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Abstract 
In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 
different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-de- 
signed Wireless Gait Analysis Sensor (WGAS). In order to perform automatic fall detection, we 
used Back Propagation Artificial Neural Network (BP-ANN) and Support Vector Machine (SVM) 
based on the 6 features extracted from the raw data. The WGAS, which includes a tri-axial accele-
rometer, 2 gyroscopes, and a MSP430 microcontroller, is worn by the subjects at either T4 (at back) 
or as a belt-clip in front of the waist during the various tests. The raw data is wirelessly transmit-
ted from the WGAS to a near-by PC for real-time fall classification. The BP ANN is optimized by vary- 
ing the training, testing and validation data sets and training the network with different learning 
schemes. SVM is optimized by using three different kernels and selecting the kernel for best classi- 
fication rate. The overall accuracy of BP ANN is obtained as 98.20% with LM and RPROP training 
from the T4 data, while from the data taken at the belt, we achieved 98.70% with LM and SCG 
learning. The overall accuracy using SVM was 98.80% and 98.71% with RBF kernel from the T4 
and belt position data, respectively. 
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1. Introduction 
It is estimated that one third of the senior citizens in the United States (i.e., around 12 million people) fall each 
year, which often results in serious injuries [1]. Falls in elderly persons living alone can be especially dangerous. 
Therefore, it is important to introduce a highly accurate and easy-to-wear fall detection device that can wire-
lessly detect and record real-time falls for the aging population. We have performed investigation using our 
custom sensor without the wireless feature and achieved 100% accuracy in identifying all 60 falls vs. the Activi-
ties of Daily Living (ADL) with no false positives on young volunteers using threshold based algorithms [2]. 
For this current work, the sensor is wireless and allows for real-time untethered testing for not only fall detec-
tions, but also for gait analysis [2] [3]. This paper reports our new Wireless Gait Analysis Sensor (WGAS) used 
specifically for real-time automatic fall detection with an efficient Back Propagation Artificial Neural Network 
(BP ANN) algorithm with different training schemes and Support Vector Machine (SVM) with different kernel 
functions. This WGAS is placed and tested at two different positions on the body: at the T4 position and at the 
Belt position using a belt clip as shown in Figure 1. 

For the learning of BP ANN and SVM, the following 6 features ( Rω : Range of angular velocity; AR : Range 
of acceleration) as shown in Equations (1) and (2) were extracted from the raw data taken from WGAS. They 
are used to perform real-time fall detection as supplied as inputs to these classifiers. 

( ) ( ) ( ) ( ) ( ) ( ), , ,max min , max min , max min ,x x x y y y z z zR R Rω ω ωω ω ω ω ω ω= − = − = −            (1) 

( ) ( ) ( ) ( ) ( ) ( ), , ,max min , max min , max min .A x x x A y y y A z z zR A A R A A R A A= − = − = −            (2) 

2. Wireless Gait Analysis Sensor 
The custom-designed WGAS consists of a 3-axis linear accelerometer, a single axis gyroscope, and a dual axis 
gyroscope to measure 3-D human body translations and rotations during a gait pattern with the help of the Micro- 
Electrical and Mechanical System (MEMS) sensors integrated on a PCB. This WGAS system is supported by a 
Texas Instruments (TI) MSP430 microcontroller, and a wireless 2.4 GHz USB transceiver using the SimpliciTI™ 
protocol with a range of ~12 meters (40 ft). An overall simplified system block diagram for the WGAS fall detec-
tion system is shown in Figure 2. The 2 AAA batteries used in our earlier wired sensor [2] were replaced by  
 

   

 
Figure 1. Sensor orientation and location at the belt position on a belt clip 
(left) and at T4 (right).                                                   
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Figure 2. A simplified block diagram of the WGAS fall detection system.                                                 
 
a single rechargeable Li-ion coin battery, providing a battery lifetime of ~40 hours continuous operation time with 
each recharge. The PCB, coin battery and the microcontroller are placed in a specially designed 3D printed box 
( )2.2 1.5 0.8′ ′ ′× ×  with a total weight of 42 grams. The design of the box was done with a 3D modeling software 
Rhinoceros (Rhino) and printed using a 3D printer with Acrylonitrile Butadiene Styrene (ABS) plastic. The box 
has a sliding lid and shown in Figure 3. 

The accelerometer data is sampled at 160 Hz and digitized to 8 bits, with its output scaled to ±6 g at 
Δ 6 g DDV V= ±  ( )3.6 VDDV =  for each axis. The gyroscope data is also sampled at 160 Hz and digitized to 8 
bits, with its output scaled to 300˚ per sec. (dps) at Δ 300 dpsV So= ±  (Note the typical So  (sensitivity) 
value is 3.752 mV/dps for the accelerometer and 3.33 mV/dps for the gyroscopes). The sensor orientation and 
positions on the body are shown in Figure 1. The sensor is carefully secured to the subjects during testing to 
avoid artifacts. The microcontroller and the transceiver unit enables the real-time transmission of the 6-dimen- 
sional gait data wirelessly to the nearby PC, where a LABVIEW™ program is used for designing the Graphical 
User Interface (GUI) (Figure 4). 

Testing Protocol 
First falls [4] were performed on a cushion mattress bed by two young volunteers wearing the WGAS at T4 and 
on the belt (see Table 1 with 10 types of falls). The total number of falls was 101 (51 at T4 and 50 at belt). For 
the ADL tests [4], same volunteers performed every ADL recorded in Table 2 (note this includes picking up an 
object test #7), and the aggregate number of ADLs was 69 (34 at T4 and 35 at belt). For the DGI tests [5], the 
same volunteers performed every DGI test in Table 3, with 152 tests taken in total (82 at T4 and 70 at belt). 

3. BP ANN Algorithm 
For training the feed-forward ANN classifier, back propagation was applied according to Duda et al. [6] and a 3- 
layer system was picked as the standard BP ANN [7]. The input layer of the network has six neurons which cor-
respond to the six input feature values. There is one hidden layer holding 10 hidden neurons, which number was 
optimized by adjusting the size of hidden neurons (from one to 15) as shown in Figure 5, where two output 
neurons corresponding to the two target classes the network needs to differentiate (i.e., the features of all falls 
are considered as Class 1, and all DGI and ADL are as Class 2). The essential idea of the back propagation 
learning algorithm [8] is the repeated application of the chain rule to calculate the impact of each weight in the 
network by taking an arbitrary error function E in to account as shown in Equation (3): 

i i

ij i i ij

s netE E
w s net w

∂ ∂∂ ∂
=

∂ ∂ ∂ ∂
                                      (3) 

where wij is the weight from neuron j to neuron i, si is the output, and neti is the weighted sum of the inputs of 
the neuron i. After calculating the derivative of each weight, the error function is minimized by following a simple 
gradient decent rule in Equation (4): 

( ) ( ) ( )1ij ij
ij

Ew t w t t
w

ε ∂
+ = −

∂
                                   (4) 
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Figure 3. Physical structure of our custom-designed WGAS. 

 

 
Figure 4. GUI designed in LABVIEWTM for our real-time fall detection system using the WGAS, indicating a fall occurred 
after 8.765 sec.                                                                                                 
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Figure 5. The 3-layer BP ANN topology used in this work.                                

 
Table 1. Intentional falls performed in this work.                                                                         

Test No. Description 

1. Fall back with legs straight 

2. Fall forward with legs straight 

3. Fall back with knees bent 

4. Fall forward with knees bent 

5. Fall left with knees bent 

6. Fall right with knees bent 

7. Fall left with legs straight 

8. Fall right with legs straight 

9. Fall while sitting on a chair 

10. Trip over a small object 

 
Table 2. Activities of Daily Living (ADL) movements performed.                                                          

Test No. Description 

1. Sitting down and standing up from an armchair 

2. Sitting down and standing up from a low stool 

3. Sitting down and standing up from a bed 

4. Lying down and standing up from a bed 

5. Walking 10 m 

6. Stretching while standing 

7. Picking up an object from the floor 

 
Table 3. Dynamic Gait Index (DGI) tests performed.                                                                     

Test No. Description 

1. Gait level surface-walk with the normal speed up to 20' mark 

2. Change in Gait speed-walk with normal pace up to 5', walk fast for next 5', walk slowly 
for next 5' and walk normal for last 5' 

3. Gait with horizontal head turns-walk normal with horizontal head turns up to 20' mark 

4. Gait with vertical head turns-walk normal with vertical head turns up to 20' mark 

5. Gait and pivot turn-walk normal but at the end turn around like a pivot turn 

6. Step over obstacle-walk normal and when you come across obstacle step over not around 

7. Step around obstacles-walk normal and when 1st obstacle comes across, walk around right 
side and when 2nd obstacle comes across walk around left 
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Clearly, the decision of the learning rate ε, which scales the derivative, has a critical impact on the time re-
quired until convergence is arrived. If the learning rate is set too small, numerous steps are expected to achieve 
an acceptable solution. On the contrary, a large learning rate will possibly lead to oscillation, preventing the error to 
fall below a certain value. The training of the BP ANN is done by using three different learning algorithms dis- 
cussed below. 

3.1. BP ANN with Scaled Conjugate Gradient (SCG) Learning 
The basic back propagation algorithm alters the weights of the network following the steepest descent direc-
tion (negative direction of the slope). In this direction the performance function decreases most rapidly along 
the negative direction of slope. However, convergence may not be achieved even though the decrease is more 
rapid. Therefore, conjugate gradient methods are used which can generally produce faster convergence than 
gradient descent techniques by performing a search in all the gradient directions to determine the step size 
obtained by the learning factor. The training of the ANN classifier used in this work is done by the scaled 
conjugate gradient (SCG) back propagation method developed by Moller [9]. This SCG algorithm performs 
the search and chooses the step size by using the information from the second order error function from the 
neural network. The SCG training is optimized by the parameter sigma σ (which determines the change in 
weight for the second derivative approximation) and lamda λ (which regulates the indefiniteness of the Hessian). 
The values of σ and λ were taken as 55 e−⋅  and 75 e−⋅ , respectively. 

3.2. BP ANN with Levenberg-Marquardt (LM) Learning 
The second training method for BP ANN is done by the Levenberg-Marquardt algorithm [10], which is used to 
speed up the training of second order approximations without having to calculate the Hessian matrix. If the per-
formance function has the sum of squares (typical in training feed-forward networks) then the Hessian matrix 
can be approximated as: 

TH J J= ⋅                                            (5) 
And the gradient can be calculated as 

Tg J= ⋅e                                            (6) 

where J is the Jacobian matrix, which has the first derivatives of the network errors with respect to the weights 
and biases, and e is a vector that contains the network errors. 

To make sure the H is always invertible, the LM algorithm introduces another approximation to the Hessian 
matrix using. 

TH J J µ= ⋅ + ⋅ I                                         (7) 

where µ is called combination coefficient and is always positive and I is the identity matrix. The LM algorithm 
does the training according the scalar parameter µ. If the value of µ is zero, this algorithm reduces to the Hessian 
matrix approximation; and if the value of µ is large, this becomes a gradient descent algorithm with small step 
size. The LM training is optimized by the parameter µ (i.e., the combination coefficient). As µ can either be 
small or large, its value is initialized to 0.001 and the maximum value is set to 101 e⋅ , with a decrease factor of 
0.1 and an increase factor of 10. 

3.3. BP ANN with Resilient Propagation (RPROP) 
In training the feed-forward ANN we generally use sigmoid transfer functions in the hidden layer that are cha-
racterized by the principle that its slope must reach zero as the input gets large. This can cause problems because 
if the gradient gets too small, there is a chance that we can only apply small changes in the weights and biases of 
the network, even though they are far from their global optimal values. Therefore, the reason for using the resi-
lient back propagation (RPROP) is to eliminate these undesired effects [11]. Only the sign of the derivative can 
determine the weighting update; the magnitude of the derivative has no effect on updating the weights. The 
RPROP training is optimized by choosing W∆  (Initial weight change) to 0.07, the weight change increment to 
1.2, and the weight change decrement equals to 0.5. 
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4. Support Vector Machine (SVM) 
Support Vector Machine (SVM) is a method for patterns recognition/classification on two categories with su-
pervised learning. SVM-light, one of the implementation of SVM proposed by Thorsten Joachims [12] [13], is 
applied to classification of experimental data into falls, DGI and ADL. 

4.1. Linear SVM Classification 
The optimization algorithm for linear classification was proposed by Vapnik [14]. This algorithm finds the maxi- 
mum-margin hyper-plane from given training data set D as described in Equation (8): 

( ) { }{ }
1

, , 1,1
np

i i i i i
D y y

=
= ∈ ∈ −x x                                  (8) 

where iy  is either 1 or 1 and n is the number of training data. Each ix  is a p-dimensional vector having the fea- 
ture quantity  . Any hyper-plane can be written as: 

0b⋅ − =w x                                          (9) 
where w  is the vector to the hyper-plane. If the training data are linearly separable, the hyper-plane can be de-
scribed as: 

1 and 1.b b⋅ − = ⋅ − = −w x w x                                (10) 

The distance between these two hyper-plane is 2 w , so the purpose is to minimize w . Therefore, the al-
gorithm can be rewritten as: 

( )Minimize : , under the condition of 1, for any 1i iy b i n⋅ − ≥ ≤ ≤w w x               (11) 

We can also reformulate the equation without changing the solution as following: 

( ) ( )2
, , under the condition o1arg min

2
f 1, for any 1

ib iy b i n⋅ − ≥ ≤ ≤w w w x              (12) 

In Linear SVM, a hyper-plane or a set of hyper-planes can be used as the separate lines in classification. The 
higher the margin of separation for the classes that can be created, the better the classification result that can 
generally be achieved for the Linear SVM [15]. 

4.2. Nonlinear SVM Classification 
B. E. Boser et al. proposed the nonlinear SVM classifiers by using the kernel trick [16]. The kernel functions used 
in this study are as followed: 

( ) ( )Polynomial : , , 1 .
d

i j i jk = +x x x x                               (13) 

( ) ( )2
Radial Basis Function : , exp , , 0i j i jk γ γ= − >x x x x                      (14) 

The accuracy of SVM depends on the kernel, cost factor parameter C [17] and the parameter γ  for the RBF 
kernel. We checked each combination of parameter choices in this work, and looked up for the best accuracy. 

4.3. Overall Data Analysis Flow-Chart 
After getting the raw data from the WGAS, feature extraction is performed by extracting 6 features as shown in 
Equations (1)-(2) and the training algorithms are implemented to obtain the fall detection. Figure 6 shows the 
complete data analysis flow chart of the WGAS system. 

5. Classification Results 
5.1. Classification Results Using the BP ANN Algorithm 
Fall detection using BP ANN is done on WGAS data taken at both T4 and at belt positions with three training 
schemes. The data was obtained using a 1.7 GHz PC with 4 GB of RAM, Windows 8 OS, and the MATLAB 
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R2013b for the BP ANN classifier model. For the trained BP ANN classifier model, the number of training, va-
lidation and testing data sets were divided into 70-15-15 and 50-25-25 in percentages, respectively for all the 
three training schemes. The classification results of SCG, LM and RPROP training schemes are shown in the 
Table 4 and Table 5. From Table 4 for the data at T4, LM and RPROP obtained the best overall Correct Detec-
tion Rate (CDR) of 98.2% for the training-validation-testing (50% - 25% - 25%) data sets. And at the belt posi-
tion from Table 5, LM yielded an overall CDR of 98.70% for the training-validation-testing (70% - 15% - 15%) 
data sets, and SCG yielded an overall CDR of 98.70% for the training-validation-testing (50% - 25% - 25%) data 
sets. 
 

 
Figure 6. The data analysis flow-chart of the WGAS fall detection system.                                                    
 
Table 4. BP ANN classification results from the T4 data.                                                                  

Parameters 
Training-Validation-Testing (70% - 15% - 15%) Training-Validation-Testing (50% - 25% - 25%) 

SCG LM RPROP SCG LM RPROP 

Number of Neurons (Input) 6 6 6 6 6 6 

Number of Neurons (Hidden) 10 10 10 10 10 10 

Number of Neurons (Output) 2 2 2 2 2 2 

Learning Coefficient 0.75 0.75 0.75 0.75 0.75 0.75 

% of Error 3.60% 5.40% 3.60% 3.00% 1.80% 1.80% 

Number of Epochs 13 8 9 13 12 60 

Training* SCG LM NRP SCG LM NRP 

Gradient 0.022 0.003 0.424 0.029 0.0008 6.9e−6 

Training Optimization Time (s) 0.00 0.00 0.00 0.00 0.00 0.00 

Number of Training Dataset 
(Fall-Non Fall) 117 (35 - 82) 117 (35 - 82) 117 (35 - 82) 83 (23 - 60) 83 (23 - 60) 83 (23 - 60) 

Number of Validation Dataset 
(Fall-Non Fall) 25 (7 - 18) 25 (7 - 18) 25 (7 - 18) 42 (16 - 26) 42 (16 - 26) 42 (16 - 26) 

Number of Test Dataset 
(Fall-Non Fall) 25 (9 - 16) 25 (9 - 16) 25 (9 - 16) 42 (12 - 30) 42 (12 - 30) 42 (12 - 30) 

Number of Misclassification 
(Training) 2 5 4 2 0 0 

Training Dataset CDR 98.30% 95.70% 96.60% 97.60% 100.00% 100.00% 
Number of Misclassification 

(Validation) 1 1 1 0 0 0 

Validation Dataset CDR 96.00% 96.00% 96.00% 100.00% 100.00% 100.00% 

Number of Misclassification 
(Test) 3 3 1 3 3 3 

Test Dataset CDR 88.00% 88.00% 96.00% 92.90% 92.90% 92.90% 

Overall CDR 96.40% 94.60% 96.40% 97.00% 98.20% 98.20% 

Specificity 98.3% 97.4% 98.3% 97.4% 97.4% 97.4% 

Sensitivity 92.2% 88.2% 92.2% 96.1% 100.0% 100.0% 

*SCG: scaled conjugate gradient; LM: levenberg-marquardt; RP: resilient propagation. 
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Table 5. BP ANN classification results from the belt position data.                                                           

Parameters 
Training-Validation-Testing (70% - 15% - 15%) Training-Validation-Testing (50% - 25% - 25%) 

SCG LM RPROP SCG LM RPROP 

Number of Neurons (Input) 6 6 6 6 6 6 

Number of Neurons (Hidden) 10 10 10 10 10 10 

Number of Neurons (Output) 2 2 2 2 2 2 

Learning Coefficient 0.75 0.75 0.75 0.75 0.75 0.75 

% of Error 1.90% 1.30% 3.20% 1.30% 8.40% 2.60% 

Number of Epochs 14 11 12 17 8 14 

Training* SCG LM RP SCG LM NRP 
Gradient 0.0064 0.0022 0.043 0.007 0.0037 0.0416 

Training Optimization Time (s) 0.00 0.00 0.00 0.00 0.00 0.00 
Number of Training Dataset 

(Fall-Non Fall) 109 (36 - 73) 109 (36 - 73) 109 (36 - 73) 77 (28 - 49) 77 (28 - 49) 77 (28 - 49) 

Number of Validation Dataset 
(Fall-Non Fall) 23 (7 - 16) 23 (7 - 16) 23 (7 - 16) 39 (12 - 27) 39 (12 - 27) 39 (12 - 27) 

Number of Test Dataset 
(Fall-Non Fall) 23 (7 - 16) 23 (7 - 16) 23 (7 - 16) 39 (10 - 29) 39 (10 - 29) 39 (10 - 29) 

Number of Misclassification 
(Training) 0 0 2 0 7 0 

Training Dataset CDR 100.00% 100.00% 98.20% 100.00% 90.90% 100.00% 
Number of Misclassification 

(Validation) 3 2 2 2 2 2 

Validation Dataset CDR 87.00% 91.30% 91.30% 94.90% 94.90% 94.90% 
Number of Misclassification 

(Test) 0 0 1 0 4 2 

Test Dataset CDR 100.00% 100.00% 95.70% 100.00% 89.70% 94.90% 

Overall CDR 98.10% 98.70% 96.80% 98.70% 91.60% 97.40% 

Specificity 100.0% 100.0% 98.1% 100.0% 87.6% 98.1% 

Sensitivity 94.0% 96.0% 94.0% 96.0% 100.0% 96.0% 
*SCG: scaled conjugate gradient; LM: levenberg-marquardt; RP: resilient propagation. 
 

The performance indicators such as specificity and sensitivity were also calculated by using Equations (14)- 
(15) and shown in Table 4 and Table 5. 

TNSpecificity
TN FP

=
+

                                    (15) 

TPSensitivity
TP FN

=
+

                                    (16) 

where TN (true negatives) are the ADLs and DGIs correctly classified, FP (false positives) are the ADLs and 
DGIs that were not correctly classified by the BP ANN/SVM; TP (true positives) are the falls correctly classi-
fied and FN (false negatives) are the falls that were not detected by the BP ANN/SVM. 

5.2. Classification Results Using the SVM Algorithm 
Fall detection using SVM is done on WGAS data taken at both T4 and at the belt position with three kernels. 
The data was obtained using a 1.7 GHz PC with 2 GB of RAM, Ubuntu 9.04 OS for running the SVM-light 
v6.01. For the trained SVM classifier, the number of training, validation and testing data sets were divided into 
70-15-15, 50-25-25 in percentage, respectively for all the three kernels. The SVM classification results and the 
final parameters are shown in Table 6 and Table 7. Correct Detection Rate (CDR) of 98.8% have been achieved 
by taking data at the T4 for training-validation-testing (70% - 15% - 15%) data sets using the RBF kernel from  
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Table 6. SVM classification results from the T4 data.                                                                     

Parameters 
Training-Validation-Testing  

(70% - 15% - 15%) 
Training-Validation-Testing  

(50% - 25% - 25%) 

Linear Polynomial RBF Linear Polynomial RBF 

C - 2 1 - 2 1 

γ - - 3 - - 3 

Training Optimization Time (s) 0.01 0.00 0.00 0.01 0.00 0.00 

Number of Training Dataset 115 115 115 81 81 81 

Number of Misclassification (Training) 4 1 1 5 1 1 

Number of Test Dataset 52 52 52 86 86 86 

Number of Misclassification (Test) 5 4 3 5 5 2 

Training Dataset CDR 96.52% 99.13% 99.13% 93.83% 98.77% 98.77% 

Test Dataset CDR 90.38% 92.31% 98.08% 94.19% 94.19% 97.67% 

Overall CDR 94.61% 97.01% 98.80% 94.01% 96.40% 98.20% 

Specificity 98.3% 99.1% 99.1% 98.3% 98.3% 100.0% 

Sensitivity 86.3% 92.2% 94.1% 84.3% 92.2% 94.1% 
*RBF: radial basis function. 
 
Table 7. SVM classification results from the belt position data.                                                             

Parameters 
Training-Validation-Testing  

(70% - 15% - 15%) 
Training-Validation-Testing  

(50% - 25% - 25%) 

Linear Polynomial RBF Linear Polynomial RBF 

C - 6 2 - 6 3 

γ - - 3 - - 3 

Training Optimization Time (s) 0.01 0.00 0.00 0.02 0.00 0.00 

Number of Training Dataset 107 107 107 76 76 76 
Number of Misclassification 

(Training) 5 2 1 3 2 1 

Number of Test Dataset 48 48 48 79 79 79 
Number of Misclassification 

(Test) 2 1 1 5 3 3 

Training Dataset CDR 95.32% 98.13% 99.07% 96.05% 97.37% 98.68% 

Test Dataset CDR 95.83% 97.92% 97.92% 93.67% 96.20% 96.20% 

Overall CDR 95.48% 98.06% 98.71% 94.84% 96.77% 97.42% 

Specificity 100.0% 97.1% 99.0% 99.0% 95.2% 97.1% 

Sensitivity 86.0% 100.0% 98.0% 86.0% 100.0% 98.0% 
*RBF: radial basis function. 
 
Table 6. From Table 7, we achieved 98.71% CDR at the belt position for training-validation-testing (70% - 
15% - 15%) data sets by the RBF kernel. 

6. Conclusions 
Our custom Wireless Gait Analysis Sensor (WGAS) was applied for real-time automatic fall detection with a 
simple but very fast BP ANN using 6 input features trained by the Back Propagation Artificial Neural Network 
(BP ANN), and also with a Support Vector Machine (SVM) classifier. From Tables 4-7, LM and RPROP train- 
ed BP ANN has the highest specificity of 97.4%, and the highest sensitivity of 100% at the T4 position. SCG 
trained BP ANN achieves the highest specificity of 100%, and LM trained BP ANN has the highest sensitivity 
of 100% at the Belt position. Similarly, the RBF kernel SVM reaches the highest specificity of 100%, and the 
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highest sensitivity of 94.1% at the T4 position. The Linear kernel SVM has the highest specificity of 100%, and 
the Polynomial kernel SVM has the highest sensitivity of 100%. Overall, the SVM shows a slightly lower sensi-
tivity than the BP ANN. This is likely because the SVM uses an RBF kernel as the activation function, whereas 
the BP ANN uses a tan sigmoid (Tanh) function that has better recognition accuracy. 

The preliminary data that was collected on the group of young volunteers reported here suggests that our real- 
time fall detection system performs competitively regardless if the WGAS is placed at the T4 or waist-level Belt 
position. The application of the WGAS is not only useful for the fall detection, but also for the gait analysis. 
However, to make our fall detection work to be clinically relevant, a bit more data should be collected during 
clinical trials at TTUHSC in order to carefully evaluate the performance of the classifiers and their classification 
accuracies using the WGAS on patients. Our WGAS has passed the TTUHSC IRB (Internal Review Board), and 
is going through clinical trials on patients with balance disorders. The initial results look rather promising for 
gaits differentiation. 
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