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Abstract

In this paper we establish convergence and stability results using general con-
tractive condition, quasi-nonexpansive mapping and mean non expansive
mapping for K-iteration process. We shall also generalize the K-iteration
process for a pair of distinct mappings and with the help of example we claim
that the generalized iteration process has better convergence rate than the
K-iteration process for single mapping and some of the existing iteration
processes. Suitable examples are given in the support of main results.
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1. Introduction and Preliminary Definitions

Let (X,d) bea metric spaceand 7:X — X be a self map defined on X. Let
F(T)={zeX:Tz=z} denote the set of fixed point of 7. For x, € X, the se-
quence {x, }:;0 defined by

X, =Tx,,n>0, (1.1)
is called the Picard iteration.
For x, € X, thesequence {x,}” = defined by
X =(-a,)x, +a,Ix,,n>0, (1.2)

where {a,}” = is a sequence in [0,1] such that »” o =oo is called the
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Mann iteration process [1].
In 2013, Khan [2] produced a new type of iteration process by introducing the

concept of the following Picard-Mann hybrid iterative process for a single map-

ping 7. For the initial value x, € X, the sequence {x,}” = defined by
xn+1 = Tyn 4
v, =(1-a,)x, +a,Tx,,n>0, (1.3)

where {q, }:0:0 is a sequence in [0,1].

Khan [2] showed that the rate of convergence of Picard-Mann hybrid iterative
process is more than the Picard iteration scheme, Mann iteration scheme [1] and
Ishikawa iterative schemes [3].

In this direction Gursoy and Karakaya [4], gave new iteration process as follows:

For the initial value x, € X, the sequence {x,}” = defined by

Zn = (l_ﬁn)xn +ﬂnTxn’
Y, =(1—an)Txn +a,1z,, (1.4)
xn+l =Tyn

where {an}:o:o , {ﬁn}f:o is a sequence in [0,1] is known as Picard-S iterative
process. By giving appropriate example, Gursoy and Karakaya [4] proved that
their iterative process has better convergence rate than Picard, Mann, Ishikawa,
Noor and Normal-S iterative processes.

Karakaya et al in their paper [5], introduced a new hybrid iterative process as

X, € X,
yn :T(l_ﬂn)xl1+ﬂl1Txn’ (15)
X4 =T(1—an)yn+anTyn

where {an}:ozo , {ﬂ”}j:() is a sequence in [0,1].

With the help of suitable example it was claimed by Karakaya et al [5], that
their iteration process converges faster than the iteration process of Gursoy and
Karakaya [4].

In 2016, Thakur et al. [6] introduced a new iteration scheme called Thakur
New Iteration Scheme as for the initial value x, € X, the sequence {x,}

defined by
Zn z(l_ﬁn)xn +ﬂnTxn’
v, =T(l-a,)x, +a,z,, (1.6)
x ., =1y

n+l n

where {a,}” , {B,} _, isasequencein [0,1].

In [6] it was claimed that the Thakur New Iteration Scheme has higher con-
vergence rate than the iteration process of Karakaya et al [7].

In the recent work of Hussain et al. [8], a new iteration scheme has been de-
veloped and it is claimed that it has better convergence rate than the iterative
process Thakur et al. [6]. This iteration process is called K-iteration process and

is given as:
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For the initial value x, € X , the sequence {x, }:;0 defined by

Zn ::(1__/21)X% +_ﬁ&73%’
v, =T(1-a,)Tx, +a,Tz,, (1.7)
Ty

X

n+l T n

where {an}:ozo , {ﬂn}::() is a sequence in [0,1].

In the present work we shall generalize some convergence and stability results
for K-iteration process. We shall also prove convergence and stability results for
more general form of K-iteration process and K-iteration process for a pair of
two distinct mappings.

Definition 1.1 [3]: Let X be a real Banach space. The mapping 7 : X —> X
is said to be asymptotically quasi-nonexpansive if F (T ) #(J and there exists a

sequence {x,}<[0,00) with g, -0 as n—>o such that
|T"x—q||£(l+,un)||x—q|| (1.8)

for all xeX,qu(T) and n>0.
Definition 1.2 [9]: Let X be a real Banach space. The mapping 7 : X —» X

is said to be mean non-expansive if there exists two non negative real numbers
a,b suchthat a+b<1 andforall x,ye X,

|7 =1 = alle =] +b]}x 1]

Definition 1.3 [10]: Let {zn}::o be any sequence in X. Then the iterative

process X, = f (T ,xn) which converges to a fixed point g, is said to be stable

Zpi —f(T,Zn)

=0 ifandonlyif lim,  z, =qg.

with respect to the mapping T'if for ¢ = ,n=0,1,2,---, we have

lim, o,

Definition 1.4 [7]: A space X is said to satisfy Opial’s condition if for each
sequence {x,} = in X such that x, converges weakly to x we have for all
yeX, x=y following holds:

1) liminf

n—»o0

Xy =V
2) limsup, ,, ||xn —x|| <limsup, ||xn —y|

Lemma 1.5 [11]: Let {a,}  and {b,}

n=0

n—o 4

x, — x| < liminf,

be non-negative real sequences
satisfying the inequality:
a,, < (l -b, )an +b,,

w b

where b"e(O,l), for all neN, Y b =0 and -0 as n—>oo, then
B a

lim, , a, =0. !

n—wo 'n

Lemma 1.6 [12]: Let & be a real number such that 0< <1, and {en}jzo

be a sequence of positive numbers such that lim =0. Then for any se-

n—»o0 611

quence of positive numbers {an }00 <da,+¢,n=0,1,2,--, we

-, satistying a

n+l

have lim a =0.

n—w 'n

Lemma 1.7 [13]: Let X be a real Banach space and {gn} be any sequence in
X such that 0<g, <1 for all neN . Let {a,} = and {b} = be

n

non-negative real sequences satisfying limsup"an"Sc , limsup||bn| <c and

limsup||g,a, +(1-g,)b, " =¢ holds for some ¢ > 0. Then lir'ﬁ_)s?lp”an -b,|=0.
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2. Main Results

Theorem 2.1: Let Xbe a Banach spaceand 7 : X — X be a mapping satisfying
the condition

||Tx—q|| < 5||x—q|| (2.1)
where geF,xeX and 0<5<1. Let {x,} = be the sequence defined by
the K-iterative process given by (1.7). Then the sequence {x, }:0:0 converges
stronglyto g€ F(T).

Proof: From (1.7) and (2.1) we have,
%, = 4| =T, —al| < 5|, - 4] (2.2)
And
v, —d|= ”T((l—an)Txn +a,Tz, )—q”
<5|(1-a,)Tx, +a,Tz, —q|
SE"(I—an)(Tx”—q)+an(Tzn—q)" 23)
<5[(1-a, )|, —q]+a, |7z, -]
< 5[(1—an) Tx, —q|+a,|Tz, —q|H
<&*[(1-a,)|x, —q]|+a, |z, —4|]
Again using (1.7) and (2.1) we get,
z, =] =|(1-8,)x +B,Tx, 4|
<(1-8,)|x, - 4|+ B, |Tx, - 4 (2.4)
<(1-8,)|x, 4|+ 8,5|x, -4
Using (2.4) in (2.3) we get,

v, —d|=8*[(1~a,)|x, —d]+ e, (1= 5,)|x, —d| +,B,5]x, ~dl]
<5*(1-a,+a,(1-8,)+a,B,5)|x, -4 (2.5)
<5’ (1-a,B8,(1-6))|x, — 4|

Using (2.5) in (2.2) we get,
%0 =4 <87 (1-a,5,(1-6))|x, =4

Since 0<d <L, € [O,l) and Zioan =oo. Hence by using lemma (1.6),
we have

lim

n—»0

xn+l - q" = 0

Hence the sequence {xn}:)zo converges strongly to g.
Corollary 2.2: (Akewe and Okeke [14]) Let X be a Banach space and

T :X — X beamapping satisfying the condition
[7x~gl < 5]x~dl

where geF,xeX and 0<5<1. Let {x,} = be the sequence defined by
the Picard-Mann hybrid iterative process given by (1.3). Then the sequence

{x,}”, converges strongly to g.
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Remark 2.3: Theorem 2.1 gives generalization to many results in the literature
by considering a wider class of contractive type operators and more general iter-
ative process, including the results of Chidume [15], Bosede and Rhoades [16]
and Akewe and Okeke [14].

Theorem 2.4: Let X be a Banach space and 7 : X — X be a mapping satis-
fying the condition

7~ 8]l

where geF,xeX and 0<5<1. Let {xn}fzo be the sequence defined by
the K-iterative process given by (1.7). Then the iteration process (1.7) is T-stable.
Proof: By theorem 2.1, the sequence {x, }::0 converges strongly to g. Let

{u, }:;0 , {vn}:lo and {w, }:O:o be real sequences in X.

n

Let ¢, =|u,,, —Iv,|,.n= ,~*+, where
w, =(1=8,)u, +B,Tu,,
v, =T((1-a,)Tu, +a,Tw,),
u,,=Tv,
andlet lim, , ¢ =0.

We shall prove that lim

n—»0 n_Q'

Now,
U, _q" = ||un+1 =Tv,|+ |TVn _q" (26)
<, +5||v" —q"
vn—q”—”T((l a, )Tu +a, Tw q"
<é'||(1 a,)Tu, +a,Tw, q”
<é‘||(l an)( u, —q)+a (Tw - " 27
[ (1-a,)||Tu, - q|+a,|Tw, qlﬂ
(1 an) Tu, —q||+a
<5’[(1-a,)
Again using (1.7) and (2.1) we get,
<(1-
( ﬂn) n (28)
<(1=8,)u, —4 QII
g(l—ﬂn (1—5)) :
Using (2.8) in (2.7) we get,
b=l o" [0l ol (- (-0 —al]
<5*(1-a,B,(1-6))|u,
Using (2.9) in (2.6) we get,
U, —q| <@, +5 (1-a,B,(1-5))|u, — 4| (2.10)
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Since 0<J <1 andsince 0<¢,,f, <1 we have by lemma (1.6)

limu, =gq.
Conversely let lim, , u, =g .We shall show that lim, , ¢, =0.
Now
(2 | O _Tvn

<\ —q||+||Tq—Tvn (2.11)

<\u,. —q||+5 v, —q|
Substituting (2.9) in (2.11),

@, < u"+1—q||+53(1—anﬂ"(l—§)) un—q" (2.12)

Since lim , u, =g , we have from (2.12) lim ,_ ¢, =0 . Hence the

K-iteration scheme is T-stable.
From theorem 2.4, we have the following corollary.
Corollary 2.5: Let X be a Banach space and T : X — X be a mapping satis-
fying the condition
Ire-al <5l

>

where geF,xeX and 0<&<l. Let {x,}"

n=0
the Picard-Mann hybrid iterative process given by (1.3). Then the iteration

be the sequence defined by

process (1.3) is T-stable.
Example 2.6: Let X = [0,1] and consider the mapping Tx = % The clearly

the mapping 7 satisfies the inequality (2.1). Now F(T ) =0. Now we claim that

1
the K-iteration scheme (1.7) is T-stable. Let us take o, = f, = 5 and consider

the sequences x, =y, =z, = 1 . Then clearly lim, ,_ x, 6 =0.

n n—»w “'n
Now
T((1-a,)Tx, +a,Tz,)
= xn+l_
2 ||
1- b T
= Xnnr _( an) X, ta,lz, ||
4 ||
= an— m_i_ansz
8 8
=|x, - (I-a,)x, L% (1-5,)x, +0‘nﬂnTan
8 8 ]
= xn+1_ (1_0{”))&'” +aﬂ(1_ﬂn)xn+anﬁnan‘
8 8 16
= (v oty pt ot
n+l \16n 32n 64n n+l 8n
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1

7_i

Tn—-1 n
=== 2.1
sn(n+)| s+ Y

Taking limit # — o in (2.13), we have lim = 0. Hence the K-iteration

s Pn
process is T-stable.

Now we shall prove the convergence and stability results for asymptotically
quasi-nonexpansive mapping by considering the more general form of K-iteration

process as:
Zn :(l_ﬂn)xn +ﬂnTnxn
v =T"((1-a,)T"x, +a,T"z,),
X, =T"y,, where n=0,1,2,---, (2.14)

Theorem 2.7: Let Hbe a non-empty closed convex subset of a Banach space X
and T7:H — H be asymptotically quasi-nonexpansive mapping with real se-
quence 4, g[0,00). Let {xn};ozo
process given by (2.14) and satisfies the assumption that »” a, B, 1, =.

be the sequence defined by the K-iterative

Then the sequence {xn}:lo converges strongly to some fixed point ¢ of the

mapping 7.
Proof: From the iterative process (2.14) we have,
AT
S(l_ﬂ) s, =] (2.15)
<(1- q||+ﬂ (1+ 2, )[[x, =4
—(1+ﬂnﬂn xn—qll
and
yn—q":”T” (1-a,)T"x, +a,T"z —qH
1+,u || T”x +a,T"z, —q
<(1+4, Hl a,)(T"x, ~q)+a,(T"z, - ”
1+,un [ T"x, — zn—q"]
<(1+u,)[(1-a )(1+,un x, —q|+a, (1+u,)|z, - 4]
<(t+u, ) [(1- an) x, —q|+e, ] 2.16)
<(t+ ) [(1-a,)x, —dl+a, 1+ B,u,)|x, ~dl]
<(1+u,) (1- aﬂ,un x,—q|
Again using (2.14) we have,
SR
<(1+u,)|y, —4| (2.17)

<(t+u,) (1-a,B,u,)|x, 4
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By repeating the above process, we have the following inequalities
3
X0 -gq) <(+m,) (1-a,B,u,)

I, =gl (1 4, ) (1=a, 8,000,

x, 4|

xn—l - q"

"xnfl - q" < (1 + /“ln—Z )3 (1 - an72 n—21un72 ) xn72 - q"

[, =gl < (1+ 24 )3 (1= oty )% — |
So we can write,
"xm - ‘1" <1+ 44 )3(’1“) ||x0 - ‘1"H::o(l —a; B, )

Since 1-x<e™ forall xe[O,l].Now l-a,B,u, <1, s0 we can write,

n+l —l—ajﬁjyj)

xo = < (1421, ) ", — e

<(1+1,)"

Taking limit # — oo in (2.18), we have lim,
quence {x, }::0 converges strongly to fixed point g of the mapping 7.

Theorem 2.8: Let  be a non-empty closed convex subset of a Banach space X
and T:H — H be asymptotically quasi-nonexpansive mapping with real se-
be the sequence defined by the K-iterative

(2.18)

0
ntl =02 Bk

- glle ™

X, —q":O , that is the se-

quence 4, < [0,0). Let {xn}:;o
process given by (2.14) and satisfies the assumption that »” a, B u, =x.
Then the iterative process (2.14) is T-stable.

Proof: Let {un}ioc X be any arbitrary sequence. Let the sequence gener-
ated by the iterative process (2.14) is x,,, = f (T , xn) converging to the fixed
point q.

un+] _f(T’xn)
We shall prove that lim, , ¢, =0 ifand onlyif lim,  _u, =gq.

First suppose lim _, ¢ =0.Now we have
un+1 _f(T7un) +||f(T5un)_q
T" (Tn (1-B,)T"u, + B,T" ((1 -a,)u, +a,T"u, ))—qH (2.19)

Let ¢, =

un+1 - q" =

=g, +

S(pn +(l+lun)3 (l_anﬂmun) ‘xn _q"

where a,,, €[0,1], lim, ¢, =0 and lim,_ u, =0.
Now using (2.19) together with lemma (1.5), we have lim, ||un —q":O
thatis lim, , u, =q.

u, =q .wehave

n—w n

[ | _f(Taun)
<oty =g+ (7.,) =4

w, —a|+(1+ 1) (1-a,B1,)

Conversely let lim

u, —q|

Taking limit n — o both sides of (6) we have lim, ¢, =0. Hence (2.14)

is T-stable.
Now we shall prove the convergence results for mean non-expansive mapping
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by modifying the K-iteration process for two mappings as:
z,=(1-8,)x,+B,5x,,
Y, = T((l—an)an +anTz,,) >
x,,, =Ty,, where n=0,1,2,---, (2.20)

Lemma 2.9: Let H be a non-empty closed convex subset of a Banach space X
and S.7:H — H be two mean non-expansive mapping such that
F=F(T)NF(S)#¢. Let {x,}
process given by (2.20). Then lim, ||xn - q" exists for some geF .

Proof: We have
|z, —al=|(1-8,)x, + B,Sx, 4|

be the sequence defined by the K-iterative

<(1-8,)|x, —dl+ 8, [sx, 4|

<(1=B)x, —al+ B, (a |x, —a]+b |x, —4]) (2.21)
<(1=8)|x —al+ B, (@ +b)|x, -4

<[x, -l

Again using (2.20) and (2.21)
v, —d|= "T((l -a,)8x, +a,Tz, ) - q”
<a, "((1 -a, )an +a,1z, ) - q" +b, "((1 -a, )an +a,1z, )— q”

< (az +b2 )"((l -a, )an + a’lTZ" ) _q"
<(1-a,)|Sx, —Q||+‘b‘n

1z, —q"

<(1-a,)(ax, =gl +bx, - dl)+ e, (a. ]z, - g +5 |z, - l)
<(1-a,)(a +b)|x, —q|+a,(a, +b,)|z, 4| (2.22)
<(1-a,)|lx, —q|+a,|z 4|
<|lx, —q"
Again using (2.20) and (2.22)
[, =al <], -4l
<&y, —q|+b, ]y, 4]
< (a2 +b2) v, = q” (2.23)
<[y, -4
<|x, —q"

This shows that {|x, —g||} is non-increasing and bounded sequence for

q € F .Hence lim

s 1% —q” exists.

Lemma 2.10: Let H be a non-empty closed convex subset of a Banach space
X and S,T:H —>H be two mean non-expansive mapping such that
F=F(T)NF(S)#¢.Let {x,}

process given by (2.20). Also consider that

be the sequence defined by the K-iterative

lim

Tx, —q":O for some g e F .Then

n—»0 |

Sx, —g||=lim
=0.

n—o |

Tx —x

n n

lim

n—o |
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Proof: Let g € F .Inlemma (2.9) we have proved the existence of

lim, ,_|x, —q”. Let lim,_|x, —q" =c. (2.24)
W.LO.G.let ¢>0.
Now from (2.20) and (2.24) we have,
limsup ||zn - q” <lim sup"xn - q" =c (2.25)
Now
|an _4" <a|x, _qn"'bl X _CI”
<(a,+)[x, — g <x, 4]
Implies that lim sup"Sx" —q” <lim sup"xn —q" =c (2.26)
Now
X0 =4y, —da| < a |y, —q]+b: v, 4|
< (a2 +b2) Vo= 4| = |V, _q"
< "T((l -a, )an +a,Tz, ) - q”
<a, "((l -a, )an +a,1z, ) - q" +b, ”((1 -a, )an +a,lz, ) - q”
<(a, +b, )"((1 -a,)8x, +anTzn)—q||
< (l—an) Sx, —q||+an 1z, —q”
S (1 -a, )(al Xn — q" +b, Xn q") ta, (a2 = q" +b, "Zn _q”)
< (l—otn)(a1 +b1) X, —q||+an (a2 +b2)||zn —q"
< (1—0:") X, —q||+an z, —q|
<|x, —al-a.[x, ~q]+ ||z, 4|
. |xn+1 _q"_"xn _q” — Zn _q”_ Xn _q"
an
and hence
S I W R L R
which implies that ||xn+l - q" <|z, - q" (2.27)
Taking limit inferior in (2.27) we obtain
¢ <liminf |z, —¢]| (2.28)
From (2.20) and (2.28) we have
c=lim|z, - q||
=lim|(1-8,)x, + B,Sx, —q| (2.29)
=lim|, (Sx, —q)+(1-5,)(x, )|
Now from (2.24), (2.26), (2.29) and lemma (1.7), we have lim| Sx, —x,|[=0.
Now,
DOI: 10.4236/0alib.1105245 10 Open Access Library Journal
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|7, -

al <.l

=lim sup||Tx" - q" <lim sup||xn - q|| <c (2.30)
n—m n—>0

Using the conditions of the lemma in (2.30), we can write

c:lig"ﬂn(Txn—) (1-8,)(x,-q)| (2.31)

Using (2.24), (2.30), (2.31) along with the lemma (1.7), we have
lim TIx, —xn” =

m, . |

Theorem 2.11: Let A be a non-empty closed convex subset of a Banach space
X satisfying Opial’s condition and S, 7"and {xn}nio be same as defined in the
converges weakly to some geF .
||Tx -X, || =0

Since X is uniformly convex and hence it is reflexive so there exists a subse-

lemma (2.10) .Then the sequence {xn };O:O

Proof: From lemma (2.10) we have, lim
quence {xnm} of {xn} such that {xnm} converges weakly to some ¢, € F.
Since His closed so ¢, € H . Now we claim the weak convergence of {x,,} to
¢, - Let it is not true, then there exists a subsequence of {xn[} of {xn} which
converges weakly to ¢, andlet ¢, #¢,. Also ¢, € F'. Now from lemma (2.9)
lim,

have,

X, —q, || and lim ||xn -q, || both exist. Using Opial’s condition we

n n—o

llm”x —q1|| < lim " X, —4 " < lim”xnm -q, "

n—®0 Hn—>0 n—®0
= hmz1—>oo xn _q2| = hmn—>w xn,- - q2 ||
<lim,, |ix, —¢, " <lim X, —q ||

This is a contradiction, so we must have ¢, =g, . Thus the sequence {x, }10
converges weakly to some geF .

Theorem 2.12: Let H be a non-empty closed compact subset of a Banach
space Xand S, Tand {x,} = be same as defined in the lemma (2.10). Then the
sequence {x, }10 converges strongly to some geF .

Proof: Since His compact and hence it is sequentially compact. So there exists
a subsequence {xni} of {xn} which convergesto ge H .

Now

%, ~Ta| =[x, T, ||+||Tx -qul

-Ix,

x, =4 (2.32)

—Ix, |+

—qll

Taking limit n — o in (2.32) we have, Tq =g thatis g e F . We have ear-

lier proved that lim,_,, [|x, —¢| exists for g € F . Hence the sequence {x,}"

-
converges strongly to some g€ F .

In [8] it is proves that the K-iteration process converges faster than Picard-S,
Thakur-New and Vatan two-step iterative process. Now we shall compare the
rate of convergence the K-iteration process defined in [8] and our new modified

K-iteration process for two mappings.
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Table 1. Iterative values of K-iteration process and Modified K-iteration process.

K-iteration

Modified K-iteration

% 2.25 2.25
X 2.030273437500000 2.013360362386860
x 2.003665924072266 2.000717402289730
x 2.000443920493126 2.000038531785984
X 2.000053755997215 2.000002069576723
x 2.000006509515288 2.000000111158901
X 2.000000788261617 2.000000005970444
x 2.000000095453555 2.000000000320678
X 2.000000011558829 2.000000000017224
x 2.000000001399702 2.000000000000925
X0 2.000000000169495 2.000000000000050
X, 2.000000000020525 2.000000000000003
P 2.000000000002486 2.000000000000000
X5 2.000000000000301 2.000000000000000
X4 2.000000000000036 2.000000000000000
X5 2.000000000000004 2.000000000000000
X6 2.000000000000000 2.000000000000000

Example 2.13: Let S,T:[0,3]—>[0,3] be two mappings defined by

1
T(x)=xJ2r2 and s(x)=(x+2)2. Let «,,B, be the sequences defined by

a,=p, :%. Let the initial approximation be x,=2.25. Clearly &, T has

unique common fixed point 2. The convergence pattern of K-iteration process
and modified K-iteration process is shown in Table 1.
Clearly we can conclude from Table 1, that the modified K-iteration process

has better rate of convergence than the k-iteration process.
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