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Abstract 
The oil and gas industry needs fast and simple techniques of forecasting oil 
and gas production. Forecasting production from unconventional, low per-
meability reservoirs is particularly challenging. As a contribution to the con-
tinuing efforts of finding solutions to this problem, this paper studies the use 
of a statistical, data-driven method of forecasting production from liquid-rich 
shale (LRS) reservoirs called the Principal Components Methodology (PCM). 
In this study, production of five different highly volatile and near-critical oil 
wells was simulated for 30 years with the aid of a commercial compositional 
simulator. Principal Components Methodology (PCM) was applied to pro-
duction data from the representative wells by using Singular Value Decompo-
sition (SVD) to calculate the principal components (PCs). These principal 
components were then used to forecast oil and solution gas production from 
the near-critical oil wells with production histories ranging from 0.5 to 2 
years, and the results were compared to simulated data and the Modified 
Arps’ decline model forecasts. Application of the PCM to field data is also in-
cluded in this work. Various factors ranging from ultra-low permeability to 
multi-phase flow effects have plagued the mission of forecasting production 
from liquid rich shale reservoirs. Traditional decline curve analysis (DCA) 
methods have not been completely adequate for estimating production from 
shale reservoirs. The PCM method enables us to obtain the production decline 
structure that best captures the variance in the data from the representative 
wells considered. This technique eliminates the need for parameters like the 
hyperbolic decline exponents (b values) and the task of switching from one 
DCA model to another. Also, production forecasting can be done without 
necessarily using diagnostic plots. With PCM, production could be forecasted 
from liquid-rich shale reservoirs with reasonable certainty. This study presents 
an innovative and simple method of forecasting production from liquid-rich 
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shale (LRS) reservoirs. It provides fresh insights into how estimating produc-
tion can be done in a different way. 
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1. Introduction 

Liquid-rich shale (LRS) reservoirs have complex characteristics that are yet to be 
fully understood. Lengthy transition flow regimes, complicated reservoir fluid 
dynamics among other features contribute to the difficulties of forecasting 
production from LRS reservoirs.  

Over the years, several empirical decline curve analysis (DCA) models have 
been used to forecast reservoir production such as the Arps’ hyperbolic decline 
model [1], Duong’s model [2], the Stretched Exponential Production Decline 
(SEPD) model [3], the power-law model [4] and more recently the YM-SEPD 
model [5]. All these models have limitations, which have made them not entirely 
satisfactory for forecasting production from unconventional reservoirs, especially 
when production history is short. The use of hybrid (combination) DCA models 
can improve results significantly [6]. However, these models require careful 
analysis of diagnostic plots and more importantly, accurate determination of the 
time of switch from one model to another. 

Analytical models are quite rigorous. The tri-linear flow model [7], its 
extended version by Stalgorova and Mattar [8], the semi-analytical model by 
Clarkson and Qanbari [9] are among several analytical models that have been 
proposed for forecasting production from LRS reservoirs. These models, however, 
assume single-phase flow. When pressure drops below the bubble point, multi- 
phase flow effects come into play. Therefore, negligence of this major factor 
when creating analytical forecasting models may lead to erroneous production 
estimates.  

Further research efforts have led to the consideration of other possible ways of 
forecasting production from unconventional plays. The Principal Components 
Methodology (PCM) was proposed by Makinde and Lee [10] as a novel 
approach to forecasting oil production from tight oil reservoirs. This method 
was also further used in a simulation study by Makinde and Lee [11] to forecast 
the secondary phase—gas, from shale oil reservoirs. PCM is a data-driven 
method of forecasting based on the statistical technique of principal components 
analysis (PCA). Principal components analysis (PCA) has numerous applications 
in various fields such as biology, finance, architecture, etc. The ability to use 
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PCA to extract common trends and patterns from sets of data has made it 
applicable to production forecasting as well. Bhattacharya and Nikolaou [12] 
used PCA to analyze production history from unconventional gas reservoirs but 
did not forecast future production. Makinde and Lee [13] used the Principal 
Components Methodology (PCM) to forecast production from shale volatile oil 
reservoirs and compared the results to compositionally simulated data and 
production estimates from different decline curve analysis (DCA) models.  

In this paper, a clearer and more explicit explanation of the procedure for 
Principal Components Methodology (PCM) is presented. The results of PCM oil 
production forecasts were compared with results from the Modified Arps 
(commonly used in the industry) DCA model. This was not done in my previous 
publications [10] [13]. The other publications either focused on solely on 
assessing the performance of PCM with varying ranges of historical data or 
compared PCM with YM-SEPD, Duong, Modified Duong as well as their hybrid 
variants. In addition, PCM was used to forecast solution gas production from 
near-critical oil wells. More importantly too, this paper highlights some of the 
challenges that may be encountered when applying PCM to field data. Possible 
solutions to these issues were proffered in this article. For the field data analyses, 
hindcasting was included. That is, using PCM to match actual field data with the 
aid of some portion of the available historical field data. 

2. Reservoir Model 

A multi-fractured horizontal well (MFHW) with 20 uniform hydraulic fractures 
and length of 5000 ft was modeled. The fractures are all infinitely conductive 
with half lengths of 150 ft. A commercial compositional simulator was used to 
simulate production from wells with five different reservoir fluids (highly 
volatile and near-critical oils). 30 years of production was simulated from wells 
with different minimum bottomhole pressure (BHP) constraints of 500 psi and 
1000 psi, reservoirs with different degrees of undersaturation—initial reservoir 
pressures of 4000 psi and 5000 psi, as well as reservoir fluids with different 
critical gas saturations—5% and 10% respectively (shown in Table 1). The 
original base cases are wells (with the ten different fluid samples) having a 
minimum BHP of 1000 psi, initial reservoir pressure of 5000 psi and critical gas 
saturation of 5%. Altogether, production data were simulated from 20 different 
wells. Pressure drop and fluid flow were modeled using logarithmically-spaced 
local grid refinement (LS-LGR) and the Peng-Robinson equation of state was 
used for the PVT. Figure 1 shows the MFHW model and Table 2 shows the five 
different reservoir fluid compositions. Fluids 3 and 4 are near-critical volatile 
oils. Reservoir data in Table 1 are those of a typical liquid-rich shale reservoir.  

 

 
Figure 1. Multi-Fractured Horizontal Well (MFHW) model. 
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Table 1. Reservoir data. 

Permeability 0.001 md 
 

Porosity 0.06 
 

Reservoir Temperature 250 F 
 

Corey Relative Permeability Exponent 2.5 
 

Depth to Top of Formation 10,000 ft 
 

Reservoir Thickness 250 ft 
 

  
BASECASE 

Initial Reservoir Pressure 4000 psi 5000 psi 

Critical Gas Saturation, Sgc 0.1 0.05 

Minimum Bottomhole Pressure 500 psi 1000 psi 

 
Table 2. Fluid compositions. 

Components 

Fluid 1 Fluid 2 Fluid 3 Fluid 4 Fluid 5 

Composition 
(%) 

Composition 
(%) 

Composition 
(%) 

Composition 
(%) 

Composition 
(%) 

CH4 58.77 58.07 61.82 53.47 49.43 

C2H6 7.57 7.43 7.91 11.46 7.28 

C3H8 4.09 4.16 4.42 8.79 8.02 

I-C4H10 0.91 0.96 1.02 _ 2.31 

N-C4H10 2.09 1.63 1.74 4.56 3.61 

I-C5H12 0.77 0.75 0.80 _ 1.80 

N-C5H12 1.15 0.80 0.86 2.09 1.79 

C6H14 1.75 1.14 1.21 1.51 2.32 

C7+ 21.76 22.59 17.59 16.92 22.41 

CO2 0.93 2.32 2.47 0.90 0.16 

N2 0.21 0.15 0.16 0.30 0.87 

 
HIGHLY VOLATILE OILS 

GOR, scf/bbl 3024 3043 4081 3967 2561 

API 63.5 63.0 63.5 64.9 65.2 

Oil FVF, bbl/stb 3.56 3.55 _ 4.81 3.26 

3. Arps’ Decline Model 

Production decline characteristics depend on the rate of decline, D and the de-
cline exponent (b value): 

d dq tD
q

= −  

where q is the production rate in barrels per day, month or year and t is time in 
days, months or years. This equation defines the instantaneous changes in the 
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slope of the curvature, dq/dt, with change in the production rate, q over time. 
For the hyperbolic decline model, the decline rate, D varies and the b value 

(decline exponent) is more than 0 and less than 1 (0 < b < 1). Production rate in 
this case is expressed with the following equation: 

( )
1

1

i

bi

qq
bD t

=
+

 

where qi is the initial production rate and Di is the initial decline rate.  
The exponential and harmonic decline models are special cases. For exponen-

tial decline, the rate of decline, D is constant and the b value is 0. Here, the pro-
duction rate is expressed as: 

( )expi iq q D t= −  

In the case of harmonic decline, the rate of decline, D also varies but is directly 
proportional to the production rate, and the b value is 1. Production rate in this 
instance is: 

1
i

i

qq
bD t

=
+

 

Modified Arps’ decline model simply refers to the application of Arps’ decline 
model by changing the b values accordingly throughout the production history 
of a well regardless of the flow regime present. In unconventional reservoirs, the 
use of b values (decline exponents) greater than 1 may be encountered. Decline 
exponents greater than 1 causes forecasted cumulative production to increase 
toward infinity, (i.e. they are unbounded), which is not possible. However, since 
unconventional reservoirs like shale have very low permeabilities and exhibit 
lengthy transient flow, b values greater than 1 provide “best-fits” to production 
data in certain situations. 

Before using DCA techniques for production forecasting, diagnostic plots are 
necessary for proper flow regime identification. Log-log rate-time and log-log 
rate-MBT (Material Balance Time) plots are the most commonly used diagnostic 
plots for flow regime identification. Transient linear flow can be identified with a 
slope of −1/2, bilinear flow—slope of −1/4 on both diagnostic plots and boun-
dary dominated flow (BDF) with a slope of −1 on the log-log rate-MBT plot. 
Lengthy transition periods between transient linear flow and BDF, as indicated 
in these figures, are common for LRS reservoirs. The impact of multi-phase flow 
as reservoir pressure drops below the bubble point is presumed to be one of the 
major reasons. The ultra-low permeability of shale reservoirs may also be a con-
tributing factor. Figure 2 and Figure 3 show the diagnostic plots (log-log rate- 
time and log-log rate-MBT) for one of the near-critical fluids. 

On the log-log rate-time diagnostic plot, it can be observed that the slopes af-
ter the perceived “start of boundary dominated flow” (STBDF) steadily decrease 
to values more negative than −1. Despite this, it is presumed that boundary 
dominated flow regime covers the range from the STBDF till the end of the 
production period. The STBDF on the log-log rate-time diagnostic plot corres- 
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Figure 2. Oil rate vs. time—near-critical fluid. 
 

 

Figure 3. Oil rate vs. MBT—near-critical fluid. 
 

ponds with the “start of boundary effects” (STBE) on the log-log rate-MBT di-
agnostic plot. On the log-log rate-MBT diagnostic plot, the “end of linear flow” 
(ELF), the “start of boundary effect” (STBE) and the “start of boundary domi-
nated flow” (STBDF) are visibly shown. The regions between the ELF and 
STBDF are the “transition flow regime periods”. According to Makinde and Lee 
[6], the “start of boundary effects” (STBE) is a point on the log-log rate-MBT 
diagnostic plot where there is a slightly observable change of slope which 
matches with the STBDF on the log-log rate-time plot. At this point, it is as-
sumed that the reservoir boundaries have started to affect flow rate.  

4. Principal Components Methodology (PCM) 

The principal components methodology (PCM) is a statistical, data-driven me-
thod of forecasting based on the principal components analysis (PCA). It basi-
cally involves representing the well production data in matrix form and using 
singular value decomposition (SVD) to calculate the principal components. 
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These principal components are then used to estimate future production. The 
basic workflow for PCM is as follows: 

1) Obtain representative collection of well production/GOR data for time nt  
(e.g., 30 years in this study) and construct a m × n matrix Z from the representa-
tive data as shown below: 

( ) ( )

( ) ( )

1 1 1

1

n

m m n

d t d t

d t d t

 
 =  
  

Z


  



 

where ( )1, ,id i m=   are production/GOR data of well 𝑖𝑖 over time; 
m—number of wells (always equal to the number of sets of principal compo-

nents (PCs) generated); 
n—length of production history (time). 
2) Apply principal components analysis (PCA) to the representative well data 

using singular value decomposition (SVD) to obtain the principal components 
as follows: 

T=Z USA  

( ) ( )

( ) ( )

1 1 1
T

1

n

m m n

m n m m m n n n

d t d t

d t d t

× × × ×

       
       = = ∗ ∗       
             

Z U S V
   

        

   

 

where S—diagonal matrix of singular values and U and VT—left and right 
normalized eigenvectors respectively. Singular Value Decomposition breaks 
down this matrix into 3 major components—left and right normalized eigenvectors 
(matrices U and VT) and diagonal matrix S. The m rows of the matrix VT are the 
sets of principal components (PCs). 

1

m

σ

σ

 
 =  
  

S  ; 1 mσ σ . The diagonal elements of matrix S are the  

singular values, which are the positive square roots of the eigenvalues of ZTZ. 
The singular values are in decreasing order from top to bottom of diagonal 
matrix S. Each singular value is associated with a set of principal components 
(PCs). How large the singular values are, determine how well the set of PCs 
associated with it capture variance in the representative well data under 
consideration. The larger the singular value, the more variance in the 
representative well data is captured by the set of PCs associated with it. The 
largest singular value is associated with the first set of PCs (which captures the 
most variance in the representative well data under consideration).  

3) After SVD, the matrix Z can be represented with the following expressions: 
T T

1 1 ;R R
k k k k kk k R mσ β

= =
= =∑ ∑Z u v v   

where R—number of sets of PCs to be used in forecasting and kβ —PC 
multiplier. Since the matrix Z has been decomposed into 3 components, 2 of the 
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components (the singular values and the left normalized eigenvectors) are 
lumped together to form the PC multiplier, kβ . R m  because it is advisable 
to use the sets of PCs (R in number that are associated with the largest singular 
values) which capture more of the variance in the well data considered. The 
other sets of PCs (the rest of the m number of sets of PCs after R has been 
chosen) capture very little of the variance in the well data, therefore they can be 
discarded. 

4) Given wells with limited production history (in cases here, ranging from 0.5 
to 2 years), use the least square regression method to identify best estimates for 

kβ  (PC multiplier), which would be ˆ
kβ , with the following formula: 

( ) ( ) ( ) ( )
1

2T T

1 history 1 history1, , 2
min

R

R
k k kkd t d t v t v t

β β
β

=
   −   ∑



   

where d are oil/gas rates or GOR data and T
kv  are the principal components. 

5) Production/GOR can then be forecasted using the formula below: 

( ) ( )
T

history max1
ˆForecast R

k k kk v t v tβ
=

 =  ∑ 
 

6) To estimate solution gas production, the trapezoidal rule can be used to 
approximate the area under the forecasted producing GOR vs. cumulative oil 
production (Np) curve with the equation below: 

( )
1

1
1

GOR GOR
Cum. Gas

2 Np Np
n i i
i

i i

+
=

+

−
=

−∑  

The more data points that are available, the more accurate trapezoidal rule 
approximations are. 

A pictorial representation of the PCM workflow is shown in Figure 4. 
In this study, a representative collection of production data from 20 different 

wells with 5 different reservoir fluid compositions was generated by composi-
tional simulation with a commercial compositional simulator. Then SVD was 
used to obtain 20 sets of principal components (PCs). The first set of principal 
components are the primary principal components which reveal the structure or 
pattern that best captures most of the variance in the representative data from all 
the 20 wells considered. The other sets of PCs portray certain characteristic fea-
tures for each well. The first set of PCs capture the most data that maximize the 
variance from all representative wells, followed by the second set of PCs, the third 
set and so on. In this work, only the first set of principal components out of the 
total 20 obtained were used for analyses. The rest were discarded since they cap-
ture little of the variance in the well data under consideration. Figure 5 shows 
the graphical representation of the first set of PCs used for analyses in this paper. 

 

 
Figure 4. Basic workflow for PCM. 
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Figure 5. First set of principal components (PCs). 

5. Results—Oil Production Forecasts 

PCM was used to forecast 30 years of production for each of the five highly vola-
tile oil wells with availability of 0.5 to 2 yrs of simulated production history. The 
results were then compared to compositional simulation study results and Mod-
ified Arps’ forecasts (with the availability of all 30 years of production history). 
Analyses were done with PCM, using only the 1st primary set of principal com-
ponents to estimate future production. Results for the near-critical fluids are 
displayed in the graphs below (Figures 6-9). 

Results indicate that the Principal Components Methodology (PCM) forecasts 
with reasonable level of accuracy (percentage forecast error as low as 0.4%) ir-
respective of the length of the available production history. In Figure 9, despite 
using all 30 years of the production history to forecast using the Modified Arps’ 
model, the result was still not as accurate as that obtained through PCM with 
only 6 months of available historical production data.  

6. Results—Solution Gas Production Forecasts 

Over the years, the chief focus has been on predicting oil production perfor-
mance shale oil reservoirs, neglecting the equally important solution gas and the 
variables that govern its production. Due to the potential value of natural gas, it 
is vital to be able to forecast solution gas production from shale oil reservoirs. 
PCM was used to forecast 30 years of producing gas-oil ratio (GOR) data for 
each of the five highly volatile oil wells with availability of 0.5 to 2 yrs of simu-
lated production history. The results were then compared to compositional si-
mulation study results. Analyses were done with PCM, using only the 1st primary 
set of principal components to estimate future GOR. Graphical displays of GOR 
forecasts and the plots of the estimated GOR forecasts versus cumulative oil 
production for the near-critical fluids are shown in Figures 10-15.  

From the results, observations show that forecasts were reasonable and errors in 
the calculated solution gas produced (after 30 yrs) were relatively low. Percentage 
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Figure 6. Oil rate vs. time forecast—0.5 yr. historical data. 

 

 

Figure 7. Oil rate vs. time forecast—1 yr. historical data. 
 

 

Figure 8. Oil rate vs. time forecast—2 yrs. historical data. 
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Figure 9. Oil rate vs. time forecast—0.5 yr. historical data for PCM & 30 yrs. of historical 
data for modified Arps. 

 

 

Figure 10. GOR vs. time forecast—0.5 yr. historical data. 
 

 

Figure 11. Forecasted GOR vs. cumulative oil—0.5 yr. historical data. 
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Figure 12. GOR vs. time forecast—1 yr. historical data. 
 

 

Figure 13. Forecasted GOR vs. cumulative oil—1 yr. historical data. 
 

 

Figure 14. GOR vs. time forecast—2 yrs. historical data. 
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Figure 15. Forecasted GOR vs. cumulative oil—2 yrs. historical data. 
 

Table 3. Solution gas production forecast results. 

Solution Gas Production Forecast Results 

Principal Components (PCs) 1 Set of PCs (Primary PCs) 

Historical Data 0.5 yr 1 yr 2 yrs 

Simulated Cum. Gas, bscf 6.90 6.90 6.90 

PCM Forecast, bscf 6.49 6.55 6.54 

Error (absolute value), bscf −0.41 −0.35 −0.26 

Percentage Error, % −5.84 −5.02 −3.76 

 
error in the estimated solution gas production after 30 years was as low as 3.8%. 
The calculated results can be seen in Table 3. 

7. Field Data Analyses 

When actual field data are available, the application of PCM involves some steps 
prior to following the already outlined basic workflow. Firstly, the historical field 
data can be history-matched. The parameters obtained from the history- 
matching exercise can then be used to simulate production data for as long as we 
would like to forecast (in this case, 30 years). After this, the basic PCM workflow 
outlined earlier can be followed. Hindcasting can also be done to verify the 
validity of PCM by applying the methodology to a portion of the available 
historical data from a representative group of wells. The principal components 
(PCs) generated are then used to forecast the remaining part of the available 
historical data. In other words, through the hindcasting exercise, PCM can be 
used to match the actual field data available. Examples of these two approaches 
are shown later in this work. Note though, that prior to applying the PCM 
workflow to field data, it is advisable to eliminate the outliers and clean up the 
production data. 
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When applying PCM to field data, certain challenges may be encountered. For 
example, different wells may have different production start and end times. Also, 
in some cases, wells might be shut in i.e., no production data available for that 
period. This study proposes certain solutions to handling these challenges that 
may arise. They are outlined below: 

1) Always treat the data as purely raw data. Meaning, ignore the exact times 
associated with the oil and gas rates. Treat the oil and gas rates as purely raw data. 
This helps to avoid the complications associated with the irregularity of 
production data points; 

2) To tackle the issue of different start and end production times for different 
wells, always remember that the matrix Z formed from your available data is m x 
n. The length of production history (time), n must be the same for all the well 
data being considered in order to apply PCA appropriately using singular value 
decomposition (SVD). That is, endeavor to choose a specific length of 
production history (time) for your analyses and use the same length of time for 
all the well data under consideration regardless of their actual lengths of 
production history. For example, for wells with lengthier production histories 
(e.g. 3 years) than your choice for analyses (e.g. 2 years), use data from the 
beginning up to the time of your choice (2 years) and ignore the rest of the data 
at later times. And, for wells with shorter production histories (e.g. 6 months) 
than your choice for analyses (e.g. 2 years) you can only use data up to the 
amount available and other well data must be equal to 6 months as well for PCA 
(using SVD) to be applicable in this instance. In this case, if your choice of 
production history for analyses is lengthier than 6 months, the wells with only 6 
months of production history can not be included or considered for PCA 
application using SVD; 

3) If there are shut-ins, ignore the shut-in periods and focus on the available 
data. For example, the last datum (oil or gas rate) before the shut-in period 
should be followed directly by the first datum (oil or gas rate) after the shut-in 
period. 

In this study, PCM was applied to data (after clean up) from 10 different 
representative wells in the same liquid-rich shale play. Therefore, 10 sets of 
principal components (PCs) were calculated using singular value decomposition 
(SVD). The first set of PCs were then used to forecast future production of the 
wells and other wells in the same region. An example for a well with about 3,561 
days of historical production data is presented here. Figure 16 and Figure 17 
display the history-matched production data and simulated forecast. Figure 18 
shows comparison with the PCM forecast. Here, the PCM forecast is highly 
accurate, with a forecast error of only 0.02%. 

Examples of hindcasting exercise for the same well but with approximately 
3000 days of the historical production data are shown in Figure 19 and Figure 
20. PCM was applied to 1400 days out of the available historical production data 
for all the 10 representative wells. The principal components obtained were used  
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Figure 16. History-matched field data. 

 

 

Figure 17. Field data—simulated forecast. 
 

 

Figure 18. Forecast comparisons—field data. 
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Figure 19. Hindcasting: oil rate vs. time—field data. 
 

 

Figure 20. Hindcasting: oil rate vs. time forecast comparison with modified Arps—field 
data. 

 

to forecast the remaining production. The PCM results were compared to the 
actual field data and Modified Arps’ decline model forecast. Result showed that 
PCM matched actualfield data better than the Modified Arps’ decline model. 

8. Conclusions 

Principal components analysis (PCA) is a statistical tool that helps to account for 
the variability in a group of representative data sets. Principal components (PCs) 
are obtained by Singular Value Decomposition (SVD), which is one of the ways 
of executing PCA. The first set of PCs has the largest possible variance and the 
successive sets of PCs have the maximum possible variance under a constraint 
that is orthogonal to preceding sets of PCs. 

The application of these principal components (PCs) to forecasting oil and 
solution gas production gave rise to the Principal Components Methodology 
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(PCM). This simple, easy-to-use technique of forecasting production is based on 
pattern recognition and feature extraction. The principal components methodology 
(PCM) has the following noteworthy advantages over other empirical and 
analytical methods of production forecasting: 

1) It eliminates the need to determine vital decline curve analysis (DCA) 
model parameters like the hyperbolic decline exponents (b values); 

2) Diagnostic plots are not necessary prior to forecasting with PCM; 
3) It avoids the complication of switching from one DCA model to another, as 

is the case with hybrid (combination) DCA models; 
4) It does not involve complex and rigorous calculations. 
Despite some of the challenges that may be encountered while applying PCM 

to field data, this method can forecast with reasonable certainty irrespective of 
the length of historical production data available. 
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