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Abstract 
In most studies related to wind energy, the quantity of the air density is con-
sidered constant, but actually, we know that it is variable and depending on 
others natural factors. We present a new procedure to estimate the wind den-
sity power energy by simulating the components of the air density. The pro-
cedure uses the copula theory and demonstrates that the estimated power 
energy is higher if the air density is not constant. 
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1. Introduction 

Understanding the relationship between the components of wind power is fun-
damental to exploits wind energy, as well as the identification of suitable natural 
sites to perform the energy-efficient design and giving the economic rentability 
[1]. This involves that estimating wind energy in eolian installations can be con-
sidered as a challenge to predict the productive capacity energy. The most accu-
rate formula to calculate the power in wind farms is to make use the wind den-
sity power energy 

( )
3

,
1
2 T PP SVρ=                           (1) 

where ( ),T Pρ  is the air density. This term is dependent generally on the temper-
ature T, and the pressure P, both of which vary with height, see for example [2]. 
S represent the useful surface of the wind sensor and v is the wind speed. In most 
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studies, the air density is taken constant (for physical simplifications or for not 
having sufficient data), and it’s replacing with the standard air density, taking the 
average sea temperature 15˚C, and 1 atmospheric pressure that is 1.225 kg/m3. In 
this case, the relationship between the power and wind speed is reduced to a li-
near function. 

In this paper, we use the copula theory to handle the structure dependence 
beyond the linear correlation between the naturals variables: The wind speed, 
temperature, and pressure. The air density is considered not constant and the 
power should be affected by the dependence which is the idea of this research. 

The term of copula was introduced by [3] in the multivariate analysis concept, 
but it was not until 1986 when [4] and [5] focused more light on this type of 
function, giving an application in the finance field and exploiting the proprieties 
of the Archimedean copula. Applications have been extended in all fields [6] and of 
course for naturals sample type variable. One of the most salient properties of 
copulas theory is that it is possible to separate independently the function of the 
dependence from the marginals distribution function ones [7]. We use the same 
principle to treat the components of the air density, i.e. estimating an adequate 
copula for the wind speed and temperature and from another side an adequate 
copula for the wind speed and pressure. The marginals distribution function can 
be estimated independently. 

[8] with a pioneering works find a suitable parametric copula for wind speed 
variables and its direction. Recently there is an important study relating to the 
dependence function in renewable wind energy. For example, [9] examines 
another type of copulas families to handle the dependency between wind speed and 
their directions [10] utilize a pair copula (conditional dependence) to analyze the 
correlation between the winds farms, while [11] use the extremes value theory 
and copulas function to determines the correlation between wind turbines that 
compose the wind farm. Others [12] examine the dependence between wind 
power production and electricity prices. 

The remainder of this article is organized as: Section 2 describes the parame-
tric and non-parametric distribution function to estimate the marginals proba-
bility distribution. The selected copulas used in the study are presented in 
Section 3. In Section 4 we explain a procedure to simulate wind speed density 
energy power. An application to real data is analyzed in the Section 5. Finally, we 
conclude. 

2. Marginals under Study 

Given 1 2, , , nX X X�  a n independent and identically distributed sample with a 
unknown distri-bution function (cdf) F and probability density function (pdf) f. 
A natural way to estimates the distribution function F, is to consider the empiri-
cal distribution function 

( )1

1
i

n
emp X xiF I

n ≤=
= ∑                          (2) 
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where ( )iX xI ≤  is the indicator function of a set ( )iX xI ≤ . The correction of this 
approximation 

( ) ( )
1 emp

nF x F x
n

=
+

�                        (3) 

is considered in the empirical estimation because using directly (2) to estimate the 
copula function can cause the boundary problems. That is the copula distribu-
tion function implanted to identify the dependence structure may not integrate 
one, for a discussion one can consult [13]. This transformation is closed to the 
uniform distribution and its similar to the so-called the pseudo-observation in-
troduced by [4]. The second nonparametric approximation is using the classical 
kernel estimator (CKE) [14] 

( ) 1

1ˆ n i
i

x XF x K
n h=

− =  
 

∑                      (4) 

where ( ) ( )d
x

K x k t t
−∞

= ∫  is some known kernel distribution function [14], 
like Epanechnikov or the Gaussian distribution function, the most used function 
used for this approximation, see for an efficiency comparison [15]. The parameter 
h, that satisfied generally the condition h → 0 when n → ∞ , controlled the 
smoothness of the estimated function. 

In this paper, we use the specific value, 1 33.572h nσ= , where  

( )min , 1.34sd Rσ =  and sd is the standard deviation of the sample and R is the 
sample interquartile range [14]. 

Finally, to fit wind speed distribution function we add a Weibull distribution 
function. Used generally in reliability field and failure times in physical systems, 
this distribution function is recommended by the International Standard IEC 
61400-12 and is widely used in the context of eolian analysis of a wind speed, [1] 
[2]. 

The CDF of Weibull distribution is: , 1 e
kx

kF λ
λ

 − 
 = − . 

The pdf density function 

1

,
e 0

0 0

kkk

k

k x si xf

si x

λ

λ λ λ

 − − 
 

   ≥  =   


<

 

The mean and variance are, respectively: 

( ) 11E X
k

λ  = Γ + 
 

 and ( ) 2 22 11 1Var X
k k

λ     = Γ + + Γ +        
 

such that, ( ) 1
0

e dx tx t t
+∞ − −Γ = ∫  is the Euler’s Gamma function. To estimate the 

parameters ,k λ , exists various methods like the mean squared method or the 
moment method [16].  

In this paper we use the maximum likelihood method to estimate the parame-
ters [17]. This method is easy simple tools and consists to maximize the product 
density: 
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( ) ( )1 ,n
iiLV f Xθ θ

=
=∏                      (5) 

where consist the set parameters to be estimated 

3. Dependence e Model 

To reveals the structure dependence between the pairs variable, (Wind speed, 
Temperature) and (Wind speed, Pressure), three parametric copula have been 
considered. A copula is a distribution function defined in the cubic interval 
[ ]20,1  with uniform marginal distribution functions [ ]0,1U . If FX, and FY are 
marginals distribution of variables bivariate ( ),X Y , then from the Sklar theo-
rem [3] for each bivariate distribution function H there exist a hidden cdf function 
called copula C such that ( ) ( ) ( )( ), ,X YH x y C F x F y= . For more proprieties on 
copula one can consult [18] and [19]. 

The first copula considered is the Gaussian copula which pertains to the implicit 
copulas. Copula associated with elliptical distribution and represent a symme-
trical dependency. In addition, they become important whether we are analyzing 
the right or left tail of the distribution function. 

3.1. Gaussian Copula 

If we denote by ρ  be the linear correlation coefficient between two random va-
riables X and Y, the Gaussian copula with parameter ρ  is expressed: 

( ) ( ) ( )( )

( )
( )( )1 1

1 1

2 2

22

, ,

1 2exp d d
2 12π 1

u v

C u v u v

st s t s t

ρ ρ

ρ
ρρ

− −

− −

Φ Φ

−∞ −∞

= Φ Φ Φ

 − − =
 −−  

∫ ∫
 

where ρΦ  is the two-dimensional standard Normal distribution function with 
correlation coefficient equal to ρ , and Φ   is the standard Normal one-di- 
mensional distribution. 

3.2. Sarmanov Copula 

The second copula family considered is the Sarmanov copula. The range of the 
subfamilies is infinite due to its way of constructing a copula. One can find a 
special sub-copula associated to each marginal distribution function. Let ( ),X Y  
be a bivariate random vector with marginal probability distribution functions 
(pdfs) Xf  and Yf . Also, let 1ψ  and 2ψ  two bounded non-constant func-
tion such that: 

( ) ( )1 d 0Xf t t tψ
+∞

∞
=∫ , ( ) ( )2 d 0Yf t t tψ

+∞

∞
=∫  

The joint bivariate pdf introduced by [20] is defined as: 

( ) ( ) ( ) ( ) ( )( )1 2, 1X Yh x y f x f y x yηψ ψ= +  

and the associated copula distribution function is: 

( ) ( )( ) ( )( )1 1
1 20 0

, d d
u v

X YC u v uv F t F s t sη ψ ψ− −= + ∫ ∫            (6) 
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The density is: 

( ) ( )( ) ( )( )1 1
1 2, 1 X Yc u v F u F vηψ ψ− −= +                (7) 

where XF  and YF  are the cumulative distribution functions (cdf’s) of X and 
Y, respectively. Parameter η is a real number that satisfies the condition for all x 
and y. ( ) ( )1 21 0x yηψ ψ+ ≥  for all x and y.  

Note that when = 0, X and Y are independent. This parameter is related to the 
correlation between X and Y (if it exists), [21] as:  

( ) 1 2

1 2

, v vCorr X Y η
σ σ

=                        (8) 

where ( )1 Xx xψ µ= −  and ( )2 Xx xψ µ= −  and ( )X E Xµ =  and  

( )Y E Yµ =                           (9) 

To give a range of the parameter η, we use the result giving by [13] when the 
support of Xf  and Yf  is not only belong in [ ]0,1  i.e. if the support of Xf  
is contained in [ ],a b  and that of Yf  is contained in [ ],c d  where a, b, c and 
d are finite real numbers, then: 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

max ,

min ,

X Y X Y

X Y X Y

b a d c b a d c
a b b d

b a d c b a d c
b a d c

a d b c

µ µ µ µ

η
µ µ µ µ

 − − − − − −
  − − − − 

 − − − −
≤ − − ≤   − − − − 

    (10) 

3.3. Frank Copula 

The ultimate copula is the Frank copula. This copula belongs to the so-called 
Archimedean copula, a family of dependence function used for here nice analyti-
cal proprieties [5]. The main characteristic of Frank copula is that it does not 
present dependence in the extremes, but in the center. The parameter of depen-
dence can take a large range, ( ] [ ), 0 0,θ ∈ −∞ +∞∪ , and then one can handle the 
negative dependence. 

The Frank copula is defined as: 

( )
( ) ( )1 e 1 e1, ln 1

1 e

u v

C u v
θ θ

θ θθ

− −

−

 − −
 = − −
 − 

. 

4. Simulate the Wind Density Power Energy from a Copula 

In this section, we describe a procedure to simulate the statistical behavior of the 
wind power density using a Monte Carlo method [22]. From (1) and dividing by 
the surface area we have: 

( )
3

,1 2w T PP Vρ=                         (11) 

This term can represent the kinetic energy per unit area related to the wind. 
Now employing the ideal gas law, one expressed the air density [1] a  

( ),
288.151.225

1013.3T p
P

T
ρ    =       

                (12) 
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The wind power density (11) can be calculated in two way. The first way is con-
sidering the air density ( ),T pρ  constant. In this case the mean power produced 
until an observation z is: 

( ) ( ) ( ), 3
02

d
zT p

wAP z f v v v
ρ

= ∫                    (13) 

where f is the (pdf) of the wind speed. When the value z →∞  we have the av-
erage of the power energy. The second case if the air density ( ),T Pρ , is not con-
stant. For n registration of the data ( ) ( ) ( ) ( )( )1 1 2 2, , , ,, , ,

n nT p T P T P T Pρ ρ ρ ρ= … , the mean 
wind power energy can be calculated until the observation zk.  

( ) ( )
3

,1

1
2 k k

n
w k kT PiMP z zρ

=
= ∑                    (14) 

Now to simulate the wind power energy density we start by simulating the wind 
speed variable coupled with the temperature and the pressure. 

The same procedure describes in [19] to generate a pair of copula is used. To 
generate a two-dimensional random variable we do serve the conditional distri-
bution of the random vector ( ),U V : 

( ) ( )| uP V U U u C v≤ = =  

where ( ) ( ) ( ) ( )
0

, , ,
limu u

C u u v C u v C u v
C v

u u+∆ →

+ ∆ − ∂
= =

∆ ∂
. 

The following algorithm simulate the wind density power energy: 
1) Start by fixing a copula C, of wind speed and temperature. 
2) Generate two independent random variables u1 and z from a Uniform dis-

tribution ( )0,1U  
3) Set [ ] ( )

1

1
2 uu C z−= , where [ ]

1

1
uC −  denotes aquasi-inverse of 

1uC . The qua-
si-inverse is: 

[ ] ( )
{ }

( )
{ }

1

1 1

1

1 1

inf | if 0

if 0,1

inf | if 1

u

u u

u

x C z z

C z C z

x C t z

− −

 ≤ =
= ∈


≤ =

 

4) The desired first pair is ( )1 2,u u  where u2 is a uniform variable related to 
the temperature variable. 

5) Fixing the random variable u1, and considering now the copula of wind 
speed and pressure, we repeated the procedure to give a pair ( )1 3,u u , where u3 is 
a uniform variable related to pressure variable. 

6) Taking the inverse ( )1 , 1, 2,3iF u i− = , of the marginal distribution function 
used in (3), (for the inverse method one can consult [22]), the pairs variable 
(Wind speed, temperature, pressure) coupled and conserving the same structure 
of the dependence in sample data. 

7) Replacing this terms in (11). 

5. Data and Result 

The data represent the registration of wind speed, temperature, and pressure 
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collected in the region Hrarza, situated in the north Morocco kingdom. Near on 
the straits of Gibraltar and surrounded by two seas, the Mediterranean and the 
Atlantic, this region suffers a gusty wind. The annual mean wind speed exceeds 6 
m/s. For comparison with another region of the kingdom, we can consult [23] in 
the north of Morrocan. The Hrarza station covers the registration at the begin-
ning of 2000. We use only the last years of the registration covering 365-day 
maximal wind speed and their correspondent temperature and pressure. 

The first lecture of the graphical behavior of this variable Figure 1 is that the 
temperature variables are more predictable than the wind speed and the pres-
sure. Probably due to the seasonal comportment. In Table 1 we give the descrip-
tive statistics of the data. A simple reading for wind speed variable indicates that 
the distribution can be right skewness. The Jarque-Bera test of normality indi-
cates that either variable is distributed Normally. 

As we noted in Section 2 the marginal adjustment is resumed in Figure 2 and 
Figure 3. For the temperature and the pressure variables we have used the non-
parametric estimation and for the wind speed, we have added the Weibull ad-
justment. We note that the nonparametric estimation of the distribution gives a 
well fit for the three variables. To visualize the relationship between the pair 
(Wind speed, Temperature), (Wind speed, Pressure) we make use the regression  
 

 
Figure 1. Daily wind speed, temperature and pressure. 
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Figure 2. Distribution and density of wind speed. (a) Density of the wind speed; (b) CDF of the wind speed. 

 

 
Figure 3. Density function of temperature and pressure. (a) Density of temperature; (b) Density of pressure. 

 
Table 1. Descriptive statistics. 

 Average Std.Dev. Kurtosis Skewness Min Max JB Test 

Wind Speed 6.263 2.233 1.463 1.117 2.730 14.870 2.200 × 10−16 

Temperature 25.236 7.258 −1.255 0.100 12.870 40.410 5.522 × 10−16 

Pressure 99.291 0.504 3.160 −0.227 96.468 100.578 2.200 × 10−16 

 
and a scatter plot, Figure 4 and Figure 5 which indicate a negative correlation if 
one considers a linear regression. On the other hand, the Kplot, [24]  a useful  
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Figure 4. Regression of wind speed and temperature. (a) Wind vs Temperature; (b) Regression line. 

 

 
Figure 5. Regression of wind speed and pressure. (a) Wind vs pressure; (b) Regression line. 

 
tool to identify the dependency structure between two variables confirm this 
relation, i.e. the point plotted is under the diagonal line wish indicate a negative 
dependency. 

To visualize the intensity of the dependence in the tail and in the center the 
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nonparametric estimation of copula density, Figure 6 & Figure 7 is also consi-
dered. For an independent and identical variables ( ), , 1, 2, ,i iU V i n= �  the 
nonparametric estimation of copula density can be expressed: 

( ) * *1

1ˆ , n i i
i

U u V vc u v k k
n h h=

− −   =    
   

∑ ,               (15) 

where k is the kernel pdf function and *h  is one of the smoothed parameters 
for copula estimation [25]. 
 

 
Figure 6. Nonparametric density copula. (a) Wind and temperature; (b) Wind and pressure. 
 

 
Figure 7. K-Plot for dependent data. (a) K-plot wind and temperature; (b) K-plot wind and pressure. 
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The package kdecopula [26] is used for R available language and environment 
for statistical computing and graphics. We observe that the associated copula for 
both, (Wind speed, Temperature) and (Wind speed, Pressure) doesn’t have ex-
tremes dependance in the tail, but a large dependence in the center and tend to 
have symmetry form. The elliptical or an Archimedean copula can be a good fit 
for this type of dependence. In the Table 2 we summarize the estimate parame-
ters for a proposed copula accompanied with the CIC criteria value to select the 
adequate statistics model. The method used in estimating the parameters of the 
copula is the inference from marginal, (IFM) introduced by [18]. This method 
consists firstly to estimate the distribution function of the marginal (CDF), and 
calculating the pair ( ) ( )( ) ( )ˆ ˆ ˆ ˆ, , , 1, 2, ,X i X i i iF X F Y u v i n= = �  using (5). The 
second stage is to minimize the log-likelihood function for a copula, that is  

( ) ( )1
ˆ ˆ,n

i iiLVC C u vθθ
=

= ∑ . 
The (IFM) method has an advantage that they avoid the excess time optimiza-

tion. Using a global estimation of the log-likelihood function considering both 
the marginals and a copula doesn’t guarantee the existence of the minimum, 
[27]. 
 
Table 2. Results of the fit of the copulas with nonparametric and semiparametric marginals. 

Copula 
Marginals 

(Wind vs Temp) 
Estimate Dependence 

Parameter 
CIC 

Gauss 
Emp/Emp 
CKE/CKE 

Weibull/Emp Weibull/CKE 

−0.400 
−0.438 
−0.4258 
−0.4479 

32.251 
33.884 
34.427 
35.621 

Frank 
Emp/Emp 
CKE/CKE 

Weibull/Emp Weibull/CKE 

−2.531 
−2.597 
−2.689 
−2.711 

30.645 
30.691 
30.410 
30.188 

Sarmanov 
Emp/Emp 
CKE/CKE 

Weibull/Emp Weibull/CKE 

−0.007 
−0.007 
−0.007 
−0.007 

15.380 
17.588 
15.268 
16.411 

Copula 
Marginals 

(Wind vs Press) 
Estimate Dependence 

Parameter 
CIC 

Gauss 
Emp/Emp 
CKE/CKE 

Weibull/Emp Weibull/CKE 

−0.178 
−0.193 
−0.207 
−0.212 

7.565 
8.228 
8.180 
8.433 

Frank 
Emp/Emp 
CKE/CKE 

Weibull/Emp Weibull/CKE 

−0.780 
−0.818 
−0.920 
−0.939 

4.043 
4.155 
4.600 
4.652 

Sarmanov 
Emp/Emp 
CKE/CKE 

Weibull/Emp Weibull/CKE 

−0.090 
−0.090 
−0.090 
−0.090 

7.957 
7.823 
7.647 
6.713 
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The CIC criteria give the best selection of copula among another copula. Like 
the Akaike information criterion [28], the CIC tools was introduced by [29] and 
it is designed when the dependence relation is considered. Analyzing the result 
of the Table 2 we can say that the Sarmanov copula gives the best fit for the de-
pendency between wind speed and temperature and more specify using a Wei-
bull distribution for wind speed and the empirical (CDF) for a temperature as 
marginals distribution function. In another hand, Frank copula give the best fit 
for the wind speed and Pressure and one can only use the empirical estimation 
for the marginals to give the best model. 

A simulation of daily energy is illustrated in Figure 8(a) using the procedure 
describes above in Section 4. We can generate then the best model that reflect 
the dependence structure of the variables coupling with their estimated marginal 
probability function. With the red lines, we have the wind density power (11) 
simulated when the air density is constant and with black lines if the air density 
is no constant. We note that there exists a notable difference between the two 
cases, and generally, the power energy is higher if the air density not constant. 
Finally, we plot, Figure 8(b), the mean of the wind density power energy simu-
lated both in the case (13) and (14). The variation of mean in the case of the 
density is not constant is hight, stabilized at the total mean 252.181. Using the 
Weibull pdf function the mean of the density power energy is equal 214.8 less. 

6. Conclusion 

In this work, we have analyzed the statistical behavior of the wind energy in  
 

 
Figure 8. Power energy. (a) Power from sarmanov (Weibull, Emp) and frank (Weibull, Emp) copula; (b) Simulate aggregate 
power. 
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north Morocco, from the point the view of the copula. Our objective is to give a 
most accurate simulation method for a density power energy in the eolian park. 
Fitting the marginal probability component of the wind density variable, we have 
noted that the nonparametric approach can give the best fit. To capture the nega-
tive dependence between the variables we have used two type of copula. The 
Archimedean and the elliptical copula. We have incorporated Sarmanov copula 
wish has never been used in this type of data and giving a suitable model. The 
procedure introduced to simulate the wind density power energy can generalize 
to the other field related to renewable energies since the density of the air is al-
ways present. 
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