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Abstract 
Electrical transport properties of superconducting materials are a widely stu-
died area in superconductivity. In this study, the role of holes in 
determination of resistivity, Hall coefficient and Hall angle has been explored 
using a two-band model due to co-existence of holes and electrons in high-Tc 
YB2Cu3O7−δ and Bi2Sr2CaCu2O8+δ. The results obtained from this study show 

that hole resistivity ( pρ ) decreases with increase in the ratio n

p

u
ρ
ρ

=  while 

the Hall coefficient ( HR ) is non-linearly dependent on the hole resistivity 
( pρ ). An increase in the hole scattering rate ( pγ ) causes a drop in the Hall 
scattering angle ( Hθ ). 
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1. Introduction 

Light elements such as H, Li and B in metallic compounds have attracted consi-
derable attention due to their potential superconducting properties [1] [2]. 
Within the weak-coupling BCS theory, high frequency phonons due to the 
presence of light mass atoms ensure a definite contribution to the BCS formula 
for the superconducting critical temperature Tc. Thus even a moderate elec-
tron-phonon Coupling can yield a sizeable Tc [3] [4]. The discovery of super-
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conductivity in MgB2 [5], B-doped diamond [6], B-doped silicon [7] and other 
compounds [8] confirms this picture and extends it by showing that strong 
co-valent bonds between light atoms can provide a large contribution to the 
electronic density of states at the Fermi level, under proper doping conditions. 
In B-doped diamond, substitutional boron atoms provide hole-doping to the sp3 
covalent bonds. The strong C-C bonding allows the structure to remain stable 
even at high doping. 

Nitrogen follows carbon in the first row of the periodic table and is characte-
rized, in its elemental form, by a strong triple bond in the low pressure molecu-
lar phases, and by single covalent bonds in the non-molecular phase which is 
stable at pressures exceeding a mega-bar [9]. As a consequence, molecular phas-
es are insulating and non-molecular phase is semi-conducting [10]. In fact, 
search for superconductivity in nitrogen-based systems requires the identifica-
tion of compounds where covalent bonds between nitrogen atoms persist in a 
stable form in the presence of doping species. Experimental studies have shown 
that the high-frequency modes originating from the covalently bonded N2 units 
are strongly coupled to the electronic states at the Fermi surface and would give 
rise to a Tc of about 1 K and the superconducting temperature can be greatly in-
creased by hole-doping [11]. It is found that on changing the distance between 
nitrogen atoms in the N-N units along with the x-y polarized mode, the most 
relevant change in the Fermi surface (FS) is the migration of electrons from the 
bands that contain the hole pockets. 

Study of the electronic density of states (DOS) of OSN2 suggests that 
hole-doping could further enhance Tc. Hole doping lowers the Fermi level to-
wards a region of higher electronic density and would at the same time stiffen 
the N-N bonds by partially emptying the anti-bonding states below FE . Con-
sequences of hole-doping were studied with a hole-doping of 0.5 holes per unit 
cell in an alloy OS0.75Re0.25N2 composition. It was found that the density of states 
at FS increases by about 2.4 times with respect to the undoped case. Conse-
quently, the superconducting critical temperature for a doped OSN2 increases 
and 4 KcT ≅ . 

Thus it was concluded that OSN2 is a superconductor and that its supercon-
ducting properties are connected to a strong coupling between the stretching 
modes of the covalently bonded N2 units with the electronic states at the Fermi 
level. This is similar to what has been observed in a number of boron- and car-
bon-based compounds, including MgB2. It is also predicted that the supercon-
ducting transition temperature can increase in OSN2 by doping it with holes. 
Experimentally, it can be achieved by synthesizing the nitride starting from a 
hole-doped OS alloy. 

Another analysis that supports the role of holes in determining or obtaining 
the superconducting state is due to the co-existence of electrons and holes in 
high-Tc superconducting materials superconducting materials in normal state 
[12]. DC resistivity and Hall Effect for cuprates based in Y or on Bi/Sr find near-
ly linear-in-T temperature dependences in the resistivity (the symbol shown). The 
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hole-number density nH is given by: 

1
H

H

n
e R

=                           (1) 

where HR  is the Hall coefficient and e is the elementary charge (positive by 
convention) [13]. Discovery of these results in YBa2Cu3O7−δ prompted the early 
speculations on the electron hole co-existence in the a-b plane transport to ex-
plains the near-linear temperature dependence of Hn , ascribing the positive and 
temperature dependence of HR  to dominance of transport by holes over elec-
trons by differing velocities. 

Various theoretical models have been proposed to explain the DC Hall Effect 
based on electron-hole interpretation. The temperature dependence in HR  is 
assumed to arise from temperature-dependent anisotropy of the scattering 
length R R Rl V τ= +  (velocity-scattering time product) around the Fermi con-
tour [14]. Another approach was when the energy levels E above the saddle point 
Es of a single CuO2 band are treated as a hole-like and levels sE E<  as elec-
tron-like [14]. The temperature dependence of HR  is then contained in an 
ad-hoc model for energy dependence in scattering anisotropy. However intro-
ducing two carrier bands, one of electrons and one of holes, one can study the 
temperature dependence in HR , and the resistivity and hall effect can be 
modelled with two band carriers; holes and electrons; and also the relationship 
to the superconducting state can be understood. 

1.1. Superconducting States 

One of the puzzles of high-Tc superconductivity is that the residual ac conduc-
tivity at low temperature in the limit of zero frequency cannot be explained for 
moderate impurity scattering (within the context of either the d-wave or s-wave 
pairing), and suggests the presence of a component with substantial pair break-
ing in the superconducting state [15]. Allowing for co-existence of electrons and 
holes bands can solve this problem. A large number of attempts [16]-[23] were 
made to study the low-temperature thermal properties, Hall effect and resistivity 
of superconducting materials and these studies pointed to the presence of elec-
trons co-existing with the superconducting condensate of holes and maintained 
in metastable states via strong scattering the normal state resistivity and Hall ef-
fect in Bi2Sr2CaCu2O8+δ and YBa2Cu3O7−δ could be modelled by reducing the 
band structures of these high-Tc compounds to two components comprising of 
holes and electrons in co-existence [12]. It provided explanation for temperature 
dependence in the Hall coefficient and the presence of electrons due to existence 
of negative Hall mobility intercept ( )1 0 0H Tµ− → < . A large number of samples 
of YB2Cu3O7−δ were studied to study the DC Hall effect and to confirm the pres-
ence of at least two bands with oppositely signed Hall coefficients. In the analysis 
it was found that taking the Hall number densities of electrons and holes to be 
equal is sufficient for agreement with the experiment [12]. Thus, the theoretical 
and experimental studies conducted so far sufficiently confirm the co-existence 
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of holes and electrons in high-Tc superconductors and such a concept can be 
used to study some of the properties of superconductors such as resistivity and 
Hall Effect. 

1.2. Theoretical Derivations 

The Lorentz force, F acting on an electron of charge e moving with velocity v 
perpendicular to the applied magnetic field B, with electric field E, acting on the 
electron is: 

( )e= + ×F E v B                          (2) 

when the downward force is balanced by the upward force of developed trans-
verse field, the resultant force is zero. Thus,  

( )0y y x ze= = +F E v B                       (3) 

Or 
y x z=E v B                             (4) 

If d is the width of the metal bar, then the potential difference, U, developed 
across the bar is 

y x zU d d= =E v B                         (5) 

Now, the current density, xj , along the x-axis is 

x xNe=j v                            (6) 

where N is the number of charge carriers per cm3 or it is also called Hall number 
density. We can now write, 

1 y
H

x z

R
Ne

= =
E
j B

                        (7) 

where HR  is called the Hall coefficient or constant and it is negative for most 
metals where the current is carried by the electrons that have negative charge. 
For some metals like Be, Zn, Cd; HR  is positive indicating that the current is 
also carried by a positive charge. 

1.3. Two-Band Model: Resistivity and Hall Coefficient 

In the normal state, the electrical transport properties in the a-b plane of 
YBa2Cu3O7 − δ are consistent with a two-band model comprising electrons and 
holes as charge carriers of opposite signs. In the distorted OSN2 crystal, the most 
relevant change in the Fermi surface (FS) is the migration of electrons from the 
bands that contain the hole pockets to the bands that contain the electron pock-
ets. Thus, the electron-hole co-existence will be relevant in the study of resistivi-
ty and Hall coefficient.  

Now, the electrical resistivity ρ  can be modelled with parallel transport by 
electrons and holes. Writing the electron resistivity as nρ  and that of holes as 

pρ , the net resistance R of the parallel resistance circuit can be written as 

1 1 1
 e nR R R

= +  
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Or 

( )1 1 1

e nR R R− − −
= +  

And hence, 

( )1 11
pnρ ρ ρ− −−= +                        (8) 

We can now apply the two-band model to the specific cases of the DC and AC 
Hall Effect. 

1.4. DC Hall Effect Coefficient 

If HnR  is the Hall coefficient for electrons and HpR  is the Hall coefficient for 
holes, then using the two-band model, the Hall coefficient HR  of the material 
can be written as 

( )

2 2

1 21

Hn p

p

n Hp
H

n

R R
R

ρ ρ

ρ ρ

−

−

−

−

+
=

+
                     (9) 

where HnR  is to be negative, HpR  is to be positive and both quantities are to 
be temperature-independent constants of the materials under consideration. To 
apply Equation (8) to describe the measured Hall coefficient, it should be unders-
tood that the Hall scattering rate is a function of the hole and electron resistivity 
components which determine the scattering rates for electrical transport. The 
model takes into account that ( )Tρ  and ( )HR T  can vary with T in the 
normal state and ( )HR T  is positive. In fact we cannot assume any definite 
functional form for ( )Tρ  and ( )HR T  since the temperature dependences 
are not identical among various types of specimens. Moreover, in the two-band 
behaviour, Hall Effect analysis does not convey information on carrier concentra-
tions. 

We define T-dependent variables as  

and nH

Hp p

Rw u
R

ρ
ρ

= =                       (10) 

And T-independent constant as, 

Hn

Hp

R
r

R
=                            (11) 

Between Equation (3) and Equation (4) we can write 

1 1

1 1
1 1

n

n p

n n

u u
ρ

ρ
ρ ρ

ρ ρ

− −= = =
++ +

 

Or 

( )1n uρ ρ= +                           (12) 

Similarly, using Equation (4) to eliminate nρ  from Equation (3), we get 

1
p

u
u

ρ ρ + =  
 

                         (13) 
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Now we can write 

( )

2 2 2 2 2 2

2 2 2

2 21 1

HpHn

n p p Hn n Hp p Hn n Hp
H

p n p n
p n

n p p n

RR
R R R R

R
ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ
ρ ρ

ρ ρ ρ ρ

+
+ +

= = =
   + +

+      
   

        (14) 

Dividing both sides by HpR  gives 

( )
( )

( )

2 2
2 2

2 2or

Hn
p n

Hp p nH

Hp p n p n

R
R rR w

R

ρ ρ
ρ ρ

ρ ρ ρ ρ

+
− +

= =
+ +

              (15) 

Substituting for pρ  and nρ  using Equation (12) and Equation (13) into Equ-
ation (15), we have 

( )

( )

( ) ( )

( ) ( )( )

2
22 2

2 22

2 2
2

2

1 1 1 1
11 1 1 ?1

H

Hp

ur u r u u uR u
R u u u uu uu

ρ ρ

ρ

+ − + +  − + + + = =
+  + + ++ + 

 

      (16) 

Thus, 

( ) ( )
( )

( )
( )

2 2 2 2 2

4 2

1

1 1

u u r u u r u
w

u u

+ − −
= =

+ +
                 (17) 

Equation (16) leads to the following information and analysis. If HR  is positive, 
then w is positive since HpR  is positive. Equation (16) then gives that 2u r> . If 
the two Hall coefficient components are equal, then 1r =  and then we can de-
fine a single Hall constant as 0H Hn HpR R R= − = . FROM Equation (8) it is clear  

that the quantities 
2

n

p

ρ
ρ

 
  
 

 and Hn

Hp

R
R

 
  
 

 are strongly correlated (almost linearly) 

so that the cases for 1r ≠  can be obtained by scaling n

p

ρ
ρ

 
  
 

. Now for 1r =  

and 2u r>  ( 2 1u >  or 1u > ) it will mean that ( ) ( ) ( )n pT T Tρ ρ ρ> > . In 

such a case, ( )n Tρ  will have a weaker temperature dependence than ( )p Tρ  

( ( ) 0e kT
p Tρ ρ

−
≅



). The simplest model for temperature dependence of electronic  

component of resistivity ( )n Tρ  is a linear function of temperature, T, con-
taining two adjustable parameters, i.e. 

( ) 1 1n T a b tρ = +                         (18) 

where 
0

Tt
T

=  is a dimensionless variable. The temperature dependent hole re-

sistivity ( )p Tρ  is determined from the solution of Equation (7) since ( )n Tρ  

will be known from Equation (18). This gives ( )p Tρ  as 

( ) ( ) ( )( ) 11 1
p nT T Tρ ρ ρ

−− −= −                   (19) 
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1.5. AC Hall Effect: Hall Angle and Scattering Rates 

The Hall angle components (
,p nHθ ) are defined as 

,

,
,

p n

p n
p n

H
H

H

ω
θ

γ
=                          (20) 

where 
,

,
p nH

p nm
ω =

B  are the Hall frequencies and 
,p nHγ  are the scattering rates.  

B is the applied magnetic field. For 10 T<B , the Hall angle in High-Tc super-
conductors is low compared to unity, so that Hθ  can be written as 

H
H

R
θ

ρ
=

B                           (21) 

Now, using Equation (8) and Equation (9), 
2 2

1 1
1 1; n Hn p Hp

n p H
n p

R R
R

ρ ρ
ρ ρ ρ

ρ ρ

− −
− −

− −

+
= + =

+
 

2 2

1 1Hall angle n Hn p Hp
H H

n p

R R
R

ρ ρ
θ

ρ ρ ρ

− −

− −

+ 
= = =  + 

B B           (22) 

In the model considered (two-band model), the resistivity components are 
expressed in terms of the scattering rates as, 

, ,
, 2

,

p n p n
p n

p n

m
n e

γ
ρ =                         (23) 

where ,p nm  are the effective masses and ,p nn  are the Hall carrier densities of 
holes and electrons. The expressions for the whole angle can now be written in 
the form 

1 1

Hp Hn

p n n Hp p Hn
H

p n

n p

R R
θ θ
ρ ρ ρ ρ

θ
ρ ρ

ρ ρ

+
+

= =
+ 

+  
 

               (24) 

Substituting Equation (23) into Equation (24) gives 

, ,H p n n H n p p

p p n n
H

p p n n

p n

m m
n n

m m
n n

ω γ ω γ
γ γ

θ
γ γ

+

=
+

                 (25) 

We now introduce two parameters, one for the ratio of masses n
m

p

m
r

m
=  and 

the ratio of carrier densities n
n

p

n
r

n
=  and re-write Equation (25) as  

,0

0

pm n

N p N nH
H

m np
p

N

r
r r

rm m
r

γγ
γ γω

θ
γ

γ

−
 

=   
  +

                 (26) 
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where ,0
0

H
e
m

ω =
B  and 0m  is the rest mass of the electron and the sign of ,H nω  

is negative for the electron component since the charge on the electron is (-e). 

2. Results and Discussion 

Equation (12) and Equation (13) have been used to plot the graph of resistivity ( ρ )  

as a function of n

p

u
ρ
ρ

=  in Figure 1 for the temperature range 95 K to 190  

K experimental results have shown that 130 cmρ = µΩ⋅  and 1.49 to 2.77u =  
[24]. The plot in Figure 1 shows a linear dependence of electron resistivity on u 
and a nonlinear dependence of hole resistivity on u. The values of nρ  and 

pρ  over the temperature range 95 K to 190 K are 323 μΩ∙cm to 490 μΩ∙cm 
and 217 μΩ∙cm to 176 μΩ∙cm respectively. This means that as temperature in-
creases from 95 K to 190 K, electron resistivity increases while hole resistivity 
deceases. 

Equation (14) has been used to plot the graph of Hall coefficient ( HR ) as a func-
tion of hole resistivity ( pρ ) in Figure 2. For a temperature range of 95 K to 190 K, 
experimental results reveal that 0.01Hn HpR R= = ; 390 cmnρ = µΩ⋅  and 

100 cm to 250 cmpρ = µΩ⋅ µΩ⋅  [25]. The graph in Figure 2 shows that there is 
a non-linear dependence by Hall coefficient on the hole resistivity. In the tem-
perature under consideration, HR  varies between 0.0068 to 0.0052. Clearly, an 
increase in the hole resistivity leads to a drop in the Hall coefficient. 

Equation (25) has been used to plot the graph of Hall scattering angle ( Hθ ) as a  

function of hole scattering rate ( pγ ) in Figure 3. Experimentally, 0

0

 
0.146H

pm m
ω

= ; 

1.30Mr = ; 1Nr ≈ ;  2.13M n

N p

r
r
γ
γ

= ; 1235 cmnγ
−=  and pγ  = 112 cm−1 to 200 cm−1 

[25]. The graph in Figure 2 shows that there is a non-linear dependence by Hall  
 

 

Figure 1. A graph of resistivity ( ρ ) as a function of n

p

u ρ
ρ

= . 
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Figure 2. A graph of Hall coefficient ( HR ) as a function of hole resistivity pρ . 

 

 
Figure 3. A graph of Hall scattering angle ( Hθ ) as a function of hole scattering rate pγ . 

 
coefficient on the hole resistivity. In the temperature under consideration, HR  
varies between 0.0016 to 0.0011. An increase in the hole scattering rate lowers 
the Hall scattering angle. 

Figure 1 shows that hole resistivity with increase in u electron resistivity is li-
nearly dependent on u. These two observations imply that as the temperature 
increases, hole resistivity decreases while the electron resistivity decreases. When 
the temperature decreases up to Tc, electron resistivity fall to almost zero and the 
material turns into a superconductor. In Figure 2, the Hall coefficient decreases 
with hole resistivity while the Hall scattering angle in Figure 3 decreases with 
increase in Hall scattering rate. 

3. Conclusion 

In summary, it has been found that as the temperature rises, above the critical 
temperature of a superconductor, the hole resistivity reduces while the electron 
resistivity increases. As the hole resistivity increases towards the critical temper-
ature from the temperature cT T> , a non-linear drop in the Hall coefficient is 
recorded. Finally, the dependence of the Hall scattering angle on the scattering 
rate is found to be nonlinear. 
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