'27.96'' 136 

STA/Santa Anita 12˚02'34.8" 76˚58'17.12" 276 

CRB/Carabayllo 11˚54'7.88" 77˚2'1.10" 190 

HCH/Huachipa 12˚1'0.804" 76˚ 56'55.788" 294 

PPD/Puente Piedra 11˚51'47.7" 77˚4'26.86” 180 

SMP/San Martin de Porres) 12˚0'32.004" 77˚5'4.091" 56 

VMT/Villa María del Triunfo 12˚.9".59" 76˚.55'.12" 292 

SJL/San Juan de Lurigancho) 12˚1'0.804" 76˚59'55.78" 239 
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Figure 1. Geographical location of SENAMHI-Lima air quality stations. 

 
TEOM 1405 Monitor is a true gravimetric instrument that draws (then heats) 
ambient air through a filter at constant flow rate, continuously weighing the fil-
ter and calculating near real-time mass concentrations of particulate matter”. 
“The tapered element at the heart of the mass detection system is a hollow tube, 
clamped on one end and frees to oscillate at the other. An exchangeable TEOM 
filter cartridge is placed over the tip of the free end. The sample stream is drawn 
through this filter, and then down the tapered element. This flow is maintained 
at a constant volume by a mass flow controller that is corrected for local temper-
ature and barometric pressure” [32]. In this study the TEOM 1405 monitor was 
used to measure the mass concentration of PM10. “The Model 5014i uses the ra-
diometric principle of beta attenuation through a known area on a fibrous filter 
tape to continuously detect the mass of deposited ambient particles. Additional-
ly, the Model 5014i measures alpha particle emissions directly from the ambient 
aerosol being sampled and excludes negative mass artifacts from the daughter 
nuclides of radon gas decay to achieve a refined mass measurement. Simultane-
ous refined mass measurements of sampled particulate on the filter tape and 
sample volume measurement provide a continuous concentration measurement 
of ambient particulate concentration” [33]. In this work the Model 5014i Conti-
nuous Ambient Particulate Monitor continuously measures the mass concentra-
tion of PM2.5 by the use of beta attenuation. 

At each station, the available PM2.5 information was greater than 75%. The 
percentage of observed and [32] used PM2.5 data on a 29-day basis at each sta-
tion in the month of February was (CDM: 0%, ATE: 90.80%, SBJ: 100%, STA: 
100%, CRB: 86.10%, HCH: 81.90%, PPD: 78%, SMP: 86.20%, VMT: 0% and SJL: 
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100%), and in the month of July, it was (CDM: 100%, ATE: 90.80%, SBJ: 80.32%, 
STA: 0%, CRB: 89.84%, HCH: 0%, PPD: 100%, SMP: 93.55%, VMT: 93.55% and 
SJL: 100%). 

2.3. Model of Anthropogenic Emissions in the AML  

Because on-road vehicles are the most important sources of air pollution in 
AML, according to DIGESA, more than 78% of pollutant emissions are generat-
ed by vehicular emissions; the anthropogenic emissions of trace gases and par-
ticles in 5 km modeling domains were considered to include emissions only 
coming from on-road vehicles through the use of a vehicular emission model 
[34]. Then, vehicular emission in the AML for the WRF-Chem Model was esti-
mated using a Vehicular Emission Model-VEM developed by the IAG-USP’s 
Laboratory of Atmospheric Processes-LAPAt [34]. “This VEM model does not 
include point sources nor biogenic sources, and considers the number of ve-
hicles, vehicular emissions factors, and average driving kilometers for vehicle per 
day as basic parameters for the calculations of exhaust and evaporative emissions 
considering different vehicles types and different fuel types” [34]. “For the spa-
tial distribution of air pollution emissions, it is assumed that the vehicles within 
the modeling domain were distributed proportional to the road length in each 
grid cell” [12] [13] [35]. “Road length was calculated as the sum of five types of 
road (motorway, trunk, primary, secondary and tertiary) within each grid cell” 
[36]. “The road map is available on the Open Street Map project and extracted 
from the Geofabrik’s free download server (http://download.geofabrik.de/)” 
[36].  

2.4. Description and Configuration of the WRF/Chem Model 

WRF-Chem is the Weather Research and Forecasting (WRF) model coupled 
with chemistry [37]. The model simulates the emission, transport, mixing, and 
chemical transformation of trace gases and aerosols simultaneously with mete-
orology. The model is used for investigation of regional-scale air quality, field 
program analysis, and cloud-scale interactions between clouds and chemistry 
(https://www2.acom.ucar.edu/wrf-chem); WRF is non-hydrostatic [38] [39], 
with several dynamic cores as well as many different choices for physical para-
meterizations to represent processes that cannot be resolved by the model [37]. 
The WRF physics and chemical options fall into several categories, each con-
taining several choices. The physics categories are: microphysics, cumulus pa-
rameterization, planetary boundary layer (PBL), land-surface model, atmos-
pheric radiation, and diffusion [40]. The chemical categories are: several choices 
for gas-phase chemical mechanisms, photolysis schemes, aerosol schemes etc. 
[41]. To know which organizations participated in the design of the model, you 
can consult [42] [43]. For the implementation of WRF/Chem, the initial and 
frontier conditions of the Global Prediction System (GFS) were used (see Table 
2). The predicted data were used for each day at 00:00, 06:00, 12:00 and 18:00  
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Table 2. Main characteristics of the domain and initial and frontier data. 

Characteristics Domain 

Limits 
Between 13˚ and 11˚S 
Between 76˚ and 78˚W 

Dimensions (XYZ) 50 points × 50 points × 27 levels 

Horizontal Grid Resolution 5 km 

Center of Grid −12.4; −77.4 

Contour Conditions (CC) GFS* 0.25˚ × 0.25˚ forecast 

Frequency of Contour Conditions (GFS) 6 h 

 
hours of Coordinated Universal Time (UTC)  
(http://rda.ucar.edu/datasets/ds083.3/). This product is from the Global Data 
Assimilation System (GDAS), which continuously collects observed information 
from the Global Telecommunications System (GTS), and other sources for anal-
ysis. The analyses are available on the surface, at 27 mandatory levels of pressure, 
from 1000 millibars at sea level to 10 millibars in the boundary layer. Parameters 
include surface pressure, sea level pressure, geopotential height, temperature, sea 
surface temperature, soil values, ice sheet, relative humidity, zonal winds (u), 
and southern (v), vertical movement, vorticity, and ozone.  
(http://rda.ucar.edu/datasets/ds083.3/). In Table 2 the characteristic “DC Fre-
quency (Frequency of Contour Conditions)” refers to the frequency with which 
the boundary conditions are captured from the output of the base model, in this 
case, the GFS. Version 3.8.1 of the WRF/Chem air quality model was used for 
this study over AML [35]. The physical and chemical parameterization schemes 
used in this study are shown in Table 3. Details can be found in [35] [40]. 

With respect to the configuration model, the following studies can be consulted: 
on short-wave radiation and long-wave radiation [44] and [45] respectively, on 
planetary boundary layer (YSU) [46], on land-surface model [47], on cumulus 
cloud [48], on cloud microphysics [49], on photolysis scheme (Fast-J) [50], on 
gas-phase mechanism (RADM2) [51], and on aerosol option (MADE/SORGAM) 
[52]. This configuration does not consider point emissions or biogenic emis-
sions. 

2.5. Statistical Models and Improvement of the WRF-Chem  
Prognosis with MOS 

The mean bias (MB), normalized mean bias (NMB), and RMSE (Root Mean 
Squared Error) were used to evaluate the model performance in simulating 
aerosols [53] [54] [55]. 

( )
1

1MB
N

Ypi Xoi
N

= −∑                      (1) 

1

1NMB
N Ypi Xoi

N Xoi
− =  

 
∑                     (2) 
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Table 3. Configuration of the WRF-Chem for the simulations in Lima.  

Attributes Model configurations 

Simulation Period February (summer) and July (winter) 2016 

Domain AML 

Physical Options  

Short-wave Radiation Goddard 

Long-wave Radiation Rapid radiative transfer model 

Boundary Layer Scheme Yonsei University 

Land-surface Model Monin-Obukhov 

Cumulus Cloud Grell three-dimensional ensemble 

Cloud Microphysics Lin 

Chemical Options  

Photolysis Scheme Fast-J 

Gas-phase Mechanism RADM2 

Aerosol Option MADE/SORGAN 

 

( )2

1

1RMSE
N

Ypi Xoi
N

= −∑                    (3) 

where Xoi and Ypi are the average hourly observed and predicted data respec-
tively. In this study, a linear regression with a linear function was used to calcu-
late the regression coefficients, which are used to improve the prognosis. How-
ever, it is also possible to use linear regression with non-linear functions of the 
variables. The hourly values of the model Yp, have been improved by applying 
the MOS technique. The procedure is: 

Xoi a bYpi= +                          (4) 

Ynpi a bYpi= +                         (5) 

where a and b are the coefficients of the linear regression. Ynpi represents the 
improved value of the forecast. This scheme allowed us to generate new infor-
mation for each station, whose profiles are shown in Figures 7-16. 

3. Results and Discussion 
3.1. Characterization of Meteorological Data of the Global  

Forecasting System (GFS) for the Months of February and July  
2016 for Boundary and Initial Conditions of the Eulerian 
Model WRF-Chem in the AML 

Figure 2 shows the average fields of pressure at the mean sea level for the 
months of February (a) and July (b). In a general sense, it can be seen that there 
are no large differences in the circulation of air at low levels, and in both cases 
the predominant general flow in Lima is from the northeast. However, under 
certain conditions, local circulation may temporarily occur during the day, the 
general circulation varying to a certain extent. 
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(a)                                       (b) 

Figure 2. Average pressure fields at the mean sea level for the months of February (a) and 
July (b).  
 

Figure 3 shows the temperature field for the region, clearly marking a high 
thermal gradient between the coast and the mountain range. In this case, the 
temperatures over the AML in February (summer) vary between 20˚C and 21˚C, 
higher than in July (winter), below 19 ˚C. Figure 4 shows the average moisture 
values in the AML. In February and July the values oscillate around 93% and 
82% respectively. 

3.2. Temperature and Relative Humidity 

Table 4 shows average temperatures and relative humidity predicted in the 
months of February (summer season) and July (winter season) for the ten mon-
itoring stations. In February, global average values in the AML were 20.42˚C ± 
1.25˚C and 76.86% ± 8.10% respectively. The range of variation of these para-
meters were from [15.86 a 24.33˚C] and [47.06% to 100%] respectively. In the 
month of July (winter season) these average values were of 17.61˚C ± 1.11˚C and 
80.11% ± 5.60% respectively, with ranges of [13.03˚C to 23.49˚C] and [50.38% to 
98.08%].  

Figure 5 and Figure 6 show the average predicted and observed monthly 
temperature profiles for February and July at the CMD station. The model in 
February has a better performance than in July, which is corroborated by the 
statistical parameters with values closer to zero that are shown in Table 5, in July 
the model underestimates the observed data. In February the observed average 
daily values of temperature and relative humidity were 24.75˚C and 79.02% re-
spectively, with ranges of [23.55˚C to 26.27˚C] and [72.46% to 83.96%], and the 
values predicted averages were 21.29˚C, and 77.38% respectively with ranges of 
[20.39˚C to 22.14˚C] and [68.66% to 82.94%]. In the month of July, the average  
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(a)                                     (b) 

Figure 3. Average surface temperature fields for the months of February (a) and July (b). 
 

 
(a)                                     (b) 

Figure 4. Average relative humidity fields on the surface for the months of February (a) 
and July (b). 
 

 
Figure 5. Temperature profiles observed and predicted from average values at the CDM 
station in February and July. 
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Figure 6. Average relative humidity profiles of observed and predicted values at the CDM 
station in February and July. 
 
Table 4. Summary of the average hourly estimate of the temperatures and relative hu-
midity of February and July. The standard deviation SD is with respect to the average 
value.   

N Station 

Min Mean Max SD Min Mean Max SD 

February July 

Temperature ˚C, 2 m, 24 h 

1 CDM 21.31 24.41 29.09 1.49 13.77 14.85 15.82 1.04 

2 ATE 15.86 19.49 21.90 1.28 11.30 13.44 14.80 0.89 

3 SBJ 18.91 21.06 23.77 1.24 13.77 14.76 15.75 1.03 

4 STA 17.53 20.53 23.29 1.25 13.10 14.28 15.38 0.99 

5 CRB 20.28 24.34 30.30 1.66 12.27 13.75 15.11 0.94 

6 HCH 16.83 20.19 22.65 1.27 11.97 13.72 14.97 0.89 

7 PPD 18.03 20.72 22.53 1.24 13.03 14.39 15.48 1.00 

8 SMP 18.38 21.12 24.33 1.30 13.65 14.74 15.75 0.84 

9 VMT 17.18 20.06 22.31 1.25 13.39 14.49 15.52 0.99 

10 SJL 16.13 19.44 21.72 1.24 12.34 13.68 14.94 0.95 

  
RH %, 24 h 

1 CDM 54.31 77.51 95.80 6.99 64.04 83.22 94.57 6.03 

2 ATE 48.63 74.89 99.82 9.18 50.38 74.34 95.21 4.94 

3 SBJ 54.59 79.02 98.54 7.26 60.95 81.94 94.06 5.94 

4 STA 49.63 75.61 96.33 7.86 56.81 78.39 94.99 5.48 

5 CRB 47.06 72.99 100 8.81 55.24 78.23 95.72 5.33 

6 HCH 47.32 73.73 95.97 8.52 51.8 75.64 94.85 5.1 

7 PPD 48.76 75.21 97.45 8.23 55.38 78.95 96.58 5.39 

8 SMP 51.62 76.42 97.10 7.21 59.72 80.76 94.16 5.8 

9 VMT 59.77 86.51 100.00 7.94 67.32 91.19 98.08 6.62 

10 SJL 50.17 76.72 100.00 8.98 55.55 78.45 95.94 5.39 

https://doi.org/10.4236/ojap.2018.73011


W. Reátegui-Romero et al. 
 

 

DOI: 10.4236/ojap.2018.73011 226 Open Journal of Air Pollution 
 

Table 5. Average monthly statistics MB, NMB and RSME of temperature ˚C and RH% in 
the CDM station. 

Statistics February 
 

July 
 

 
Mean DS Mean DS 

Temperature 

MB −0.33 0.42 −2.01 0.57 

NMB −0.01 0.02 −0.12 0.03 

RMSE 0.44 0.28 2.01 0.57 

RH% 

MB 1.09 3.09 −3.03 2.96 

NMB −1.00 0.01 −0.03 0.03 

RMSE 2.75 2.24 3.32 2.62 

 
values were of 16.87˚C and 84.08% with ranges of [15.90˚C to 17.89˚C] and 
[80.67% to 90.91%] respectively, and the predicted average values were of 
14.85˚C and 83.17% with ranges from [15.82˚C to 13.77˚C] and [64.04% to 
94.57%] respectively.  

At the Alexander Von Humboldt Meteorological Station (location: 12˚4'55"S 
76˚56'20"W) of the National Agrarian University La Molina in the month of 
February, the average observed values of temperature and relative humidity were 
of 26.00˚C and 76.00%, and their ranges were from [21.80˚C to 29.90˚C] and 
[89.00 to 99.00%] respectively, and in the month of July the average values were 
17.00˚C and 88.20%, with ranges of [14.7˚C to 19.7˚C] and [78.8% to 96.9%] re-
spectively. 

At the Jorge Chavez International Airport meteorological station average val-
ues of temperature and relative humidity in the month of February were 25˚C 
and 79%, with ranges of [19˚C to 30˚C] and [49% to 100%] respectively, and in 
July these average were 17˚C and 83% and their ranges were [15˚C to 20˚C] and 
[68% to 96%] [56]. In the AML, the temperature and relative humidity in sum-
mer fluctuate in a range of 21˚C to 29˚C and 70% to 90% respectively, and in 
winter these parameters vary from 15˚C to 19˚C and 80% to 90% respectively 
[31]. 

3.3. Comparison Factors of Modeling and Observed PM2.5 

Table 6 shows the PM2.5 Mod/PM2.5 Obs and PM2.5 MOS/PM2.5 Obs factor at 
each station and month. There are no observed PM2.5 data at the CDM and 
VMT stations in the month of February, in the same way at the ATE, STA and 
VMT stations in July. If the factor is greater or less than unity, the model in gen-
eral overestimates and underestimates the observed data. As expected, February 
and July, this factor improved with the MOS as values got closer to the unit, ex-
cept in the case of the CRB station for July, this shows that if the model does not 
perform well the MOS will improve the predicted data but not too much. 
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Tabla 6. Factor F1 = PM2.5 Mod/PM2.5 Obs y F2 = PM2.5 MOS/PM2.5 Obs. 

Station CDM ATE SBJ STA CRB HCH PPD SMP VMT SJL 

Factor February 

F1 
 

1.18 0.32 0.49 1.10 1.43 0.58 0.60 
 

1.23 

F2 
 

1.06 1.06 1.08 1.00 1.07 1.01 1.04 
 

1.04 

 
July 

F1 1.30 
 

1.00 
 

1.48 
 

0.94 1.44 0.54 1.10 

F2 1.02 
 

1.02 
 

0.53 
 

1.00 1.03 1.08 1.01 

3.4. Statistical Parameters MB, NMB and RMSE in February and  
July at the 10 Stations 

Table 7 shows the MB, NMB and RMSE statistics. In general, the July values are 
smaller than the ones in February at the stations where it is possible to compare 
the statistics, with exception of RMSE in July. These values are higher than Feb-
ruary. It can be seen that the MOS improves the forecast, since these values are 
close to zero. 

Table 8 shows the values of the coefficients a and b calculated with equation 4 
for each station in February and July. The profiles of improved average values 
calculated with Equation (5) are shown in Figure 7. 

3.5. PM2.5 Spatial Distribution Characteristics 

For the month of July, Figure 7 shows the hourly profiles of average PM2.5 val-
ues observed, modeled, and improved with MOS at the CDM station. The aver-
age concentration of the observed values decreases between 0:00 and 5:00 hours. 
The model captures this detail underestimating it. After 06:00 the model overes-
timated the observed data showing two marked peaks of vehicular traffic at peak 
hours.  

The MOS, represented as a dotted line, as expected has a better response, as its 
values are around the observed average values as shown by its statisticians. The 
peak hours in the AML have been marked from 07:00 to 09:00 hours [57], and 
from 18:00 to 20:00 hours [58]. The average values observed in July, predicted 
and improved with the PM2.5 MOS were 14.83 ± 2.32, 19.25 ± 12.53, and 14.70 
± 0.59 μg/m3 respectively. Other studies in winter show that the observed and 
predicted average values were 36.0 and 18.1 μg/m3 [59]. In this case the model 
underestimated the observed data. The mean bias (MB) varied in a range of 
[−10.71 to 28.92 μg /m3], which indicates that the model underestimated and 
overestimated the observed data and its average value was 4.42 ± 12.18 μg/m3. In 
others studies in winter this value was −25.0 μg/m3 [60] and −17.9 μg/m3 [59]. In 
both cases the model underestimated the observed data. The mean normalized 
bias (NMB) varied in a range of [−0.73 to 1.61] with an average value of 0.30 ± 
0.79. In other studies this value was −0.50 [59] and −0.47 [60]. The mean root 
mean square error (RMSE) varied in a range of [5.42 to 32.72 μg/m3], with an  
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Table 7. Statistics at the ten AML stations. There are no observed PM2.5 data at the CDM 
and VMT stations in February, likewise at the ATE, STA and HCH stations in July. 

Station CDM ATE SBJ STA CRB HCH PPD SMP VMT SJL 

Statistics February 

MB WRF ND 3.24 −10.34 −11.16 −0.07 4.40 −13.20 −5.41 ND 3.32 

NMB WRF ND 0.18 −0.68 −0.51 0.01 0.43 −0.42 −0.40 ND 0.23 

RMSE WRF ND 23.01 12.23 15.36 20.05 17.83 19.02 9.57 ND 22.23 

MB MOS ND 0.18 0.09 0.87 0.05 0.04 28.49 12.37 ND 22.08 

NMB MOS ND 0.06 0.06 0.08 0.05 0.07 0.01 0.04 ND 0.04 

RMSE MOS ND 4.89 2.76 3.77 3.57 3.16 2.36 1.36 ND 4.28 

July 

MB WRF-Chem 4.42 ND 0.18 ND 11.15 ND −2.62 7.26 −9.63 2.69 

NMB 
WRF-Chem 

0.30 ND 0.00 ND 0.48 ND −0.06 0.44 −0.46 0.10 

RMSE 
WRF-Chem 

14.30 ND 14.42 ND 28.78 ND 20.05 18.45 15.07 23.00 

MB MOS-Chem −0.13 ND 0.18 ND −15.76 ND −0.25 −0.10 0.10 −0.28 

NMB 
MOS-Chem 

0.02 ND 0.02 ND −0.47 ND 0.00 0.03 0.08 0.01 

RMSE 
MOS-Chem 

1.76 ND 2.57 ND 15.76 ND 2.99 2.66 4.45 3.93 

 
Table 8. Linear regression coefficients a and b of PM2.5 MOS for February and July. 

N Station 
a b a b 

February July 

1 CDM - - 13.796 0.047 

2 ATE 23.513 0.031 - - 

3 SBJ 13.83 0.174 15.992 0.137 

4 STA 21.182 0.138 - - 

5 CRB 20.622 −0.003 15.992 0.137 

6 HCH 15.177 −0.039 
  

7 PPD 38.697 −0.671 38.793 −0.031 

8 SMP 14.576 −0.332 18.005 0.009 

9 VMT - - 15.795 0.417 

10 SJL 19.116 0.117 33.857 −0.015 

 
average value of 14.50 ± 6.93 μg/m3. In other studies in winter the value of RMSE 
was 55.3 μg/m3 [60]. 

For the month of February Figure 8 shows the hourly profiles of average 
PM2.5 values observed, modeled, and improved with MOS at the ATE station. 
The concentration profile of the observed average value shows an irregular  
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Figure 7. Concentration profiles of average hourly values of observed PM2.5, modeling, 
and MOS at the CDM station for the month of July 2016. There is no observed data for 
the month of February. 
 

 
Figure 8. Concentration profiles of average hourly PM2.5 values observed, modeling, and 
MOS at the ATE station for the month of February 2016. There is no observed data for 
the month of July. 
 
upward trend from 0:00 to 8:00 hours in the morning. Between 0:00 and 5:00 
hours in the morning there is a decrease in vehicular traffic, so this increase in 
concentration suggests that it is the product of industrial activities and/or 
transport of pollutants by air, since in the Lima-East zone, 20% of the industries 
of Metropolitan Lima are established there [58] [61]. In addition the lack of 
green areas in the area allows for the resuspension of particulate material. The 
mean hourly values observed, predicted, and improved with the PM2.5 MOS 
were 24.19 ± 6.11, 27.42 ± 17.82 and 24.36 ± 0.55 μg/m3 respectively. The mean 
bias (MB) varied in a range of [−24.47 to 27.99 μg/m3], which indicates that the 
model underestimated and overestimated the observed values. Its average value 
was 3.24 ± 18.61 μg/m3. In other studies this value was −8.8 μg/m3 [60], indicat-
ing that the model underestimated the measured data. The mean normalized bi-
as (NMB) varied in a range of [−0.78 to 1.40] with an average value of 0.18 ± 
0.80. In other studies this value was −0.122 (−12.2%) [60]. The mean square root 
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(RMSE) error varied in a range of [9.86 to 40.87 μg/m3], with an average value of 
23.01 ± 8.24 μg/m3. Other studies show that this parameter was 47.9 μg/m3 [60]. 

For the month of February and July Figure 9 shows the hourly profiles of av-
erage PM2.5 values observed, modeled, and MOS at the SBJ station. The average 
statistical parameters of observed PM2.5, model and MOS in February were 
14.45 ± 3.13, 4.10 ± 2.38 and 14.54 ± 0.51 μg/m3. The factor that relates PM25 
Mod/PM2.5 Obs is 0.28. Therefore, the model underestimated the observed data. 
In other studies this relation was 1.14 [60] and 1.13 [62]. In the month of July, 
the aforementioned average values were 18.72 ± 3.47 and 18.90 ± 11.89 and 
18.57 ± 1.63. μg/m3 respectively. In other studies, the average values observed 
and predicted were 30.31, 31.14 μg/m3 and 1.03 [62] respectively. In this case the 
model had an excellent performance. The mean bias (MB) in February varied in 
a range of [−17.46 to −1.95 μg/m3] with an average of −10.34 ± 5.05 μg/m3, 
which indicates that the model underestimated the observed data. In other stu-
dies this parameter was −8.8 μg/m3 [60]. In this case the model also underesti-
mated the observed values. The mean bias (MB) in July varied in a range of 
[−14.36 to 18.08 μg/m3] with an average value of 0.18 ± 10.83 μg/m3, so the 
model underestimated and overestimated the observed values. In others studies 
this value was −25.0 μg/m3 [60] indicating that the model also underestimated 
the observed values. The mean normalized bias (NMB) in February varied in a 
range of [−0.92 to −0.23] with an average of −0.68 ± 0.24. In other studies the 
value was −0.054 (−5.4%) [63].  

The mean normalized bias (NMB) in July varied in a range of [−0.78 to 1.03] 
with an average of 0.00 ± 0.56. In other studies this value was −0.50 [59]. The 
RMSE in February had a range of [4.74 to 18.92 μg/m3] with an average value of 
12.23 ± 4.43 μg/m3. In other studies this value was 12.68 μg/m3 [64]. While in 
July its range and average were [5.14 to 25.23 μg/m3] and 14.42 ± 5.55 μg/m3 re-
spectively. In other studies this value was 55.3 μg/m3 [60]. In both months the 
observed data show characteristics of vehicular traffic behavior, decrease of the  
 

 
Figure 9. Concentration profiles of average hourly PM2.5 values observed, modeling, and 
MOS at the SBJ station for the months of February and July 2016. 
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concentration between 0:00 and 5:00 hours, and an increase in PM2.5 concen-
tration between 6:00 and 9:00 hours that is when traffic activates. The model in 
July captures underestimated and overestimating the observed values of traffic 
behavior. The MOS improves the forecasts of the model in both months. 

At the STA station (Figure 10) the mean hourly PM2.5 concentrations ob-
served, predicted, and MOS were 21.78 ± 4.64, 10.62 ± 7.55 and 22.65 ± 1.04 
μg/m3 respectively. Other studies show that the mean values observed and pre-
dicted were 77.8 and 69.6 μg/m3 [59] respectively. The mean bias (MB) varied in 
a range of [−25.09 to 2.23 μg/m3] with an average value of −11.16 ± 8.23 μg/m3 
which indicates that the model underestimated the observed values. Other stu-
dies conducted in summer show that this parameter was −4.7 μg/m3 [60] which 
indicates that the model also underestimated the observed data. The NMB value 
ranged from [−0.86 (−86%) to 0.13 (13%)] with an average value of −0.51 ± 0.37. 
Other studies show that this parameter was 2.73%] [62]. The RMSE varied in a 
range of [9.10 to 26.16 μg/m3] with an average value of 15.36 ± 4.77 μg/m3. In 
another study this value was 8.94 μg/m3 [65]. As expected, the MOS improves 
the predicted values and has a better performance. 

At the CRB station (Figure 11), in February, the mean hourly PM2.5 concen-
trations observed, predicted, and MOS were 21.51 ± 4.32, 20.44 ± 14.83 and 
20.56 ± 0.04 μg/m3 respectively. The greater standard deviation of the model 
means that there is greater dispersion in the forecast and more uniform data in 
the improved forecast. The PM2.5 Mod/PM2.5 Obs factor is 0.96, and in other 
studies these values were 12.6, 8.6 μg/m3 and 0.68 [38]. In the month of July, 
these average values were of 31.53 ± 7.46, 42.69 ± 19.56 and 15.80 ± 0.92 μg/m3 
respectively with a PM2.5 Mod/PM2.5 Obs factor of 1.48. Other studies show 
that these parameters were 30.31, 31.14 μg/m3 and 0.97 [62] respectively. The 
mean bias (MB) in February was maintained in a range of [−23.65 to 20.81 
μg/m3] so that the model underestimated and overestimated the observed values, 
and its average value was −0.07 ± 17.20 μg/m3. In other studies in the summer  
 

 
Figure 10. Concentration profiles of average hourly PM2.5 values observed, modeling, 
and MOS at the STA station for the month of February 2016. There is no observed data 
for the month of July. 
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Figure 11. Concentration profiles of average hourly PM2.5 values observed, modeling, 
and MOS at the CRB station for the months of February and July 2016. 
 
season this parameter was −2.0 μg/m3 [66] indicating that the model underesti-
mated the observed average values, while the average bias (MB) in July varied in 
a range of [−15.43 to 55.13 μg/m3], with an average value of 11.15 ± 22.90 μg/m3, 
the data observed were underestimated and overestimated by the model. 

In other studies the average was 5.4 μg/3 [67] indicating that the model over-
estimated the observed data. The NMB remained in a range of [−0.87 (−87%) to 
1.18 (118%)] with an average value of 0.10 ± 0.84. In other studies the values 
were −8.8% (−0.088) [68] and 47% (0.47) [69]. In these cases the model underes-
timated and overestimated the observed values. The mean normalized bias 
(NMB) in July varied in a range of [−0.50 to 2.69] with an average value of −0.48 
± 0.92. In other studies, the average value was 0.04 [70]. The error of the mean 
square root (RMSE) in February varied in a range of [9.29 to 25.56 μg/m3], with 
an average value of 20.05 ± 3.90 μg/m3. In other studies the value was 47.9 μg/m3 
[60]. While in July this parameter varied in a range of [13.45 to 57.56 μg/m3] 
with an average value of 28.80 ± 12.32 μg/m3. In other studies the average value 
was of 55.3 μg/m3 [60]. The data observed in July exceeded the air quality stan-
dard 20 times and in February 4 times. 

At the HCH station (Figure 12) the mean hourly PM2.5 concentrations ob-
served, predicted, and MOS in February were 14.40 ± 4.42, 18.89 ± 13.41 and 
14.44 ± 0.52 μg/m3 respectively and the factor PM2.5 Mod/PM25 Obs was 0.76. 
The improved forecast has the lowest standard deviation, which means less dis-
persion. That is, a greater uniformity in the data. In studies such as that of [38] 
the average values observed and predicted were 12.6 and 8.6 μg/m3 with a factor 
of 1.47. The mean bias (MB) varied in a range of [−17.20 to 23.82 μg/m3] with an 
average value of 4.50 ± 14.75 μg/m3, which indicates that the model underesti-
mated and overestimated the observed values. In other studies this parameter 
was 9.5 μg/m3 [71] which indicates that the model underestimated the observed 
data. The mean normalized NMB bias varied in a range of [−0.74 to 2.18] with 
an average value of −0.43 ± 1.12, and 18.8% (0.188) [71]. Mean root mean square  
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Figure 12. Concentration profiles of average hourly PM2.5 values observed, modeling, 
and MOS at the HCH station for the month of February 2016. There is no observed data 
for the month of July. 
 
error (RMSE) varied in a range of [7.52 to 31.11 μg/m3], with an average value of 
17.83 ± 8.20 μg/m3. In other studies the average value was 30.5 μg/m3 [60]. 

At the PPD station (Figure 13), in February, the mean hourly PM2.5 concen-
trations observed, forecast, and MOS were 28.41 ± 5.05, 15.21 ± 6.20 and 28.49 ± 
4.16 μg/m3 respectively with a factor PM2.5 Mod/PM2. 5 Obs of 0.54. These av-
erage values in the study of [72] were 24 and 31 μg/m3 with a factor of 1.29. The 
average values for July were 37.95 ± 3.47 and 35.33 ± 16.01 and 37.70 ± 0.50 
μg/m3 respectively. The model shows greater dispersion than the observed data, 
which is graphically confirmed and by its greater standard deviation. In the cities 
of Beijing and Tianjin in winter, average observed and predicted data were re-
ported of 190 and 135.71 μg/m3 [73] and 99 ± 54, 55 ± 32 μg/m3 [74] respective-
ly. The average values observed exceeded the air quality standard in February 
from 7:00 hours and in July 24:00 hours. This area is urban and has massively 
circulating vehicles of different categories: urban, interprovincial, and heavy 
cargo transport.  

The mean bias (MB) in February varied in a range of [−29.64 to 1.42 μg/m3] 
with an average value of −13.20 ± 10.70 μg/m3, which indicates that the model 
underestimated and overestimated the observed values. In the studies conducted 
by [65] and [60] the values of this parameter were −5.9173 μg/m3 and −28.9 
μg/m3 respectively, in both cases the model underestimated the values observed. 
In July its range was from [−5.85 to 30.49 μg/m3] with an average of −2.62 ± 
16.80 μg/m3, the model underestimated and overestimated the observed values. 
This parameter was −54.29 μg/m3 [74] and 17.7 μg/m3 [67]. In the first case, the 
model underestimates, and in the second case, it overestimated the observed 
values. The mean normalized bias (NMB) in February varied in a range of 
[−0.78 (78%) to 0.07 (7%)] with an average value of −0.42 (42%) ± 0.32 (32%). 
This parameter in the studies carried out in the summer season by [65] and [60] 
were −31.84% and −18.5% respectively. The mean normalized bias (NMB) in 
July varied in a range of [−0.68 to 0.90] with an average value of −0.06 ± 0.46,  
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Figure 13. Concentration profiles of average hourly PM2.5 values observed, modeling, 
and MOS at the PPD station for the months of February and July 2016. 
 
indicating a general error of −6%. In other studies this value was of 15.9% 
(0.159) [67] and 0.03 (3%) [62]. The mean square root (RMSE) error in February 
varied in the range of [8.28 to 31.84 μg/m3], with an average value of 19.07 ± 7.24 
μg/m3. In the study conducted by [60] this parameter was 30.5 μg/m3. The error 
of the mean root mean square (RMSE) July varied in a range of [10.98 to 32.15 
μg/m3] with an average value of 20.05 ± 6.26 μg/m3. In the study conducted by 
[67] the value of this parameter was 92.39 ± 0.83 μg/m3 [73]. 

At the SMP station (Figure 14) the observed, predicted, and MOS average 
concentrations in February were 12.04 ± 2.00, 6.63 ± 4.35 and 12.50 ± 1.33 μg/m3 
respectively with a PM2.5 Mod/PM2.5 Obs factor of 0.55. These average values 
in the [72]’s study were 42.5 and 37.9 μg/m3 with a factor of 0.89 and 9.33, 12.23 
μg/m3 with a factor of 1.31 [75]. The average values in July were of 18.34 ± 3.26, 
25.60 ± 15.55 and 18.24 ± 0.14 μg/m3 respectively. In the study of [67] the values 
were 111.32 and 135.02 μg/m3 respectively. The mean bias (MB) in February va-
ried in a range of [−12.30 to 6.10 μg/m3] with an average value of −5.41 ± 5.70 
μg/m3, which indicates that the model underestimated and overestimated the 
observed values. In other studies in the summer season this parameter was 0.12 
μg/m3 [76] which indicates that the model has a good performance and a slight 
overestimation and −4.43 μg/m3 [62]. In this case the model underestimated the 
observed values.  

The mean bias (MB) in July varied in a range of [−3.94 to 37.75 μg/m3] with 
an average value of 7.26 ± 15.77 μg/m3, which indicates that the model underes-
timated and overestimated the observed values. Other Winter studies show that 
the values of this parameter were 17.7 μg/m3 [67] and −6.00 μg/m3 [72], indicat-
ing that the model underestimated and overestimated the observed values. The 
mean normalized bias (NMB) in February varied in a range from [−0.83 to 0.75] 
with an average value of −0.40 ± 0.48. In other studies this value was 2.2% 
(0.022) [76] and −12.2 [60]. This parameter in July varied in a range of [−0.70 to 
2.05] with an average value of 0.44 ± 0.89. In other studies this value was 0.159  
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Figure 14. Concentration profiles of average hourly PM2.5 values observed, modeling, 
and MOS at the SMP station for the months of February and July 2016. 
 
[67] and 0.03 [62]. The mean square root (RMSE) error in February varied in a 
range of [4.85 to 13.82 μg /m3], with an average value of 9.57 ± 2.56 μg/m3. In 
other studies in the summer season, these parameters were 47.9 μg/m3 and 0.5 
[60] and 12.68 μg/m3 and 0.42 [64]. In July the range of this parameter was of 
[7.47 to 41.49 μg/m3] and its average of 18.45 ± 8.89 μg/m3. In other studies for 
the winter season the RMSE values were 55.3 μg/m3 [60] and 10.9 μg/m3 [72]. 

At the VMT station (Figure 15), the average observed, forecast and MOS 
hourly concentrations in July were 20.02 ± 6.36, 10.39 ± 5.86 and 20.13 ± 2.45 
μg/m3 respectively with a PM2.5 Mod/PM2.5 Obs factor of 0.52. At the Arese 
station (Italy) the values were 71.3 ± 30.7, 21.4 ± 7.65 μg/m3 respectively with a 
factor of 0.43 [77]. The mean bias (MB) varied in a range of [−0.90 to 3.18 
μg/m3], with an average value of −9.63 ± 6.70 μg/m³. The model mostly underes-
timated the observed value. In other studies the average values were 17.7 μg/m3 
[64] and 5.8 μg/m3 [72]. In both cases the model overestimated the observed 
values. The mean normalized bias (NMB) varied in a range of [−0.87 to 0.22] 
with an average of −0.46 ± 0.32. Other studies show that this value was 0.15 [72], 
and 47% (0.47) [69]. The root mean squared error (RMSE) varied in a range of 
[5.14 to 29.30 μg/m3] with an average value of 15.07 ± 6.52 μg/m3. In other stu-
dies, these values were 15.4 μg/m3 and 0.61 [72].  

At the SJL station (Figure 16) the observed, predicted, and MOS average 
concentrations in February were 22.02 ± 4.40, 25.34 ± 17.51 and 22.08 ± 2.05 
μg/m3 respectively with a PM2.5 Mod/PM2.5 Obs factor of 1.15. In the study di-
rected by [38] these parameters were 12.6 and 8.6 μg/m3 and 0.68, and in that of 
[62] of 38.13, 33.70 μg/m3 and 0.88. In July, the values of this parameter were 
33.67 ± 4.39, 36.36 ± 16.67, 33.31 ± 0.25 μg/m3 respectively, with a factor of 1.08. 
In the study directed by [64], values were 13.73 and 11.80 μg/m3 respectively, 
with a factor of 0.86, and in the study of [72], they were 42.5 and 37.9 μg/m3 with 
a factor of 0.89. The mean bias (MB) in February varied in a range of [−24.95 to 
33.98 μg/m3], with an average value of 3.32 ± 19.51 μg/m3. The model underes-
timated and overestimated the observed values. In other studies the average  
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Figure 15. Concentration profiles of average hourly PM2.5 values observed, modeling, 
and MOS at the VMT station for the month of July 2016. There is no observed data for 
the month of February. 
 

 
Figure 16. Concentration profiles of average hourly PM2.5 values observed, predicted, 
and MOS at the SJL station for the months of February and July 2016. 
 
values in summer were −4.43 μg/m3 [62] and −1.41 μg/m3 [64]. In both cases the 
model overestimated the observed values. In July this parameter varied in a 
range of [−22.72 to 32.35 μg/m3] with an average value of 2.69 ± 17.55 μg/m3, 
which indicates that the model underestimated and overestimated the observed 
values. In other studies the values of this parameters were 17.7 μg/m3 [62] and 
−4.20 μg/m3 [72]. In the first case, the model overestimated, and in the second 
case, underestimated the observed values. The mean normalized bias (NMB) in 
February varied in a range of [−0.82 to 2.03] with an average value of 0.23. ± 
0.20, in other summer studies this parameter was −11.6% (−0.12) [62], −10.6% 
(−0.11) [59]. This parameter in July varied in a range of [−0.67 to 1.10] with an 
average value of 0.10 ± 0.53. In other winter studies the values of this parameter 
were 15.9% (0.159) [67] and −49.8% (0.498) [59]. The mean square root (RMSE) 
error in February ranged from [11.98 to 39.90 μg/m3] with an average value of 
22.23 ± 7.37 μg/m3. In other studies, the value of this parameter was 47.9 μg/m3 
[60] and 12.68 μg/m3 [64]. In July, its range was [10.41 to 38.08 μg/m3] with an 
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average value of 23.00 ± 8.74 μg/m3. In other studies, the average values were 
55.3 μg/m3 [60] and 28.8 μg/m3 [59].   

4. Conclusions 

Some possible reasons why a numerical model of time underestimates or overes-
timates the measured concentrations of particulate matter are: 1) There is un-
certainty in the emissions inventory. At this point there is a consensus, as many 
investigations mention it. Comparisons of emission inventories have revealed 
large differences in emission estimates, finding that differences for example in 
primary organic carbon emissions can be as high as 140% [78], the emissions 
inventory can introduce errors of the order of 40 up to 70% in PM [78]. 2) The 
WRF/Chem, being a complex numerical model of time, requires simplifications 
in its parameterizations in order to evaluate the different physical and chemical 
parameters, and the finite difference method is the most used. Therefore, the 
model naturally has uncertainties. Different types of uncertainties are mentioned 
in [79]. 3) The biases depend on several factors such as the inventory of emis-
sions used, the horizontal resolution, and selected parameterizations [38] [80]. 

1) From the analysis of the meteorological parameters, temperature and rela-
tive humidity, the model in February and July satisfactorily simulated these pa-
rameters.   

2) The average PM2.5 concentrations observed in the month of July are higher 
than in February, probably because the relative humidity in July 2016 was higher 
than the relative humidity in February 2016. 

3) The standard deviations of PM2.5 concentrations observed in February are 
higher than in July, except for the CRB and SBJ stations, which is indicated by a 
greater dispersion of the observed data. 

4) The standard deviations of the PM2.5 model in February are greater than 
those observed, generally by a factor of 2.5, indicated by a greater dispersion of 
model data with the exception of the SBJ station. 

5) The standard deviations of the PM2.5 model in July are greater than those 
observed, in general by a factor of 3.2, indicated by a greater dispersion of the 
model data, with the exception of the VMT station. 

6) In February, the air quality standard (PM2.5, 25 μg/m3) was exceeded at the 
PPD station and in July at the CRB, PPD, VMT and SJL stations. Living in an 
environment where air quality is poor, poses a risk to people’s health, and re-
duces life expectancy. 

7) The vehicle flow in the AML decreases from 0:00 to 5:00 hours. Therefore, 
the concentration of the particulate PM2.5 material decreases. The average value 
profiles at the CDM, SBJ, STA, CRB, PPD, SMP, SJL stations (only in July) cap-
ture this behavior in both months. However, at the ATE, HCH, VMT and SJL 
stations (February) the trend is the increase in concentration, probably by re-
ceiving contributions from air transport. 

8) From 0:00 to 5:00 hours, the PM2.5 model at CDM (overestimated), ATE 
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(overestimated), SBJ (underestimated), STA (underestimated and overesti-
mated), CRB (February: overestimated, July: underestimated), HCH (overesti-
mated), PPD (February, underestimated and overestimated, July: underesti-
mated), SMP (February: underestimated and overestimated, July: underesti-
mated), VMT (underestimated), SBJ (February: overestimated, July, underesti-
mated). 

9) The PM2.5 model better estimates the behavior of vehicular traffic in July 
than in February. 

10) In all cases, the concentration profiles of the values improved with MOS 
are close to the profiles of average values observed. 
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