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Abstract 

This report is about modeling a European Option in general when the stock 
price process is being driven by geometric Brownian motion (gBm). The vo-
latility parameter is used as an example of a basic estimator and simulated 
values of geometric Brownian motion hence exploring some of the properties 
that improve the accuracy of an estimator. The theory is then extended to es-
timate the volatility from real data by using the Roger-Satchell Estimator. 
Hence the estimated volatility is used in the model developed in calculating 
the value on European option using the Donsker Delta Function approach 
and is compared with that of the Black-Scholes formula. A unique finding is 
an observation that the value of an option obtained from using the Donsker 
Delta Function approach is more of the European Put Option than European 
Call Option which uses the Black-Scholes formula, then this roughly leads to 
the conclusion that the Donsker Delta Function approach computes a Euro-
pean Put Option. 
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1. Introduction 

We model European option when the stock price is driven by the geometric 
Brownian motion (gBm), and one should note that the gBm has wide acceptance 
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as a standard model for the growth of a price of a stock over time. Also literature 
indicates that option pricing theory was first developed by R.C. Merton, F. Black 
and M.S. Scholes in the early 1970s. Based on the no-arbitrage principle, they 
derived a theoretical valuation formula for European Call and Put on a gBm 
driven stock price (see Brandt [1], Korn [2] and Magdon-Ismail [3]).  

Mitra [4] stated that in the pricing of the option the volatility parameter plays 
a vital role; it helps us understand price dynamics since it is one of the key va-
riables in a stochastic differential equation governing an asset pricing. As such in 
this paper we developed a formula or volatility estimator; its purpose is to ex-
plore some of the properties that improve the accuracy of an estimator and also 
give insight into the roots of the estimator to finding the volatility from real data. 
This was achieved by calibration of the volatility parameter from two sets of si-
mulated data of the gBm. Using the theory developed, the volatility parameter is 
then estimated from real data using the Roger-Satchell [5] volatility estimator. 
Hence the estimated volatility was used in calculating the value on European op-
tion using the Donsker Delta Function approach the model developed by Aase 
[6] and the Black-Scholes formula, then comparison of the option value on 
Donsker Delta Function approach of option pricing and on the Black-Scholes 
formula was done. There is a wide literature on pricing of European option, so 
the reader can further see these related works; Flint [7] in their paper estimated 
long-term volatility for market models and Rouah [8] priced European Option 
and the volatility parameter using excel-VBA (Visual Basic for Applications). 

The paper is organised as follows: Section 2 gives the model layout of the pa-
per. The next section addresses the concept of Donsker Delta Function and its 
application in Option Pricing [6]. Section 4 explores ways of estimating the vola-
tility parameter from historical data. Section 5 deals with the actual pricing of an 
option, then finally conclusion section.  

2. The Model  

We consider our market model as defined whereby we have a risk and risk-less 
asset. We also consider that we are in a complete Black-Scholes market whereby 
the dynamics of our asset prices is modeled by the following two securities 

1) A risk free asset, where ( )0X t  per unit time is given by  

( ) ( ) ( ) ( )0 0 0d d ;  0 1X t t X t t Xρ= =                    (1) 

2) A risky asset, where ( )1X t  per unit time is given by  

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1d d d ;  0 0;X t t X t t t X t Bt X xµ σ= + = >         (2) 

( ) ( ),t tρ µ  and ( )tσ  are deterministic functions with the property  

( ) ( ) ( )( )2
0

d
T

s s s sρ µ σ+ + < ∞∫                  (3) 

satisfied by Itô’s Lemma.  
Similar to [6] we assume that σ  is bounded away from zero. This condition 

is to ensure that the stochastic term is not eliminated, hence otherwise it be-
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comes a deterministic function.   will denote the probability measure of ( )B t  
and t  denote the σ -algebra generated by ( ){ }.s s t

B
≤

.  
Now let [ ]: 0,Tφ →   be another deterministic function such that 

( )2
0

d
T

t tφ < ∞∫  and  

( ) ( ) ( )
0

d ; 0
t

Z t s B s t Tφ= ≤ ≤∫                   (4) 

Let F be the contingent claim of the memory-less type, i.e. it is Markovian. It 
is given by  

( )( ) ,F h Z T=  

where :h →   is a bounded measurable function. 
We let ( ) ( )( )0 , , 1, 2, ,it t i nθ θ =   be the portfolio and ( )0 tθ , ( )1 tθ  are 

t -adapted stochastic process referred as the number of stock held by an inves-
tor at time t. Then  

( ) ( ) ( ) ( ) ( )0 0 1 1V t t X t t X tθ θ= +                  (5) 

is defined the value of this portfolios and the change in the value process is 
known as self-financing. This means no external funds are topped up to the 
portfolio. From Equation (5)  

( ) ( ) ( ) ( )
( )

1 1
0

0

,
V t t X t

t
X t
θ

θ
−

=                    (6) 

Then substituting into (5) and using (1) and (2), we get  

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

0
1 1 1 1

0

1 1 1 1 1 1

1 1

d
d d

d d d

d d d

X t
V t V t t X t t X t

X t

V t t X t t t t X t t t t X t B t

t V t t t X t t t t t B t

θ θ

θ ρ θ µ θ σ

ρ θ µ ρ σ

= − +

= − + +

 = + − + 

 

since ( ) 0tσ ≠  for a.a.t, then we let ( ) ( ) ( )
( )

t t
t

t
µ ρ

α
σ
−

=  to get  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1d d d dV t t V t t t t X t t B tρ θ σ α= + +             (7) 

from (7) we get the integrating factor  

( )
0 0

d
( )d

t tV s
s s

Vs
ρ=∫ ∫  

( ) ( )0 de
t s sV t ρ∫=  

We then multiply (7) by an integrating factor becomes  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )0 0d d
1 1d e e d d .

t ts s s sV t t t X t t B tρ ρ θ σ α− −∫ ∫= +    

Therefore integrating the above equation leads to  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0d d

1 10
e 0 e d d

T tTs s s sV T V t t X t t B tρ ρ θ σ α− −∫ ∫= + +  ∫    (8) 

Suppose the value process ( ){ },0V t t T≤ ≤  has  
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( )V T F=                             (9) 

at time t T=  and 0t =  it has the market value ( )0V . We also require that 
the value process be of an admissible portfolio. By combining (8) with (6) we see 
that it suffices to find ( )0V  and a process ( ),u t ω  such that  

( ) ( ) ( ) ( ) ( )0 d

0
e 0 d d

T Ts s F V t t t B tρ µ α−∫ = + +  ∫            (10) 

and  

( ) ( ) ( )2
0 0

d d 1
T T

s s s s sµ µ α   < ∞ = < ∞ =      ∫ ∫          (11) 

such that ( ) ( ){ }
[ ]0 0,

d d
T

t T
t t B tµ α

∈
+  ∫  is lower bounded, and if a process such 

as ( )tµ  exist , then  

( ) ( ) ( )0 d 1 1
1 1e ,

t s s
tt X u tρθ σ ω− −∫=                  (12) 

and solve for ( )0 tθ  using (6). Then by the Girsanov theorem it is known that if  

( )2
0

d ,
t

s sα < ∞∫  

therefore V(0) is unique and given by  

( ) ( )0 d0 e ,
t s sV Fρ−∫ =                       (13) 

where the expectation is with respect to the measure   define on T  to make 
the process to be a martingale. The next section deals with Donsker Delta 
function, in which the first main theorems are generalized with white noise 
function.  

3. The Donsker Delta Function  

Definition 1. Consider ( )* , the set of Hida distribution function. Suppose we 
have a random variable :X Ω→   such that ( )*X ∈  . The Donsker delta 
function of X is the function  

( ) ( )*. :Xδ →   

with the property that  

( ) ( ) ( )d , .Xf x x x f X a sδ =∫                  (14) 

for all (measurable) :f →   for which the integral converges.  
This is one of the distribution parameters in space ( )*  (for more informa-

tion see Aase and colleagues [6]).  
Proposition 3.1. Consider a normally distributed random variable X with 

mean m and variance 0v > . Then Yδ  is unique and is given by the expression  

( )
( )( ) ( )

2
*11 exp .

22πX

x X T
x

vv
δ

◊

◊
 −
 = ⋅ − ∈
 
 

            (15) 

See Aase, et al. [6] for proof.  
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According to the above Proposition, the Donsker Delta is just a normal dis-
tribution function of random variable X.  

Lemma 3.2. Let [ ]: 0,Tµ →  , [ ]: 0,Tσ →   be deterministic functions 

and such that ( )
0

d
T

s sµ < ∞∫  and [ ] ( )2 2
0, 0

d
T

T s sσ σ= < ∞∫ . Define  

( ) ( ) ( )1 0 0
d d , 0 .

t t
sX t s s s B t Tµ σ= + ≤ ≤∫ ∫             (16) 

Then  

( )( )
[ ] [ ]

( )( )
[ ]

( )

[ ]

( ) ( )( )

2 2
1

2 2

0, 0,

2
1 1

2 20
0, 0,

exp exp
2 2

exp d .
2 2

T T

T
t

T T

x X t x

x X t x X t
t t B t

σ σ

µ σ
σ σ

◊

◊ ◊

◊

◊

   −   − = −
   
   

 − − + − ◊ ◊ +
 
 

∫

     (17) 

Observe, in Equation (16) in the lemma says is that if ( )1X t  is a gBm, then 
Equation (17) holds. The above proposition and lemma provide the pre-request 
needed for the development of theorem we are interested in. [refer to Aase and 
colleagues [6] for proofs].  

Theorem 3.3. Suppose we have two deterministic functions [ ]: 0,Tσ →  , 
[ ]: 0,Tα →   which are square integrable, i.e.;  

[ ] ( ) ( )2 2 2
0, 0 0

0 : d and 0 d .
T T

T s s s sσ σ α< = < ∞ ≤ < ∞∫ ∫        (18) 

Let  

( ) ( ) ( ) ( )1 0 0
d d ; 0

t t
sX t s B s s s t Tσ σ α= + ≤ ≤∫ ∫            (19) 

and :f →   be bounded. Then  

( )( ) ( ) ( )( )1 0 0
, d ,

T
tf X T V u t w t W tα= + ◊ +∫             (20) 

where  

( )
[ ] [ ]

2

0 2
0, 0,

exp d
2π 2T T

f x xV x
σ σ

 
 = −
 
 

∫               (21) 

and  

( ) ( ) ( )
[ ]

( )( )
[ ]

( )

[ ]

2
1 1

2 2
0, 0, 0,

exp d .
2π 2T T T

x X Tf x x X T
u t t xσ

σ σ σ

◊

◊
   − −   = ⋅ − ◊ −
   
   

∫  (22) 

Also see Aase and colleagues [6] for proof, and note that ( ) ( ) ( )s s sµ σ α= . 
Equation (20) shows the value of the claim which is dependent to the value of 

1X  at t T= , and the function f is bounded so that the portfolio be admissible. 
The formula (20), (21) and (22) provide us with the way of calculating the value 
of an option, the initial investment value ( 0V ) of an option and the portfolio re-
spectively. However the formula is not user friendly, as such needs to be speci-
fied.  
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The above theorem was then transferred into a non-Wick version and gave a 
more familiar representation in the theorem that follows.  

Theorem 3.4. Suppose ( ) ( )1,t X tσ  be as in Theorem (3.3) and assume that  

[ ] ( )2 2
, : d 0, for all ,

T

t T t
s s t Tσ σ= > <∫                 (23) 

and :f →   be bounded. Then  

( )( ) ( ) ( )( )1 0 0
, d ,

T
tf X T V t t W tµ ω α= + +∫               (24) 

and where  

( )
[ ] [ ]

2

0 2
0, 0,

exp d
2π 2T T

f x xV x
σ σ

 
 = −
 
 

∫                (25) 

and  

( ) ( ) ( )
[ ]

( )( )
[ ]

( )

[ ]

2
1 1

2 2
0, 0, 0,

exp d .
2π 2T T T

x X Tf x x X T
u t t xσ

σ σ σ

   − −   = ⋅ − −
   
   

∫   (26) 

4. Calibration of the Volatility  

The process of option pricing involves the volatility parameter σ  and in mod-
eling of the stock price, volatility is used as one of the parameters in the 
Black-Scholes formula. To obtain or estimate this parameter historical data is 
used. Never-the-less several methods have been proposed on how σ  can be es-
timated (see Flint [7], Hurn [8], Rouach and Vainberg [9]). It is indispensable 
that before embarking actual pricing of options, we find ways of calculating this 
parameter. So the goal of this section is to explore ways of estimating the volatil-
ity parameter from the data.  

4.1. Estimation of Volatility Parameter  

Consider the gBm process as modeled by Equation (2). This means that at any 
time interval [ ],t T   

( )( ) ( )( ) ( )
( ) ( ) ( )

2
1 2

1 1
1

ln ln ln ~ , ,
2

X T
X T X t N T t T t

X t
σµ σ

    
− = − − −           

 

then considering a very small time interval [ ]1,t t−  and letting t∆  to be a 
small change in time, then tY  can be written as  

( )( ) ( )( ) ( )
( )
1

1 1
1

ln ln 1 ln
1t

X t
Y X t X t

X t
 

= − − =   − 
 

and it follows that  
2

2~ , ,
2tY N t tσµ σ

  
− ∆ ∆  

   
                 (27) 

from which  
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( )
2

2tY tσµ
 

= − ∆ 
 

  

( ) 2 .tVar Y tσ= ∆  

How then does one estimate the sample variance? From the general theory of 
statistics let the sample mean Y  be  

( )1 , 0,
n
t Y t

Y n
n

== >∑                     (28) 

hence the sample variance is  

( )( )2

1

1 .
1

n

Y
t

s Y t Y
n =

= −
− ∑                   (29) 

Therefore, the estimate for the sample variance will be  

ˆ .Ys
t

σ =
∆

                         (30) 

As shown from the formulae developed, this estimation is achieved by discretiz-
ing the process. In other words though the process is a continuous process, the 
estimation is achieved by using some values of the process. For the development 
of this concept, we then immediately concentrate on calibrating the volatility 
parameter from the simulated values of gBm. 

The 99 simulated values of the gBm is shown in the Appendix section, Table 
B1. These values are treated as artificial data in the calibration of volatility pa-
rameter. Having simulated the gBm using the known drift and volatility para-
meters, we now try to use our method on the values of gBm to retrieve back the 
σ . For programming Equation (30) we use Matlab (see program (1) in Appen-
dix), and using it on the 99 simulated values of gBm from Table B1 in column 
titled 0.0002t∆ = . The estimated variance gives ˆ 0.2151σ = . Similarly using 
values generated when 0.0004t∆ = , the estimated variance is ˆ 0.2216σ = . 
Note that 0.0004t∆ =  sampled only 49 simulated values. 

Figure 1 was created to observe the trend of the estimated volatility, and Fig-
ure 2 then shows the error between the estimated and actual values of sigma. 
This was done using the formula ˆError σ σ= − . 

Note in graphs since the time values are very small numbers the estimates 
were plotted against the number of samples for convenience sake. But it should 
also be taken note that as time increases the number of samples also increases. 
Figure 1 are graphs of the values of estimates of the volatility parameter as the 
time increases. The purple graph is the graph of volatility estimates generated 
using the simulated values of gBm when the interval is 0.0002t∆ =  (Appendix 
B, Table B1 and column 1). Similarly red graph was generated when the values 
of gBm were simulated with interval 0.0004t∆ =  (Appendix B, Table B1 and 
column 2). Taking into account that the real value of the volatility is 0.23σ =  
(all these values were simulated using this volatility), the graphs shows that the val-
ues of the volatility estimates generated using values simulated when 0.0004t∆ =  
gives a better estimates than using the values generated when 0.002t∆ = . 
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Figure 1. Estimated sigma from the simulated values of gBm using 0.0002t∆ =  and 

0.0004t∆ = . 
 

 
Figure 2. Error difference between the estimated and actual sigma. 

 
Figure 2 gives the graphs of the error difference between the estimated and 

actual value of volatility estimates as the time increases. From this figure we ob-
serve that the orange graph of error between the volatility estimates is generated 
when using the values of gBm values simulated when 0.0002t∆ = , while brown 
graph are the errors generated when using of gBm values simulated when 
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0.0004t∆ = . Hence from the results we observe that 0.0004t∆ =  gives a better 
estimates than those values generated when using values of gBm generated when 

0.0002t∆ =  as the values of error graph of the former gives lower values than 
those of the latter. We also observe that both error graphs decreases as time in-
creases. 

These results show that the length of time interval between successive values 
has an influence in the accuracy of the estimates of the volatility parameter. It 
can also be concluded that the sample size has influence on the accuracy of the 
estimator. As observed from Figure 2 the error size decreases as time and sam-
ple size increases, this means we can get more accurate estimates if we use a large 
sample size of values of gBm than using a small sample size. These are some of 
the results which may affect the accuracy of our estimates. Some of our findings 
can be confirmed by the findings of [3]. The other factor which may also affect 
the efficiency of an estimator which [3] also mention is that of the 0µ ≥ , which 
they discussed in their paper. 

4.2. Calibration Volatility Parameters from Real Data  

We then develop our theory further to calibrating the volatility parameter to ac-
tual data, however there are some departures in using the gBm and the actual 
asset price process. One of the major departure is the existence of open jumps, 
rather than being continuous. Most asset markets are closed overnight, week-
ends and for certain holidays, as such information arriving during the periods 
when the market is closed often results in open prices being different from the 
closing prices. 

The estimator (Equation (30)) might not be efficient when applied to real data 
because of these departures, but its purpose was to explore some of the proper-
ties that improve the accuracy of an estimator and also give insight of the roots 
of the estimators which are used to estimate volatility from real data. There are a 
number of other estimators which are more efficient. For example some of the 
well known estimators are Parkinson, Garman and Klass, Roger and Satchell, 
Alizahdeh, Brandt and Diebold, and Yang and Zhang they use information on 
daily trading range, refer to a paper by [1]. For this paper we use the Rog-
er-Satchell estimator, it uses the open, high, low and open prices, as such we as-
sume that the close price of any given day is the open of the next day. [10] de-
note high and low by h and l respectively, i.e.,  

( )1
0
sup ,

t T
h X t

≤ ≤
=                           (31) 

( )10
inf ,

t T
l X t

≤ ≤
=                           (32) 

where T is the period of the length. Hence, the estimate is given by  

( )( ) ( )( )
1

1ˆ
N

RS i i i i i i i i
i

h o h c l o l c
NT

σ
=

= − − + − −∑           (33) 

where N is the total number of the sample and T is the period of the length. The 
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real data on stock prices that is used in this research was obtained from the Dow 
Jones close, high and low values from 04 / 01/10  to 13 /12 /10 . This represents 
a total of 240 days. The time interval of a day was considered, i.e. 0.0002t∆ = . 
Then the volatility was retrieved by using the Roger-Satchell estimator (33). A 
Matlab program (see program (1) in Appendix) for this estimator was devel-
oped to attain the volatility, which is  

ˆ 0.057630.RSσ =                          (34) 

As mentioned above the Dow Jones stock indices were used. One should 
know that stock indices represent relative change in the share/stock price of 
constituent companies of shares that make up the index. Stock indices have sev-
eral uses like the provision of history of a market movements level, providing a 
tool of estimating future movement of a market based on the past trend. There 
are several types of indices like the total return indices, the unweighed arithmetic 
indices, weighed arithmetic indices and the geometric indices just to mention a 
few. There are several examples of indices and one of the common examples and 
one used in this research is the Dow Jones Stock Indices. This is an unweighed 
arithmetic index that provide industrial factor. 

5. Calculating the Value of an Option  

We then use Theorem (3.4), Equation (25) to find the value of an option in real 
stock prices. Practically this is first achieved by calculating the implied volatility  

[ ]ln 1
,

r
T

ρ
+

=  

where r is the interest rate of the stock price. The volatility implied by the market 
price can be determined by inverting the option pricing formula, [11]. In our 
paper the implied volatility assist in the calculation of the initial value of the 
integral of Equation (25), which is  

( )1

1ln e ,
0 2

T Kx T
X

ρ σ− 
= + 

  
                   (35) 

where K is the strike price, ( )1 0X  the initial price and ( )f x  is defined as  

( ) ( )
( )( )1

1

e e 1 .x X TT Kf x
X T

ρ −−= −                  (36) 

Hence 0V  can be simplified as  

( ) 2

0 22
exp d .

22π

T

x

f x xV x
TT σσ

 
= − 

 
∫                 (37) 

We therefore used the above simplified formulas (35) and (36) to model Equ-
ation (37) in Matlab, in our program we used the ˆ 0.057630RSσ = , and let 

( )1 0X  be the first open price. The rate of interest we used was 0.07r = , we 
choose 3964.20K =  and through our calculation we obtained the value of an 
option using the Donsker Delta Function approach as  
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0 325.3121.V =                         (38) 

Comparison was made between this calculated value of an option using the 
Donsker Delta Function approach and the value of the European Call and Put 
options by using the Black-Scholes formula. The Black-Scholes formula is the 
earliest for calculating the European options. This option pricing theory was de-
veloped by R.C. Merton, F. Black and M.S. Scholes in the early 1970s. Based on 
the no-arbitrage principle, they derived a theoretical valuation formula for Eu-
ropean Call and Put on a gBm driven stock price. The European Call option can 
be calculated by the formula,  

( ) ( ) ( )1 0 exp rTC X K tω ω σ−= Φ − Φ −              (39) 

while the European Put option is given by  

( ) ( ) ( )1exp 0 .rTP K t Xω σ ω−= Φ − + − Φ −            (40) 

where  

( )
2

1

ln
2 0

,

t Krt
X

t

σ

ω
σ

 
+ −   

 =  

( )1 0X  and K are as defined before, r is the interest rate, σ  is the volatility and 

( )ωΦ  is the normal distribution function. From Statistics and theory of inte-
grals, the integral can be decomposed as  

( ) 2 2 20
2 2

0

1 1 1e d e d e d .
π π π

t t tt t t
ω ω

ω − − −

−∞ −∞

 
Φ = = + 

 
∫ ∫ ∫  

Using the theory of improper integrals  

21 e d π
π

t t
∞ −

−∞
=∫  

hence  

201 πe d
2π

t t−

−∞
=∫  

and  

( ) 1 1 ,
2 2

erf ωω
  

Φ = +  
  

                   (41) 

where erf is the error function, defined by  

( ) 2

0

2 e d .
π

terf t
ω

ω −= ∫                      (42) 

[5] state that this error function is similar to distribution function of the stan-
dard normal distribution. 

In programming the European Call and Put in Matlab, Equation (41) was 
taken into consideration in simulating the Normal distribution function. It 
should be noted that Matlab already have the in-built error function, that calcu-
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late the error function given by Equation (42). A complete program (1) of the 
European Call and Put is given in the Appendix section and it yielded the fol-
lowing results  

Call 8.3912=                        (43) 

and  

Put 225.9648.=                       (44) 

Table 1 below was constructed to give a better observation of the results we 
obtained above by varying the initial value of the stock. The program for giving 
the results in Table 1, was a combination of program (1) and (1), and it was de-
signed such that the t, r, σ  and K were kept constant.  

From Table 1, the following observations were made; the Donsker delta ap-
proach represented by 0V  gives a higher price of an option as compared to 
Black-Scholes formula, the values of 0V  are more close to that of the Put option 
than the Call option, the values of the Put option are greater than of the Put op-
tion price, also as ( )0iX  increases it was noted that the value of 0V  and Call 
option increases, and as ( )0iX  increases Put option decreases. 

Never-the-less, the practical use of the Donsker Delta Function approach 0V  
compared to the Black-Scholes formula gave the above results and observations. 
We justify this differences looking at the design and implications in this formu-
las; it can be concluded that the developed value of the 0V  gives more of the 
Put than the Call option, and the difference between the value of 0V  and Put 
option may be brought by some parameters in the formulas. e.g Looking at the 

0V  formula, it uses the implied volatility given by Equation (35). 

6. Conclusion  

In this paper we first we estimate the volatility parameter and we observe that 
the length of interval between two successive values and the sample size has an  
 
Table 1. Comparison. 

  Donsker Delta Approach  Black-Scholes Formulae 

i Initial Price ( )0iX  V0 Call Put 

0 3568.3 325.3121 8.3744 225.9578 

1 3569.3 325.5422 8.4817 225.0651 

2 3570.3 325.7711 8.5896 224.1784 

3 3571.4 326.0221 8.7090 223.2079 

4 3572.3 326.2317 8.8098 222.3987 

5 3573.3 326.4621 8.9216 221.5105 

6 3574.3 326.6938 9.0352 220.6185 

7 3575.0 326.8516 9.1132 220.0120 

8 3576.3 327.1560 9.2651 218.8440 

9 3577.3 327.3856 9.3810 217.9644 
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effect on the accuracy of an estimator. We also calculate the value of the Euro-
pean option using the Donsker Delta Function approach and the Black-Scholes 
formula, although they have some differences in the values; we found that the 
Donsker Delta Function approach of pricing an option gives more of the Euro-
pean Put Option than European Call Option. The reader can further extend this 
work using the Donsker Delta Function approach to find the value of the portfo-
lio at any time t, by using Equation (26). According to Hafner [12], practically at 
anytime t, this can be achieved by finding the stock price at that day which is 
usually quoted in newspapers and put  

( )

( ) ( )
1

1ln e ,
0 2

T t
t

KX T t
X

ρ σ− − 
= + − 

  
 

and  

( ) ( )

( )
( )

( )( )
( )

( )
1

2
1 1

22
exp d .

22πx X t

x X tf x x X t
u t x

T tT tT t σσ

∞

−

 − −  = − − − −−   
∫  

Now using the calculated 0V  and this portfolio, calculations can be made to 
find out if really the claim is replicated. Similarly using the Black-Scholes for-
mula approach, the value of the portfolio can be calculated by using the formula  

( ) ( ) ( ) ( ) ( )
1

11 22
1, ln
2

X t
t T t T t T t

K
θ ω σ ρ σ−−  

= Φ − + − + −  
   

 

by Øksendal [13], then comparison can be made about these values of the port-
folios.  
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Appendix A 

A1. Program Used in Retrieving σ̂   

x = [Put the simulated value of GBM for \Delta t = 0.0002 (for Table B1 below)]  
r = 1:99; n = 99;  
y(r) = log(x(r+1))- log(x(r));  
Y = cumsum(y(r))/n; k(r) = (y(r)-Y).^2;  
s(r) = sqrt(cumsum(k(r))./(n-1)); sigma(r) = s(r)./(0.3)  

A2. Program for Retrieving the Volatility Using the Roger-Satchell  
Estimator  

h = [DJC_High]  
l = [DJC_Low]  
o = c = [DJC_Open]  
N = 240;  
r = 1:240;  
T = 240;  
d(r) = ((h(r)-o(r)).*(h(r)-c(r)))+((l(r) - o(r)).*(l(r) - c(r)))  
h(r) = cumsum(d(r)) sgrs = sqrt((1/(N*T))*h(r))  

A3. Program for Retrieving the Donsker Delta Method for the  
Value of an Option Using ˆRS 0.057630σ =   

h = [Put the DJC_High values from Table B2 below]  
l = [Put the DJC_Low values from Table B2 below]  
o = c = [Put the DJC_Open values from Table B2 below]  
N = 240; r = 1:N; T = N; sgrs = 0.0576;  
syms x  
X0 = o(1); K = 3964.20;  
mu = 0.5; k = 0.07; v = log(1+k)/T;  
g = exp(-v*T)*(K/X0);  
x0 = log(g) + (1/2)*(sgrs.^2)*T;  
fx = exp(-v*T)*K.*(exp(x-x0)-1);  
l = fx.*exp(-(x^2));  
c = l./(2*T.*sgrs.^2);  
b = sqrt(2*pi*T.*sgrs.^2);  
V = double(int((c./b),x,x0,T))  

A4. Program for Retrieving the European Call and Put Option  
Using ˆRS 0.057630σ =   

h = [Put the DJC_High values from Table B2 below]  
l = [Put the DJC_Low values from Table B2 below]  
o = c = [Put the DJC_Open values from Table B2 below]  
r = 1:240; t = 240/365; R = 0.07; sgm = 0.0576;  
K = 3964.20; X0 = o(1);  
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w = (R*t + ((sgm^2)*t)/2 -(log(K/X0)))/(sgm*sqrt(t));  
Pw = 0.5*(1+ erf(w/sqrt(2)));  
v = w-(sgm*sqrt(t));  
Pv = 0.5*(1+ erf(v/sqrt(2)));  
C = (X0*Pw) - (K *exp(-R*t)*Pv)  
a = -w;  
Pa = 0.5*(1+ erf(a/sqrt(2)));  
b = -v;  
Pb = 0.5*(1+ erf(b/sqrt(2)));  
P = (K *exp(-R*t)*(Pb))-(X0*(Pa))  

Appendix B 

Table B1. Simulated values of geometric brownian motion for 0.0002t∆ =  and 
0.0004t∆ = . 

GBM Δt = 0.0002 Δt = 0.0004 GBM Δt = 0.0002 Δt = 0.0004 

gbm(0) 1 1 gbm(50) 1.9452 1.5878 

gbm(1) 1.8986  gbm(51) 1.9491  

gbm(2) 1.892 1.5981 gbm(52) 1.9433 1.5873 

gbm(3) 1.8994  gbm(53) 1.9446  

gbm(4) 1.911 1.5972 gbm(54) 1.9494 1.5917 

gbm(5) 1.904  gbm(55) 1.949  

gbm(6) 1.8963 1.6007 gbm(56) 1.9466 1.5917 

gbm(7) 1.8978  gbm(57) 1.95  

gbm(8) 1.9022 1.6073 gbm(58) 1.9461 1.5823 

gbm(9) 1.897  gbm(59) 1.941  

gbm(10) 1.8944 1.6081 gbm(60) 1.9404 1.5748 

gbm(11) 1.8937  gbm(61) 1.9506  

gbm(12) 1.8968 1.5956 gbm(62) 1.9511 1.5762 

gbm(13) 1.8942  gbm(63) 1.9479  

gbm(14) 1.9067 1.6012 gbm(64) 1.9406 1.5658 

gbm(15) 1.9072  gbm(65) 1.9379  

gbm(16) 1.9098 1.6017 gbm(66) 1.9394 1.571 

gbm(17) 1.9079  gbm(67) 1.9426  

gbm(18) 1.92 1.6006 gbm(68) 1.9483 1.5739 

gbm(19) 1.9172  gbm(69) 1.9518  

gbm(20) 1.9181 1.5949 gbm(70) 1.9626 1.5785 

gbm(21) 1.9299  gbm(71) 1.9515  

gbm(22) 1.9301 1.6025 gbm(72) 1.9435 1.5794 

gbm(23) 1.9193  gbm(73) 1.9363  

gbm(24) 1.9169 1.5897 gbm(74) 1.9365 1.5875 
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Continued 

gbm(25) 1.9107  gbm(75) 1.9236  

gbm(26) 1.915 1.5896 gbm(76) 1.9348 1.5829 

gbm(27) 1.9151  gbm(77) 1.9349  

gbm(28) 1.9245 1.5964 gbm(78) 1.9276 1.5867 

gbm(29) 1.9224  gbm(79) 1.9262  

gbm(30) 1.9284 1.5934 gbm(80) 1.9364 1.5961 

gbm(31) 1.9263  gbm(81) 1.9366  

gbm(32) 1.9276 1.5797 gbm(82) 1.9377 1.5966 

gbm(33) 1.9337  gbm(83) 1.9419  

gbm(34) 1.9209 1.5772 gbm(84) 1.9445 1.6019 

gbm(35) 1.9237  gbm(85) 1.9433  

gbm(36) 1.9198 1.5694 gbm(86) 1.934 1.5972 

gbm(37) 1.9299  gbm(87) 1.9437  

gbm(38) 1.9319 1.5824 gbm(88) 1.9417 1.5971 

gbm(39) 1.9348  gbm(89) 1.952  

gbm(40) 1.9327 1.5775 gbm(90) 1.9566 1.5861 

gbm(41) 1.9244  gbm(91) 1.9544  

gbm(42) 1.9215 1.5762 gbm(92) 1.9464 1.5785 

gbm(43) 1.921  gbm(93) 1.9419  

gbm(44) 1.9109 1.5806 gbm(94) 1.9428 1.5772 

gbm(45) 1.9148  gbm(95) 1.9411  

gbm(46) 1.9166 1.5821 gbm(96) 1.9431 1.5654 

gbm(47) 1.9255  gbm(97) 1.9358  

gbm(48) 1.9353 1.5788 gbm(98) 1.9359 1.5535 

gbm(49) 1.9436  gbm(99) 1.9234  

 

Table B2. Price values for the 2010 stock, for the Dow Jones index. 

DJC_th_High DJC_th_Open DJC_th_Low Date 

3631.60439 3568.315527 3588.781943 1/4/2010 

3638.391043 3563.312034 3602.727848 1/5/2010 

3638.577343 3577.218019 3600.186181 1/6/2010 

3626.933576 3565.228266 3593.838664 1/7/2010 

3646.175733 3578.974564 3600.70516 1/8/2010 

3682.757122 3609.94033 3644.232887 1/11/2010 

3666.216319 3599.600665 3632.189905 1/12/2010 

3673.069508 3604.710616 3638.949944 1/13/2010 

3674.014316 3621.397797 3643.474379 1/14/2010 

3662.450392 3588.728714 3644.232887 1/15/2010 

3670.873826 3604.045258 3618.89605 1/19/2010 

3637.273241 3565.281494 3620.333224 1/20/2010 
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Continued 

3642.982014 3525.080557 3614.318387 1/21/2010 

3564.230228 3462.257445 3534.834707 1/22/2010 

3524.468428 3457.879389 3503.017283 1/25/2010 

3525.439851 3452.117387 3475.937208 1/26/2010 

3514.381599 3433.726889 3475.058935 1/27/2010 

3511.666938 3414.68434 3499.903407 1/28/2010 

3490.907765 3403.985382 3454.898584 1/29/2010 

3474.673027 3415.496077 3436.308479 2/1/2010 

3508.180461 3437.23998 3472.051516 2/2/2010 

3501.393809 3437.213366 3466.635501 2/3/2010 

3452.569831 3365.421226 3437.838802 2/4/2010 

3401.32395 3306.590262 3370.690862 2/5/2010 

3395.375648 3328.706766 3368.189116 2/8/2010 

3430.293641 3356.172748 3379.433668 2/9/2010 

3411.051485 3348.121915 3386.712685 2/10/2010 

3434.37894 3354.881954 3375.627819 2/11/2010 

3418.237353 3358.847488 3387.085286 2/12/2010 

3477.600427 3413.573036 3434.350499 2/16/2010 

3499.23906 3445.969474 3481.796927 2/17/2010 

3506.306131 3452.599125 3473.226224 2/18/2010 

3535.749983 3472.788804 3484.011367 2/19/2010 

3547.450975 3496.559861 3527.931096 2/22/2010 

3535.476595 3467.061332 3510.420616 2/23/2010 

3529.298034 3473.567959 3498.036155 2/24/2010 

3509.791824 3433.626021 3458.777686 2/25/2010 

3530.528278 3472.87082 3507.098956 2/26/2010 

3558.263457 3503.695279 3521.684187 3/1/2010 

3569.513359 3518.567568 3549.829447 3/2/2010 

3567.996058 3514.562439 3540.46592 3/3/2010 

3561.73548 3514.234374 3537.280954 3/4/2010 

3592.655625 3543.842257 3560.054146 3/5/2010 

3608.648803 3560.928986 3583.989236 3/8/2010 

3621.101611 3561.448423 3576.197687 3/9/2010 

3632.501877 3577.25023 3598.478782 3/10/2010 

3629.207555 3576.908495 3598.847855 3/11/2010 

3645.815856 3595.608211 3631.599697 3/12/2010 

3642.61722 3592.5326 3619.037534 3/15/2010 

3665.88251 3615.661197 3637.696242 3/16/2010 

3690.897481 3640.990563 3662.834238 3/17/2010 

3701.299882 3640.826531 3662.178107 3/18/2010 
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