
Open Access Library Journal
2017, Volume 4, e3926
ISSN Online: 2333-9721

ISSN Print: 2333-9705

DOI: 10.4236/oalib.1103926 Oct. 24, 2017 1 Open Access Library Journal

Harmonic Paradigm

Yoosef Habibi

Department of Computer, Faculty of Computer Engineering and Science, Shahid Beheshti University, Tehran, Iran

Abstract
Programming paradigms are a way to classify programming languages ac-
cording to the style of computer programming [1]. In this paper, we tried to
present a new programming paradigm by interweaving the concepts of har-
mony and an inspiring sample of nature (jellyfish and its way of life). This
model includes some of the advantages of available paradigms such as ob-
ject-oriented and functional paradigm as well.

Subject Areas
Computer Engineering

Keywords
Programming Paradigm, Harmonic, Harmonic Paradigm,
Object-Oriented Programming, Functional Paradigm

1. Introduction

A programming paradigm is a style or “way” of programming [2].
In the past 40 years, many paradigms were developed, paradigms like func-

tional and object-oriented.
Every paradigm has an abstraction view considering data, operands, and con-

trol and generally everything from the creation of a program to its execution.
Properties and techniques that are used by each paradigm, implies different

application area. For instance, every time we have programs with complicated
data and interface it is better to use object-oriented paradigm. Generally, what
makes the difference between paradigms in addition to the concept of programs
and its execution, are the concept of variables [3].

Some of the well-known paradigms:
- Imperative,
- Procedural,

How to cite this paper: Habibi, Y. (2017)
Harmonic Paradigm. Open Access Library
Journal, 4: e3926.
https://doi.org/10.4236/oalib.1103926

Received: September 7, 2017
Accepted: October 21, 2017
Published: October 24, 2017

Copyright © 2017 by author and Open
Access Library Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

 Open Access

https://doi.org/10.4236/oalib.1103926
http://www.oalib.com/journal
https://doi.org/10.4236/oalib.1103926
http://creativecommons.org/licenses/by/4.0/

Y. Habibi

DOI: 10.4236/oalib.1103926 2 Open Access Library Journal

- Functional,
- Object oriented,
- Event driven,
- Flow driven [2].

Imperative program paradigm is one of the oldest programming paradigms
that evolved from the assembly language and its properties are a reflex of John
Von Neuman’s computer architecture laws. This paradigm consists of explicit
commands and call the procedure, each procedure affects some data.

Functional paradigm is an old paradigm as well. The program divided into
sets of functions; each does a certain part of the program [3]. The fundamental
elements of functional programming are variables and functions [5] [10].

Logic paradigm is a set of rules and facts that specify object properties and
using the inferences obtained from the available phrases, it starts building the
intended objects.

Object oriented paradigm, the program described using objects and interac-
tions among them [3]. Objects are modular units consisting data and operations
on data .These modular units-objects-communicate through specified interfaces
[5] [10].

Objects communicate with each other and together build the whole program.
Objects are instances of the classes. Every class represents a set of objects with
similar attributes and operations [3]. One of the main features of oop—object
oriented programming—is having encapsulation. Encapsulation is a technique
for breaking programs into pieces with specified external interfaces. Oop sup-
ports two ways of encapsulation: Object encapsulation and Class encapsulation.

Object encapsulation ensures the accessibility of private members within the
object. Class encapsulation provides the accessibility of private members by ob-
jects of same class [6].

This paper illustrates a new programming paradigm—Harmonic Paradigm—
with its specific features. In the following paper, it will be discussed the compar-
ison between Harmonic Paradigm and mentioned paradigms.

2. Explanation of Harmonic Paradigm

Definition of Harmony:
- A pleasing arrangement of parts
- An interweaving of different accounts into a single narrative [4].

As an example of a set that has harmony-what we would call harmonic set-
consider a bike in which arranging the wheels, chains and the other parts of a
bike in order to make it suitable for riding makes the bike a good example of a
harmonic set.

Suppose a part of seawater as a harmonic system that has some of the follow-
ing components:

Sea creatures (like jellyfish that only has an entry and exit) and sea flows.
These flows lead the jellyfishes to move and the only thing that Jellyfishes do

is letting the food to enter and exit. Jellyfishes live in this way.

https://doi.org/10.4236/oalib.1103926

Y. Habibi

DOI: 10.4236/oalib.1103926 3 Open Access Library Journal

Presenting the definition of the harmony and the sample of nature is for the
sake of discussing how the harmonic paradigm is concluded from interweaving
these materials.

The presented paradigm in this paper with the name of harmonic paradigm
has three fundamental components:

1) Components which are merely acceptor. (Like the jellyfish)
2) Components which implement the general act of the program (like the sea

flows) that is named action profile.
3) Functional components which implement the influence of the being com-

ponents in the program (like jellyfish and flows) in order to both save the side
effects of the components and stabilize the system and is named self action pro-
file.

Furthermore, we are going to exactly describe each of these three basic com-
ponents:

1) Action profile
It is a kind of structure which has a set of functions which it is presented spe-

cific order in itself which works as a functional component and accepts some
input and at last it produces an output and this is only thing that is visible from
outside and the number or the kind of the functions aren’t visible. In other
words, every action profile has encapsulation to the others.

Generally, every action profile implements a fundamental action in a pro-
gram.

The general structure is like this:
Action profile A (inputs){
A1 ();
A2 (); // the order in which A call its subroutines
A3 ();
A1 () {implementation}
A2 () {implementation}
A3 () {implementation}
} // end of action profile A
2) Self action profile
The self action profiles are functioned similarly to action profiles, but they are

different from action profiles naturally. The action profiles implement funda-
mental actions of the program; on the other hand, self action profiles are a set of
functions which for these aims:

a) Implementing the behavior and side effects.
b) Considering a condition for the stability of the system.
Generally, they are called implicitly and their priority is more than action pro-

files’.
Fundamental actions: a set of actions in the system that in case of being omit-

ted, the main functional feature and the facilities of the system will be reduced.
According to this definition, omitting the self action profiles doesn’t reduce

the fundamental actions and it was mentioned it was a set of rules for environ-

https://doi.org/10.4236/oalib.1103926

Y. Habibi

DOI: 10.4236/oalib.1103926 4 Open Access Library Journal

mental conditions (program) that is implemented and naturally in case of omit-
ting them, there will be a decrease in the implementation.

3) Acceptor
Acceptors are components of the program which are working together; same

as objects in object oriented paradigm with only one great difference that in the
object oriented paradigm, every object is empowered, because it can do some ac-
tions; but in this presented point of view, components are not empowered and
the defined actions in the system, depending on conditions, involve the accep-
tors in conditions or don’t.

For using the acceptors by action profiles and self action profiles, these ap-
proaches are available:

a) Table approach
b) Exclusive lock approach
Table approach:
In this approach, a table is used that the permission of the acceptors to reach

the action profiles (Figure 1) and self action profiles is mentioned like the fol-
lowing shaped:

Disadvantage: whenever the number of (∑|acceptors| × ∑|action profiles + self
action profiles|) increases, then in this way there will be a big table that must be
stored in the memory and its initialization should be run in O (∑|acceptors| ×
∑|action profiles + self action profiles|).

Exclusive lock approach:
In this approach, any acceptor has a parameter called exclusive lock (Figure

2).
This approach has two attitudes:
i) Specifying just one function with the name of control exclusive lock which

has the duty to initialize the exclusive lock parameter to any acceptor and in this

Figure 1. Table approach sample.

https://doi.org/10.4236/oalib.1103926

Y. Habibi

DOI: 10.4236/oalib.1103926 5 Open Access Library Journal

Figure 2. Exclusive lock approach.

attitude the acceptor has the ability to control. In addition, we have somehow
provided encapsulation; because this attitude lets any acceptor to decide which
action can access to it. For example, in a university automation system, the stu-
dent decides whether the check-marks function can have access to it or not.

ii) In this attitude, instead of giving the control duty to any acceptor, there is a
global control with the name of a specific self action profile and whenever the
exclusive lock parameter of an acceptor needs to change, that specific self action
profile set the exclusive lock parameter for that requested acceptor. Even in the
table attitude, none of the action profile and self action profile has permission to
change the table and a specific self action profile does this action instead.

Eventually, we would like to mention the fact that choosing among these me-
thods depend on programmers and circumstances in which they are program-
ming with.

Eventually, it is necessary to mention that all these three fundamental com-
ponents (acceptor, action profile, self action profile) are implemented by classes.
In other words, we have three kinds of classes which implement one of the main
program’s characteristic:

Acceptor as a class that defines the components that are communicating with
each other, action profile as a class which define a flow that models fundamental
action and self action profile defines permissions, access level and environmental
communicating actions between different parts of the program. There is more
than one self action profile class and each class focuses on different parts of
components of the program and their relations.

Benefits and specific features:
1) Harmonic paradigm has encapsulation. In this point of view, the program

is divided into pieces (action profile classes, self action profile classes, and ac-
ceptor classes). Action profile and self action profile are black boxes that their
implementations are not visible from outside of them. Acceptors are also hidden
from action profiles but by self action profile’s permission. And their accessibili-
ties and communications are as following:

https://doi.org/10.4236/oalib.1103926

Y. Habibi

DOI: 10.4236/oalib.1103926 6 Open Access Library Journal

Action profile can change acceptor’s variables with self action profile’s per-
mission.

This permission is defined by the programmer for programmer’s preferences.
Self action profile can change acceptor’s variables.
Self action profile can affect the performance of specific flows under certain

conditions. These effects are defined by the programmer.
The result of flows and variables’ state in acceptors can affect self action pro-

file’s state (Figure 3).
As an example, consider the following scenario:
Specific acceptor has some info that is needed by a specific flow.
Specific self action profile for this condition allows that flow to access the in-

formation.
After operating, flow makes an invalid value for a specific variable.
So, the state of that self action profile changes to be able to handle this issue.
2) Information hiding is a technique for determining which parts of a class

should be visible to which clients. It’s important because it affects design speci-
fications. In other words, certain specifications should be visible whereas it
doesn’t cause hidden parts to expose [7].

In Harmonic Paradigm, action profile classes are only black boxes that per-
form an action and can use the result of each other. So, they are hidden from the
rest of the program. Acceptors are hidden by default but by self action profile’s
permission. Permission can be defined by programmer’s preferences.

3) In order to implement concurrent programming, it is necessary to consider
a way for letting the processes communicate with each other. In order to do so, it
is necessary to synchronize between asynchronous processes. Two common
ways of synchronizing are:

The Mutual Exclusion that provides a critical section in the code for prevent-
ing writing into any shared variables while reading.

Conditional Synchronization delays a process for providing the requirements
to get synchronized with other parts [8].

In order to support parallel programming, the concept of paradigm should
support techniques that are used for parallel programming: partitioning and di-
vide-and-conquer.

Figure 3. Elements and their effects on each other.

https://doi.org/10.4236/oalib.1103926

Y. Habibi

DOI: 10.4236/oalib.1103926 7 Open Access Library Journal

Partitioning: In this approach, the main problem is divided into smaller parts
and these parts compute separately. There are two kinds of partitioning: Data
partitioning and Functional partitioning.

In Data partitioning, the data with its functions is divided into parts and
computes separately. In Functional partitioning, the main task is divided into
smaller tasks and then they will be computed.

Mentioned techniques can use both message passing and shared memory for
communication.

Divide-and-conquer: It recursively divides the program into sub-programs
until the programs could not be divided into smaller parts. Eventually, it com-
bines the results to solve the main problem [9].

Harmonic Paradigm is appropriate for both kinds of programming:
Action profiles as flows of actions can be computed separately on distributed

systems or sequentially within a single processor. Self action profiles can define
the circumstances for one single processor or can be defined for each processor
individually and a small self action profile for communicating and controlling
the whole program.

4) It has the advantages of the object oriented paradigm that its attitude is
similar to the men’s attitude.

5) In addition, due to the suitable hierarchy, implementation is divided into
different levels which reduced the designing pressure on one part.

6) A better use of resources, not reaching a deadlock and remaining stable can
be better implemented.

7) Generally, it uses the object oriented and functional paradigm advantages
and it is individually better than those two paradigms.

8) All of the actions which are implemented in the program are studied in a
specific layer; as a result, finding the errors and enhancing and optimizing the
action of the system is much easier.

Simple example:
Suppose that we want to implement a university automation system with sim-

ple conditions by Harmonic paradigm, the only thing that we need to do is to
design these following layers:

1) Acceptors: we need to implement the components that are interacting with
each other in this level like:

Student {student’s properties}
Staff {staff’s properties}
Teacher {teacher’s properties}
2) Action profiles: in this layer, we need to implement fundamental functions

of the program like:
Checking recent status (students/staff/teacher)
Setting marks
Getting marks
Write a complaint

https://doi.org/10.4236/oalib.1103926

Y. Habibi

DOI: 10.4236/oalib.1103926 8 Open Access Library Journal

3) Self action profiles: in this part, we need to implement functions that de-
termine the environmental conditions of the program like:

a) Permission to access parts/evidence.
b) Sending message to clients.

3. Conclusion

In this paper, we presented a model inspired by nature by presenting the con-
cepts of harmony and programming paradigms and associating these two con-
cepts with each other. This newly introduced model has much of the advantages
of two common paradigms (object-oriented and functional paradigm). Besides,
it has illustrated new advantageous features making it simpler to design and
detect errors.

References
[1] https://en.wikipedia.org/wiki/Programming_paradigm

[2] http://cs.lmu.edu/~ray/notes/paradigms/

[3] Elena, B. (2005) Programming Paradigms in Computer Science Education. Interna-
tional Journal of Information Theories & Applications, 12, 285-290.

[4] www.merriam-webster.com/dictionary/harmony

[5] Elmar, L. Object-Oriented Programming versus Functional Programming, a Com-
parison of Concepts, Special Topic in the Lecture on “Functional Programming
with ML”, University of Osnabrück, Winter Term 2001/02.

[6] Janina, V., Warwick, I. and Neville, C. Class Encapsulation and Object Encapsula-
tion: An Empirical Study.

[7] Leavens, G.T. and Peter, M. Information Hiding and Visibility in Interface Specifi-
cations.

[8] Schneider, F.B. and Gregory, R. Andrews Concepts for Concurrent Programming.

[9] Wilkinson, B. and Allen, M. (2004) Parallel Programming Techniques & Applica-
tions Using Networked Workstations & Parallel Computers. 2nd Edition, Pearson
Education Inc.

[10] Don, L. and Greg, W. (1995) Object-Oriented Programming and the Objective-C
Language. NeXT Software Inc.

https://doi.org/10.4236/oalib.1103926
https://en.wikipedia.org/wiki/Programming_paradigm
http://cs.lmu.edu/%7Eray/notes/paradigms/
http://www.merriam-webster.com/dictionary/harmony

Submit or recommend next manuscript to OALib Journal and we will pro-
vide best service for you:

 Publication frequency: Monthly
 9 subject areas of science, technology and medicine
 Fair and rigorous peer-review system
 Fast publication process
 Article promotion in various social networking sites (LinkedIn, Facebook, Twitter,

etc.)
 Maximum dissemination of your research work

Submit Your Paper Online: Click Here to Submit
Or Contact service@oalib.com

http://www.oalib.com/journal/?type=1
http://www.oalib.com/paper/showAddPaper?journalID=204
mailto:service@oalib.com

	Harmonic Paradigm
	Abstract
	Subject Areas
	Keywords
	1. Introduction
	2. Explanation of Harmonic Paradigm
	3. Conclusion
	References

