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Abstract 
This paper deals with the global optimization of several variables Holderian 
functions. An algorithm using a sequence of overestimators of a single varia-
ble objective function was developed converging to the maximum. Then by 
the use of α-dense curves, we show how to implement this algorithm in a 
multidimensional optimization problem. Finally, we validate the algorithm by 
testing it on some test functions. 
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1. Introduction 

When modeling economic, biologic, …, systems, we often meet situations where 
we are led to minimize or maximize objective multivariate functions [1]. Gener-
ally, we are seeking global optimums. It’s well known that global optimization 
algorithms are scare, when compared to the local optimization ones [2], and 
when they exist, their implementation is not so obvious. This difficulty increases 
when the number of the decision variables gets higher. 

In this paper, the objective function is deterministic and available and the va-
riables are bounded but the derivative information is either unavailable or its 
manipulation is expensive. 

When information derivative is not required, many authors have used the regu-
larity of the objective function to elaborate algorithms giving the optimum [3] [4]. 
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Shubert [5], Ammar and Cherruault [6] [7], Evtushenko Ya. G., Malkova V. 
U. and Stanevichyus A. A. [8], Gergel V. P. and Sergeyev Ya. D. [9], Sergeyev Y. 
D. and Kvasov D. E. [10] considered the case where the objective function is lip-
schitzian. They developed methods generating sequences converging to the op-
timum. Other authors, Gourdin E. Jaumard B. and Ellaia R. [11], Lera D. and 
Sergeyev Ya. D. [12], Rahal M. and Ziadi A. [13], processed the case of holderian 
functions by trying to elaborate a sequence to converge to the optimum; except 
that, here, obtaining a sequence, to converge to the optimum, is not so obvious. 

In this paper, we are also interested in holderian objective functions. We will 
develop a technique to solve a multidimensional optimization problem. 

In the first part of this paper we define a sequence of overestimators of a single 
variable function. Then we describe a global optimization algorithm suitable to 
such functions converging to the global maximum. Then after, we show how we 
can give an approximating value of the maximum of a several-variables holderian 
function. To do this, we introduce, in the second part, the Lissajous α-dense 
curve: the tool that allows to go from a multidimensional optimization problem 
to a single dimensional one. We end this paper by validating our algorithm test-
ing it on some test functions [14]. 

2. Optimization of a Single Variable Hoderian Function 

Let’s consider a single variable holderian function f defined on an interval  
[ ],a b ⊂  . 

Let’s denote by (P) the following unidimensional optimization problem: 

(P) 
( )

[ ]
Maximize  

,

f x

x a b




∈
 

In fact, we will not search the exact solution optx  of this problem, we just 
want to have its approximated value. To achieve this, we will develop a global 
optimization algorithm suited to holderian functions, that will give an approxi-
mation *x  such that ( ) ( )*

0optf x f x ε− ≤  where 0 0ε > , is the required ac-
curacy a priori chosen. This algorithm is based on a sequence of overestimators. 

2.1. Overestimator of a Holderian Function 

Definition 1. A real multivariate function f is said to be holderian on a set 
nX ⊂  , if there exists 0k >  and 1β >  such that x X∀ ∈  and y X∈ :  

( ) ( )
1

f x f y k x y β− ≤ − . 

Definition 2. A function F is said to be an overestimator of a function f on a 
set X if:  

( ) ( ),x X F x f x∀ ∈ ≥ . 

Proposition 1. Let f be a holderian univariate function defined on the interval 
[ ],a b  and let [ ],y a b∈ . The function H defined on [ ],a b  by: [ ],x a b∀ ∈  

( ) ( )
1

H x f y k x y β= + − . 
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is an overestimator of f on [ ],a b . 
Proof. Let’s set [ ],y a b∈ , As f is holderian: [ ],x a b∀ ∈  

( ) ( )
1

f x f y k x y β− ≤ − . 

This yields: ( ) ( )
1

f x f y k x y β− ≤ − . 

Hence, ( ) ( ) ( )
1

f x f y k x y H xβ≤ + − = . 

2.2. Sequence of Overestimators 

Let 0x a=  the left bound of [a, b] and let’s set:  

( ) ( ) ( )
1

0 0 0 0F x f x k x x G xβ= + − =  

an overestimator of f whose representative curve is given by Figure 1. 
The curve has one vertex ( )1 1 1,V u b H=  such that:  

( )
[ ]

( )
1

1 0 0 0,
max
x a b

H f x k b x G xβ
∈

= + − =  

Let’s set ( )( )1 0arg maxx G x= . Here, 1x b= . From the point that coordinates 
are ( )( )1 1,x f x , we plot the curve of the overestimator:  

( ) ( )
1

1 1 1F x f x k x x β= + −  

as shown in Figure 2. We set:  
 

 
Figure 1. Curve of F0. 

 

 
Figure 2. Curve of G1. 
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( ) ( ) ( )( )1 1 0min ,G x F x G x=  

and ( )( )2 1arg maxx G x= . 
The vertex 1V  is anymore a vertex of the curve of 1G . It’s replaced by a new 

vertex ( )( )1 2 1 2,V x G x′ , given by the intersection of the curves of 1G  and 1F . 
The real 2x  is solution of the following equation:  

( ) ( )
1 1

0 2 0 1 2 1f x k x x f x k x xβ β+ − = + −  

In general, it is not easy to have the exact value of the solution of the equation 
above. For this reason, we will introduce an auxiliary function 1O  that allows to 
give a value nearby to 2x  that we also denote by 2x . 

The point ( )( )1 2 1 2,V x G x′  is between two neighbouring points belonging to 
the curve of 1G : one on its left ( )( )0 0,L x f x  and one in its right ( )( )1 1,R x f x . 
We denote by:  

• ( ) ( )( )1 0 1max ,M f x f x=  

• ( ) ( )( )1 0 1min ,m f x f x=  

• ( ) ( )( )1 0 1arg max ,f x f xµ =  

• ( ) ( )( )1 0 1arg min ,f x f xρ =  

According to the Figure 2, and in this case, ( )1 1M f x=  and ( )1 0m f x= . 
Let’s set 1z  in [ ]0 1,x x  such that: ( )1 1 1G z M=  and 1 1z µ≠ . That yields that:  

1 1
1 0

M mz x
k

β− = +  
 

 

From the point ( )1 1 1,L z M , we plot the representative curve of:  

( ) ( )
1

1 1

1 1 1 1 1min , 1JO x M k x x M k x xβ βµ = + − + − 
 

 

where ( ) ( )1 1 1 1 1min , ,max ,J z zµ µ=    . 
The new function:  

( ) ( ) ( )
11 1 11x JG x G x O x∉′ = +  

is also an overestimator. 
The curve of 1G′  has a new vertex, given by the curve of 1O , denoted by:  

( )1 1,V u H′′ ′  such that: 

1

1 1 1 1

1 1
1 2

H M k u z
z xu

β
 ′ = + −
 + =


 as indicated in Figure 3. 

Hence, the vertex 1V  will be replaced by V ′′ . The new vertex of the curve of 

1G′ , now denoted by 1V , will be identified by ( )1 1 1 1, , ,u L R H  with  
1

1 1 1 1H M k u z β= + −  and where ( )1 1 1,L z M  and ( )1 1 1,R x M  are, respectively,  

the left and the right neighbours of 1V . 
Let set ( )( )2 1arg maxx G x′= . Here, 2 1x u= . Let:  

• ( ) ( )
1

2 2 2F x f x k x x β= + −  
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• ( ) ( ) ( )( )2 2 1min ,G x F x G x′=  

Suppose f evaluated at 0 1, , , nx x x�  and denote by:  

( ) ( ) ( )( )0 1max , , ,n nf x f x f xϕ = �  

The curve of nG′  has n vertexes: 0 1 nV V V≤ ≤ ≤�  such that each of them is 
identified by:  

( )
( )

1

its left neighbour ,

its right neighbour ,

its absciss
2

its ordinate

i i i

i i i

i i
i

i i i i

L l M

R r M
l ru

H M k u r β




 + =

 = + −

 for i from 1 to n.        (1) 

Let’s ( )( )1 arg maxn n nx G x u+ ′= = , ( )1 1n ny f x+ += , ( )( )1 1max ,n n nf xϕ ϕ+ +=  
and:  

• ( ) ( )
1

1 1 1n n nF x f x k x x β
+ + += + −  

• ( ) ( ) ( )( )1 1min ,n n nG x G x F x+ +′=  

For the curve of the overestimator 1,n nG V+  is anymore a summit, but two 
new vertexes appear from either side of nV : denoted by LV  (in the left) and 

RV  (in the right), as indicated in Figure 4. Set:  
 

 
Figure 3. Curve of 1G′ . 

 

 
Figure 4. Curve of Gn+1. 
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• ( )( )1 1max ,n n nM f x M+ +=  

• ( )( )1 1min ,n n nm f x M+ +=  

For the both vertexes LV  and RV , it is not obvious to calculate their coordi-
nates. Each of them will be replaced, respectively, by LV ′  and RV ′  as proceeded 
for 1G . 

Let’s determinate the coordinates of vertex LV ′ . 
Set ( )1 1argL

n nMµ + +=  and ( )1 1argL
n nmρ + +=  which belong to the set  

{ }1,n nx l+  where nl  is the absciss of the left neighbour nL  of nV , as men-
tioned in (1). 

Let’s set Lz  in 1 1, L
n nx µ+ +    such that: ( )1 1n L nG z M+ +=  and 1

L
L nz µ +≠ . 

This involves:  

( )
1

1 1
1 1 1

L L L n n
L n n n

M mz sign
k

β
ρ µ ρ + +

+ + +
− = + −  

 
 

where ( )
1, if 0
1, if 0

x
sign x

x
+ ≥

= − <
. Let:  

( ) ( )
1

11

1 1 1 1min , 1 L
n

L L
n n L n n J

O x M k x z M k x xββ µ
+

+ + + +

 
= + − + − 

 
 

where ( ) ( )1 1 1min , , max ,L L L
n L n L nJ z zµ µ+ + +

 =   . 
The part of the curve of 1nG +  relative to the interval  

( ) ( )1 1min , , max ,L L
L n L nz zµ µ+ +

 
   is replaced by the one of 1

L
nO + . That makes ap-

pear a new vertex ( LV ′ ) replacing LV  such that:  

• Its absciss is ( )1
1
2

L
L L nu z µ += +  

• Its ordinate is 
1

1 1
L

L n n LH M k u βµ+ += + −  

Furthermore, LV ′  will be identified by its neighbours:  

• The left neighbour ( )( )1 1min , ,L
L n nL z Mµ + +  

• The right neighbour ( )( )1 1max , ,L
L n nR z Mµ + +  

Those values will be saved in memory. 
Similarly, RV  will be replaced by RV ′  determined as follows: 
Set ( )1 1argR

n nMµ + +=  and ( )1 1argR
n nmρ + +=  which belong to the set  

{ }1,n nx r+  where nr  is the absciss of the right neighbour of nV . Let:  

 ( )
1

1 1
1 1 1

R R R n n
R n n n

M m
z sign

k
β

ρ µ ρ + +
+ + +

− = + −  
 

 

 ( ) ( )
1

11

1 1 1 1min , 1 R
n

R R
n n R n n J

O x M k x z M k x xββ µ
+

+ + + +

 
= + − + − 

 
 

where ( ) ( )1 1 1min , ,max ,R R R
n R n R nJ z zµ µ+ + +

 =   . 

The vertex RV ′  that will replace RV  has the following coordinates:  
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• Its absciss is ( )1
1
2

R
R R nu z µ += +  

• Its ordinate is 
1

1 1
R

R n n RH M k u βµ+ += + −  

RV ′  will also be identified by its neighbours:  

• The left neighbour ( )( )1 1min , ,R
R n nL z Mµ + +  

• The right neighbour ( )( )1 1max , ,R
R n nR z Mµ + +  

Let’s set:  

( ) ( ) ( ) ( ) ( )
11 1 1 1 1

n

L R
n n n n x JG x G x G x G x x

++ + + + ∈′ = + +  

where ( ) ( )1 1 1 1 1min , ,max ,L R L R
n L n R n n nJ z z J Jµ µ+ + + + +

 = =  ∪ . 

Furthermore, the vertex nV  is eliminated and replaced by RV ′  and LV ′ . 
Hence, we have 1n +  simmits that we organize in an increasing order, that 
yields:  

1 2 1nV V V +≤ ≤ ≤�  

2.3. Convergence Theorem 

Theorem 1. Let f  a 1,C
β

 
 
 

-holderian function defined on the interval  

[ ],a b . The sequence ( )n n
H

∈ , defined above, decreases to the maximum of f . 
Proof. Denote by [ ] ( ),max x a b f xϕ ∈=  and [ ] ( ){ }Φ , ;x a b f x ϕ= ∈ = ,  

[ ] ( ) ( ), , nx a b G x f x∀ ∈ ≥  for all n∈ . This involves that:  

[ ]
( )

[ ]
( )

, ,
max maxn nx a b x a b

H G x x ϕ
∈ ∈

= ≥ =  

As ( ) ( )( )1 0 1max , ,n nf x f xϕ + += �  and by the construction of nM , we de-
duce that:  

1 1 1n n nM Hϕ+ + +≤ ≤  

Hence:  

( )

( ) ( )

1 1 1

1 1

1
1

1 1 1 1 1

1 1

2

1
2

1 1
2 2

n n n

n n

n n n n L n L R

L R L Rn

H H M k x x k x x

k x x k x x

β
β

β β

ϕ
+ + ++ + + + +− ≤ − ≤ − ≤ −

≤ − ≤ −

 

which vanishes to 0. 
As ( )nϕ  is an increasing bounded sequence, it converges. Suppose that nϕ

converges to µ ϕ≠ . As [ ]( ),f a b  is a compact, [ ]( ),f a bµ ∈ . Let [ ],ny a b∈  
such that ( )n nf yϕ = . As [ ],a b  is a compact, the sequence ( )ny  admits a 
subsequence ( )kny  that converges to z  in [ ],a b . The continuity of f  in-
volves that ( )f z µ= . 

Let ε ϕ µ= − . Since ( )kny  converges to z , , ,
2knK k K y z
C

βε ∃ ∀ ≥ − <  
 

. 



A. Yahyaoui, H. Ammar 
 

8/18 OALib Journal

The property of Holder involves that: ( ) ( )
1

2k kn nf y f z C y z β ε
− ≤ − ≤ . This  

means that k K∀ ≥ :  

( ) ( ) .
2 2k kn nf y f z ε εϕ µ= ≤ + = +  

On the other hand, kn n∀ ≥ :  

( ) ( ) ( )
1 1

.
k k k k kn n n n n nG x G x f y C x y C x yβ βϕ≤ = + − = + −  

Hence, [ ],x a b∀ ∈  and kn n∀ ≥  such that 
2knx y
C

βε − <  
 

, we have:  

( )
2 2 2kn nG x ε ε εϕ µ ϕ= + ≤ + + =  

The real ,
2 2k kn nz y y
C C

β βε ε    ∈ − +    
     

, then j K∃ >  such that:  

2j Kn ny y
C

βε − <  
 

. 

This means that ( )j j jn n nH G y ϕ= < . This is absurd. Then ( )kny  converges 
to ϕ . 

2.4. Description of the Algorithm 
2.4.1. Initialization 

0 1, , 1x a x b n= = = . 

• ( ) ( )( )1 0 1max ,M f x f x=  

• ( ) ( )( )1 0 1min ,m f x f x=  

• ( ) ( )( )1 0 1arg max ,f x f xµ =  

• 
1

1 1
1 1 1 1 1 1,

2
z xV u H M k u z β
+ = = + − 

 
 

( )1 1 1,L z M  and ( )1 1 1,R x M  

2.4.2. Iterative Steps 

• ( ) ( ) ( )( )0 1max , , ,n nf x f x f xϕ = �  

• 1n nx u+ =  

• ( )( )1 1max ,n n nM f x M+ +=  

• ( )( )1 1min ,n n nm f x M+ +=  

• 

( )

( )( )
( )( )

1

1 1

1 1

1 1

1
2

min , ,

max , ,

L
L L n

L
L n n L

L
L

L n n

L
L n n

u z

H M k u
V

L z M

R z M

µ

µ

µ

µ

+

+ +

+ +

+ +

 = +


= + −′ 
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• 

( )

( )( )
( )( )

1

1 1

1 1

1 1

1
2

min , ,

max , ,

R
R R n

R
R n n R

R
R

R n n

R
R n n

u z

H M k u
V

L z M

R z M

µ

µ

µ

µ

+

+ +

+ +

+ +

 = +


= + −′ 





 

Organize in an increasing order 1 2 1, , , , ,n L RV V V V V− ′ ′� : 1 2 1n nV V V V +≤ ≤ ≤ ≤� . 

2.4.3. Stopping Criterion 
If 1 1 0n nH ϕ ε+ +− ≤ , then stop, else, 1n n= +  and back to iterative steps. 

3. α-Dense Curves 

The principal tool that enables one to apply the algorithm above for a multiva-
riate function is the α-dense curves [15] [16] [17]. 

3.1. The α-Dense Curves 

Definition 3. Let X  be a non empty set and S  a subset of X . S  is said to 
be α-dense in X , if:  

( ), : ,M X M S d M M α′ ′∀ ∈ ∃ ∈ ≤  

Among the α-dense curves, we have chosen the Lissajous curves. 

3.2. Lissajous Curve 

In mathematics, a Lissajous curve, also known as Lissajous figure or Bowditch 
curve, is the graph of a system of parametric equations which describe complex 
harmonic motion. 

3.2.1. Bidimensional Case 
In the bidimensional case, a Lissajous figure can be defined by the following pa-
rametric equations:  

( ) ( )
( ) ( )

sin

sin

x t a t

y t b nt φ

=


= +
 where π0

2
φ≤ ≤  and 1n ≥ . 

The number n  is named the parameter of the curve. If n  is rational, it can  

be expressed in the form pn
q

= . Hence, the parametric equation describing the  

curve becomes:  

( ) ( )
( ) ( )

sin

sin
0 2π

x t a pt

y t b qt
t

φ

=


= +
 ≤ ≤

 where: π0
2 p

φ≤ ≤  

In what follows, we set 0φ =  and let consider the following function Γ  de-
fined by:  

[ ] [ ] [ ]
( ) ( ) ( )( )1 2

: 0, 2π 0, 2π 0, 2π

,t t t t

Γ → ×

Γ = Γ Γ�
                  (2) 
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where 
( ) ( )
( ) ( )

1

2

π sin π

π sin π

t pt

t qt

Γ = +

Γ = +

 such that: p is an even number and 1q p= + , of 

which the representative curve is given by Figure 5; 

Theorem 2. If ππ sin
p

α
 

=  
 

, the Lissajous curve Γ , given by (2), is α-dense  

in [ ]20, 2π . 
Proof. Let ( )0 ,M x y  any point in [ ]20, 2π . Let show that there exists 
[ ]0, 2πt∈  such that:  

( )( )0
π, π sind M t
p

 
Γ ≤  

 
 

We Set: 
( ) ( )
( ) ( )

1

2

π sin π

π sin π

t pt

t qt

Γ = +

Γ = +

. 

p  is an even number and 1q p= + . 

Let’s set t in [ ]0, 2π . Notice that the function 1Γ  is 2π
p

 periodic. Let  

2πt t
p

′ = + . 

Consider the points ( ) ( )( )1 2Γ ,ΓM t t  and ( ) ( )( )1 2,tM t′′ Γ Γ ′ . The points 
M  and M ′  have the same abscissa. 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )

2 22 2
2 2

2 2 2

2 2 2

2 2 2

, π sin sin

4π sin cos
2 2
π π4π sin cos

π π4π sin cos

d M M t t qt qt
q qt t t t

q qt q
p p

qt
p p

′ ′ ′= Γ −Γ = −

   ′ ′= − +   
   
   

= +   
   
   

= +   
   

 

 

 
Figure 5. Lissajous curve in the bidimensional case. 
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This distance reaches its maximum value when 2 πcos 1qt
p

 
+ = 

 
, for  

1 ππt k
q p
 

= + 
 

 where { }1,2, , 2k q∈ � . 

Hence, ( ) π, 2π sind M M
p

 ′ ≤  
 

. 

As 1Γ  is surjective from 2π0,
p

 
 
 

 on [ ]0, 2π , there exists 1
2π0,t
p

 
∈  
 

 such  

that ( )1 1x t= Γ . 

As 2Γ  is surjective from 2π0,
p

 
 
 

 on [ ]0, 2π , there exists 2
2π0,t
p

 
∈  
 

 such  

that ( )2 2y t= Γ . 
There exists { }0,1, , 1k p∈ −�  such that: either  

( ) ( )
2 1 2 2 2 1

2 1 π2 π kkt t t
p p

+  
Γ + ≤ Γ ≤ Γ +  

   
 

or  

( ) ( )
2 1 2 2 2 1

2 1 π2 π kkt t t
p p

+  
Γ + ≥ Γ ≥ Γ +  

   
 

This does not occur only when 0y =  or 2πy = , that means that when the 
point M  in on the boundary. 

This yields that 0M  is in the segment:  

( )
1 1 1

2 1 π2 π ,k k
kkM t M t

p p+

    +  
Γ + Γ +               

. 

So that, any point 0M  can be framed between two points of type kM  and

1kM + . 
Hence, we can approximate any point of [ ]20, 2π  by a point of the Lissajous 

curve. 
When trying to α-densify [ ]20, 2π  using the parametric curve ( )tΓ , we 

choose the coefficient p  such that:  

ππ sin
p

α
 

=  
 

. 

Generally, let 0a >  and set a curve h  that parametric equation is:  

[ ] [ ] [ ]

( ) ( ) ( )

( ) ( ) ( )

1 1

2 2

: 0, 2π , ,

sin
π

sin
π

h a a a a

ah t t a a pt
t

ah t t a a qt

→ − × −

 = Γ − =

 = Γ − =


�
 

Corollary 1. For πsina
p

α
 

=  
 

, any point in [ ]2,a a−  can be approximated,  

with a precision α , by at least one point of h . 
[ ]2,M a a∀ ∈ − , there exists [ ]0, 2πt∈  such that ( )( ),d M h t α≤ . 
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3.2.2. Multidimensional Case 
 In dimension two, we defined the Lissajous curve by:  

[ ] [ ] [ ]
( ) ( )
( ) ( )

1

2

Γ : 0, 2π 0, 2π 0, 2π

π sin π

π sin π

t pt
t

t qt

→ ×

Γ = +

Γ = +

�
 

with: p  a given even number and 1q p= + . 
 In dimension three, let’s consider ( ) [ ]31 2 3, , 0, 2πx x x ∈ , We first link 1x  and 

2x  as done in the bidimensional case: that means:  

( )*
1 1x t= Γ  and ( )*

2 2x t= Γ  

with *t  in [ ]0, 2π , then we link *t  and 3x , similarly, by setting:  

( )*
1t t= Γ  and ( )3 2x t= Γ  

with t  in [ ]0, 2π . This involves:  

( ) ( )( )
( ) ( )( )
( )

*
1 1 1 1

*
2 2 2 1

3 2

x t t

x t t

x t

 = Γ = Γ Γ

 = Γ = Γ Γ


= Γ

 

Hence, we obtain parametric curve ( ) ( ) ( ) ( )( )1 2 3, ,H t H t H t H t=  defined by 
the following expression:  

( ) ( )
( ) ( )
( ) ( )

1 1 1

2 2 1

3 2

H t t

H t t

H t t

= Γ Γ


= Γ Γ
 = Γ

�

�  

with [ ]0, 2πt∈ . 
 We can generalize this process to n variables ( )1 2, , , nx x x�  by linking two 

by two by the same manner. At the end of the process, we get the new varia-
ble t belonging to [ ]0, 2π  that all variables will be expressed by:  

( ) , 1, ,i ix H t i n= = �  

where ( )iH t  are defined as follows:  

( ) ( ) ( )

( ) ( )

1
1 1 1 1

1 times

2

1

1 2, ,

n

n

n i
i

H t t t

H t t i n

−

−

−

 = Γ = Γ Γ Γ


 = Γ Γ ∀ =

�������� ���

� �
 

Then, let’s consider the parametric curve H  defined by:  

[ ] [ ]
( ) ( ) ( )( )1 2

: 0, 2π 0, 2π

, , ,

n

nt

H

H t H t H t

→

� �
 

Theorem 3. Let ππ sin
p

α
 

=  
 

. 

The parametric curve defined by ( ) ( ) ( ) ( )( )1 2, , , nH t H t H t H t= �  such that:  

( ) ( )
( ) ( )

1
1 1

2 1 2, ,

n

n i
i

H t t

H t t i n

−

−

 = Γ


= Γ Γ ∀ = � �
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for [ ]0, 2πt∈  is α-dense on [ ]0, 2π n . 

Proof. Let ( )H t  and 2πH t
p

 
+ 

 
 two points of the curve H . As the func-

tion 1Γ  is 2π
p

 periodic, the ( )1n −  first coordinates of these two points are  

equal. As proceeded in the second part of the proof of the previous theorem, we 
show that:  

( ) 2π π, 2π sind H t H t
p p

    
+ ≤    

    
 

Therefore, any point ( )0 1 2, , , nM x x x�  can be framed between two points of 
the curve of type:  

2 πkH t
p

 
+ 

 
 and ( )2 1 πk

H t
p
+ 

+ 
 

 where [ ]0, 2πt∈ . 

Generally, let 0a >  and set a curve h  that parametric equation is:  

[ ] [ ]
( ) ( ) ( )( )1 2

: 0, 2π ,

, , ,

n

n

h a a

t h t h t h t

→ −

� �
 

( ) ( )

( ) ( )

1
1 1

2 1

π

for 2, ,
π

n

n j
j

ah t t a

ah t t a j n

−

−

 = Γ −

 = Γ Γ − =


� �
 

Corollary 2. For πsina
p

α
 

=  
 

, any point in [ ], na a−  can be approximated,  

with a precision α, by at least one point of the parametric curve given by h . 
[ ], nM a a∀ ∈ − , there exists [ ]0, 2πt∈  such that ( )( ),d M h t α≤ . 

4. Optimization of a Multivariate Holderian Function 

Let f  be a multivariate holderian function with constants of Holder are: 
0k >  and 1β > . 

Let us consider the following multidimensional optimization problem:  

( )
[ ]

( )
,

Min
nn

x a a
P f x

∈ −
 

In fact, we don’t look for the exact value of the minimum value of f , we’d 
just want an approximating value of that minimum value with a given accuracy 
ε . 

By means of an α-dense Lissajous curve on [ ], na a− , we convert the initial 
multidimensional problem ( )nP  into an unidimensional one as follows:  

( )
[ ]

( )*
1 0,2π

Min
t

P f t
∈

 

where: *f f h= � , the single variable function approximating the multivariate 
function f . (where ( )1 2, , , nh h h�  defined above) 

Proposition 2. If f  is 1,k
β

 
 
 

-holderian and 1,i nh =  is 1,ik
β

 ′ ′ 
-holderian, 
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then *f f h= �  is holderian where the constant is “ ( )
1

22
1

n
i ik k β
=

′∑ ” and the ex-

ponent is “ 1
ββ ′

”. 

Proof.  

( ) ( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( )

[ ]

* *

1
1 2

1

1
1

21 1
2

1 1

1
122

1
0 2π, ,

n

i i
i

n n

i i
i i

n

i
i

f x f y f h x f h y f h x f h y

k h x h y k h x h y

k k x y k k x y

k k x y t

β
β

β
β

β β

β
ββ

=

′ ′

= =

′

=

− = − = −

 
≤ − ≤ − 

 

     ′ ′≤ − ≤ −       

 ′≤ − ∈ 
 

∑

∑ ∑

∑

� �

 

Let ( )arg minoptx f=  and ( )*arg minoptt f= . 

Theorem 4. If 
k

βεα  =  
 

 then ( ) ( )*
opt optf x f t ε− ≤ . 

Remark 1. The knowledge of the minimum of *f  allows us to surround the 
minimum value of f  in the interval ( ) ( )* *,opt optf t f tε ε − +  . 

Proof. We set: 
[ ] ( )

,
arg min nopt x a a

x f x
∈ −

=  

As [ ], n
optx a a∈ − , the α-density guarantees the existence of [ ]* 0, 2πt ∈  such 

that ( )*
optx h t α− ≤  

( ) ( ) ( ) ( )( )

( )

* * *

11
*

opt opt

opt

f x f t f x f h t

k x h t k ββ α ε

− = −

≤ − ≤ =

 

Hence, if we want to estimate the optimum with an accuracy ε , we just have  

to take 
k

βεα  =  
 

. 

Suppose that there exists [ ]0 , nx a a∈ −  such that:  

( ) ( )*
0 optf x f t ε< −  

So that:  

( ) ( )*
0 optf x f tε+ <                       (∗) 

The α-density involves that there exists [ ]0 0, 2πt ∈  such that ( )0 0x h t α− <  

( ) ( )( ) ( )
1

0 0 0 0f x f h t k x h t β ε− ≤ − ≤  

( ) ( )( ) ( )0 0 0f x f h t f xε ε− ≤ ≤ +  

Considering (∗) involves:  

( ) ( )( ) ( ) ( )* *
0 0 0 optf t f h t f x f tε= ≤ + <  

This is absurd. 
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5. Numerical Tests (Figures 6-9) 

1) ( ) [ ]2
1 1 , 0.25,0.5f x x x= − ∈ −  

The holderian constants are 2= , 2β = . The accuracy is: 510ε −= . 
The result is:  

( )
( ) ( )

*

*
1

* *
1 1 1

0.5

0.866

,opt

x

f x

f f x f xε

 =
 =


  ∈ − 



  

2) ( ) ( )( ) [ ]
1

5
52 1 sin 3 1 , 0,10kf x k k x k x k x

=
= + + − ∈∑  

77, 5, 0.003k β ε= = =  

*

*

2.829917922

2.829917922

x
x

 =


=



  
 

 
Figure 6. Curve of f2. 

 

 
Figure 7. Curve of f5. 
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Figure 8. Curve of *f f h= � . 

 

 
Figure 9. Curve of f1, f2 and fa. 
 

3) ( ) ( )
22

33
1 1, 0.25 3cos , , ,

2 2 2
xf x y x y x y   = + − − ∈ −      

 

32.42, , 0.01
2

k β ε= = =  

( )

( )
( ) ( )

*

*
3

* *
3 3 3

0.004,0.253

2.99

,opt

x

f x

f f x f xε

 = −
 = −

  ∈ − 



  

4) ( ) ( ) ( ) [ ]
1 23
34 1

1 3 1, cos 1 5 , , 5,5kf x y x x y x y
k k k=

  = + + + − ∈ −  
  

∑  

14.77, 3, 0.1k β ε= = =  
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( )
( )

*

*
4

4.499796, 4.500100

0.067788

x

f x

 = − −


=




 

5) ( ) ( ) [ ]
2 2

2
5 , cos cos exp 1 , , 6,6

π
x y

f x y x y x y
 +
 = − − ∈ −
 
 

 

145.265, , 0.03
2

k β ε= = =  

( )
( )

*

*
5

0.023391875, 0.01321677

2.694161027

x

f x

 = −


= −




 

6) ( ) ( ) ( ) [ ]33 4 2
6 1 2 3 1 2 31

1, , 16 5 , , , 5,5
2 i i iif x x x x x x x x x

=
= − + ∈ −∑  

180, 7, 0.02k β ε= = =  

( )
( )

*

*
6

2.899891, 3.000102, 2.923504

117.3248028

x

f x

 = − − −


= −




 

7) Let the following functions test. In [10], RPS method was used to optimize 
them. 

( ) ( ) ( ) ( ) [ ]

( ) ( ) ( ) ( ) [ ]

( ) ( ) ( ) ( )

2 2
21 2

1 1 2 1 2 1 2

2 2
21 2

2 1 2 1 2 1 2

1
2 2
1 2

3 1 2 1 2 1 2

, 4 sin cos exp cos , , 10,10
200

, cos cos exp 1 , , 10,10
π

, exp cos cos exp 1 , ,
π

x xf x x x x x x

x x
f x x x x x x

x x
f x x x x x x

−

  +
= − ∈ −     

  +  = − − ∈ −
  

  

   +   = − − − ∈       

�

�

� [ ]211,11














−



 

In what follows, we compare our method with the RPS one (The Particle 
Swarm Method of Global Optimization) 
 

 with under-estimator method RPS method 

1f  ( ) ( )* *
11.571191,0.001240 , 10.872289x f x= − = −  ( )*

1 10.8723f x −�  

2f  ( ) ( )* *
28.061776,9.663910 , 19.208048x f x= − = −  ( )*

2 19.21f x −�  

3f  ( ) ( )* *
39.720125, 9.672833 , 0.963417x f x= − = −  ( )*

3 0.96354f x −�  
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