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Abstract 
Multiple sclerosis (MS) is a complex inflammatory and demyelinating disease 
of central nervous system (CNS). The disease pathogenesis is not fully un-
derstood and no actual cure for the disease yet. The disease has genetic and 
environmental cause as fundamental factors which are identified for the dis-
ease pathogenesis so far. One of the characteristic features of the disease is in-
flammation cause due to activation of pro-inflammatory cells. Interference in 
signalling pathways such as JAK/STAT could result in physiological or patho-
logical outcome in MS. Dysregulation of JAK/STAT signalling pathway is as-
sociated with chronic inflammatory process and immune disorders. In this 
review, considering the important role of JAK/STAT pathway in signal trans-
duction of inflammatory process and immune responses in CNS, we describe 
the involvement of this signal transduction pathway in MS. Moreover, we 
consider the physiological and pathological involvement of JAK/STAT rout in 
neurogenesis/gliogenesis, cytokines production and as therapeutics target for 
managing MS. 
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1. Introduction 

Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenera-
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tive disease of the central nervous system [1]. MS attacks the myelinated axons 
in the central nervous system (CNS), destroying the myelin and axons to various 
degrees [2]. The pathologically distinguishing features of the disease are demye-
lination, axonal loss and inflammation [3]. The disease affects around 2.5 mil-
lion people worldwide [4] and is commonly found in young adults, and it is 
more common in women [5]. Clinically, the major signs and symptoms of MS 
are cognitive disabilities [6], abnormal sensation, weakness, paralysis, incoordi-
nation, and ocular symptoms associated with relapses and remissions [7]. Al-
though the etiology of MS is still unknown and its pathogenetic pathways are not 
fully understood [8], there is evidence of the interplay between genetic suscepti-
bility and environmental factors [9] [10]. Existing knowledge in MS pathology 
indicates that the pathological process is initiated by the role of autoreactive 
myelin specific CD4+ T helper (Th) cells type 1 and Th17 cells and to some ex-
tent by other cell types like, CD8+ T cells, B cells, macrophages and natural killer 
(NK) cells [11]. Moreover, transmigration of inflammatory lymphocytes into the 
CNS induces an inflammatory response, which results into destruction of nearby 
tissue, demyelination and neurological damage [1] [12]. 

The Janus kinase (JAK)-signal transducer comprises of four cytoplasmic tyro-
sine kinases (JAK1, JAK2, JAK3 and TYK2), and the signal transducer and acti-
vator of transcription (STAT) identified in human cells are STAT1, STAT2, 
STAT3, STAT4, STAT5A, STAT5B and STAT6 [13] [14]. These intracellular 
signaling pathways are essential pleiotropic cascades used to transduce a multi-
tude of signals for numerous physiologic and pathologic processes in animals 
and humans [15]. The JAK and STAT expression is low in CNS when compared 
with other systems and it is associated with gene regulation and inflammation 
[13]. Moreover, signal transduction through the pathway mediates inflammatory 
and immune responses in the CNS [16]. Although the evidence for the role of 
JAK in neuroinflammation is obscure, JAK/STAT signaling pathways play both 
detrimental and beneficial roles by promoting nerve damaging and CNS regene-
ration after the resulting inflammation has declined [17]. 

Dysregulation of STATs can be associated with deleterious biological pro- 
cesses such as chronic inflammation [18] [19] [20], cancer [21] and immune 
disorders [13], thus having the advantage of being therapeutic targets. The acti-
vation of JAK/STAT pathway in MS is possibly due to excessive production of 
cytokines, loss of expression of negative regulators such as Suppressor of cyto-
kine signaling (SOCS) proteins, and significant enrichment of genes encoding 
components of the JAK/STAT pathway, including STAT3 [22]. This review de-
scribes the involvement of JAK/STAT signalling pathways in MS. We describe 
the role of the pathway in regulation of neurogenesis/gliogenesis, immune cells 
proliferation and differentiation, regulation of cytokines activation and thera-
peutic target potential of the pathway in MS. 

2. JAK/STAT System 

JAK-STAT signaling pathway is evolutionarily conserved in eukaryotes [13], 
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which participate in important biological processes such as cell growth, differen-
tiation, proliferation, survival, apoptosis and immune responses [23] thus are 
crucial in many cell types. The discovery of this pathway, especially in the field 
of cell biology, gives an explanation to the mechanism of gene regulation that 
significantly add more information on the action of hormones, interferons, co-
lony-stimulating factors, and interleukins [24] together with its involvement in 
neurogenesis [25], glial differentiation [26] and CNS diseases [27] [28].  

Structural overview: Structurally, each molecule of JAK contains seven JAK 
homology domains (JH1-7). The carboxyl JH1 domain is responsible for catalyt-
ic activity, whereas N-terminal JH7 domain contains the receptor binding site 
(Figure 1). In contrast, JH1 and JH2 domains have significant homology but 
JH2 lacks enzymatic activity thus regarded as pseudo-kinase domain [14]. These 
kinases bind to the juxtamembrane region of cytokine receptors [29]. The seven  

 

 
Figure 1. Model structure and signaling of JAK/STAT pathway. The pathway can be activated by cytokines. Binding of cytokine 
phosphorylate adjacent receptors, thus JAKs cross-phosphorylate each other on tyrosine. The activated JAKs phosphorylate re-
ceptors on tyrosine. This action leads to the enrollment of STAT protein to the receptor/kinase complex via SH2 domain of the 
STAT. The STAT is then tyrosine phosphorylated (Y) at a single residue in its C-terminus. The STAT can also be serine phospho-
rylated (S) in their TAD. The tyrosine phosphorylation of the STAT results in STAT dimerization via tyrosine (Y) and SH2 do-
main interaction. The STATs migrate into nucleus and bind to DNA and other gene regulatory proteins via their DNA-binding 
domain (DBD), this action leads to gene transcription in the nucleus. JAK homology (JH), amino terminal domain (ATD), 
coiled-coiled domain (CCD), DNA binding domain (DBD), linker domain (LD), transactivation domain (TAD). 
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structurally and functionally mammalian STAT family have size range from 750 
to 850 amino acids [30] and share conserved domains. This includes the ami-
no-terminal domain (NH2), the coiled-coiled domain (CCD), the DNA binding 
domain (DBD), the linker domain and the SH2/tyrosine activation domain 
(Figure 1). In contrast, the carboxy-terminal transcriptional activation domain 
(TAD) differs and contributes to STAT specificity [31]. Moreover, SH2 as the 
most highly conserved STAT domain have the capacity to bind to specific 
phosphotyrosine motifs thus serve a significant role in signaling [31]. 

Activation: JAK/STAT pathway receptor is activated by cytokines, hormones 
or growth factors resulting in dimerization of the receptor and subsequent acti-
vation of JAK and phosphorylation of tyrosine residues [13] [32]. The activated 
JAK recruits and phosphorylates STAT on its conserved tyrosine residue [33]. 
The STAT then becomes dimerize and subsequently translocate into the nucleus 
where it will bind with DNA and regulate genes expression [23] (Figure 1). In 
contrast to other STATs, STAT5A/B are specifically activated in response to a 
variety of cytokines as well as tyrosine kinase receptors and were plausibly as-
sumed that they have a basic role in cell growth regulation [35] [36]. Of note the 
STAT activation by non-cytokine receptor can be JAK- dependent or JAK inde-
pendent however, it varies depends on receptors [23].  

3. JAK/STAT Pathways Involvement in  
Neurogenesis/Gliogenesis 

During proliferation and differentiation of brain cells, neural stem cells (NSC) or 
neural progenitor cells (NPC) mostly differentiate into neurons, astrocytes or 
oligodendrocytes in sub ventricular zone (SVZ) of olfactory bubs and dentate 
gyrus (DG) of the hippocampus of adult brain [37]. JAK/STAT pathway is asso-
ciated with regulation of NSC proliferation. Adult NSC of the SVZ expresses 
IL-15 which plays role in activation of STAT1, 3 and 5, and NSCs proliferation 
which could be blocked by JAK inhibitors [38] [39]. JAK1 is probably involved 
in astrocytic differentiation [40], whereas, JAK2 seems more important for NSC 
proliferation [41] while JAK3 is reported to induce neuronal and oligodendrog-
lial differentiation in NSCs [42]. Both in vitro and in vivo studies showed that 
activation of STAT3 and Akt by leptin results in regulation of neuroproliferation 
in the DG of adult mice [41]. Moreover in adult’s DG, neurogenesis is reported 
to rely on STAT3 activation [43]. Interferon β, typically used in treatment of MS, 
can activate STATs [13] thus implicated in controversial role in proliferation 
and differentiation of NPC in murine [44], because it can either inhibit [45], 
have no effect [44] or enhance the proliferation of the NPC [46]. Previous study 
on the role of JAK-STAT in glial differentiation showed that activation of ciliary 
neurotrophic factor (CNTF) receptor is associated with activation of JAK1, 
STAT1 and STAT3 and stimulating the differentiation of embryonic cortical 
precursor cells into astrocytes [13]. Similarly JAK2, STAT1 and STAT3 activa-
tion is partly associated with proliferation and differentiation of astrocytes [47]. 
Moreover, a study showed that STAT3 knock-down mice enhanced neurogene-
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sis while blocking astrogliogenesis [25]. Inhibitory proteins of JAK-STAT path-
way such as SOCS 2, 3 and 6 negatively regulate neuronal differentiation and 
neurite outgrowth after induction of insulin-like growth factor-1 (IGF-1) and 
growth hormone [48]. Previous study on SOCS2 knock out mice reported that 
overexpression of SOCS2 can blocks GH-signalling and impairs neurogenesis, 
whereas neuronal differentiation was increased [42].  

STAT activation could lead to apoptosis [13], for example IFN-γ activation of 
STAT1 affects NPCs by reducing its proliferation and inducing apoptosis via 
upregulation of p21 and caspase-3 signaling [49]. Rather IL-9 signaling protects 
neonatal neurons from apoptosis by activation of the JAK-STAT pathway [50]. 
Moreover, a study showed that in vitro treatment of IL-9 and AG490 activate 
STAT1 and STAT3, however this anti-apoptotic effect could be obstructed by 
possible inhibitor of JAK-STAT pathway in vivo [50]. Furthermore, STAT3 and 
STAT 5 are more anti-apoptotic than STAT1 [30]. However, the proportion of 
STAT1 activation over that of STAT3 and STAT5 seems to play a role in apop-
tosis [30]. JAK-STAT pathway plays a role in neuronal regeneration and glia scar 
formation around the lesion after injury to CNS [13] (Figure 2). In this regard  
 

 
Figure 2. JAK/STAT involvement in MS. Activation of JAK/STAT pathway results in physiological or pa-
thological process. Physiologically the pathway was involved in neurogenesis/gliogenesis; this process has a 
positive impact on MS/EAE as it supports processes such as axonal regeneration that will ameliorate MS 
condition. Cytokines involvement due to activation of this pathway result in pro- or anti-inflammatory 
processes. The differentiation of proinflammatory cells has negative consequences on MS/EAE as it exacer-
bate the condition, whereas the differentiation of anti-inflammatory cells and its cytokines favors ameliora-
tion of MS/EAE conditions thus have positive effect. JAK/STAT pathway serves as therapeutic target for 
amelioration of MS/EAE conditions. The pathway, proinflammatory cytokines and differentiation of Th1 
and Th17 could be block by inhibitory compound and leads to inhibition of proinflammatory processes. 
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STAT3 was found to be overexpressed and activated in regenerating neurons 
following injury to axon [51]. Previous study on adult mouse reported axon re-
generation occurs after deletion of SOCS3 [52] and SOCS3 is a potent inhibitor 
of the pathways. After CNS injury astrogliosis rely on STAT3 activation [28]. In-
hibition of STAT3 activation via JAK2 inhibition using AG490 on the proximal 
nerve stump can reduce neurite outgrowth [53]. 

4. JAK/STAT Pathway and Cytokines in MS 

Cytokines are important in activation and regulation of immune mechanisms 
and inflammatory responses [24]. Cytokine networks exert their pro- and an-
ti-inflammatory effects through multiple downstream signaling pathways [54]. 
In this regard, the JAK-STAT signaling pathways are involved in the signaling of 
several of pro- and anti-inflammatory cytokines (Table 1). In pathological con-
dition members of JAK/STAT with complementary or antagonistic effects are 
often activated simultaneously [34]. Moreover, a study showed that STATs acti-
vation was significantly increased in brain and spinal cord of experimental au-
toimmune encephalitis (EAE) mice than in healthy control mice [55]. EAE is the 
animal model of MS. 

STAT1 induces the activation of Th1 and IFN-γ cytokines which have an es-
sential role in inflammatory disease in the CNS [56]. STAT1 is required for de-
velopment of Th1 cells, which are associated with proinflammatory processes 
[57]. Furthermore, STAT5A/B increases Th1 responses by regulating T-box tran-
scription factor (TBX21) and interleukin-12 receptor subunit beta-2 (IL12Rβ2) 
[58]. Interestingly, STAT3 takes part in Th2 differentiation and binds to Th2- 
associated gene loci [59]. 

In MS IFN-γ and IL-6 were detected in higher levels in target tissues and they 
exert their effects via the activation of STAT1 and STAT3, respectively [34]. 
Moreover, IL-6 promotes Th17 and B cell differentiation [60], whereas, IFN-γ 
induced JAK1/2-STAT1 signaling effect which was observed in classical-
ly-activated macrophages [61] [62]. IFN-γ also involved in the acute pro-in- 
flammatory response by inducing pro-inflammatory cytokines such as TNF-α, 
IL-12, 23, 6 and chemotactic factors [62] [63], thus exacerbate disease condition 
in MS (Figure 2).  

 
Table 1. JAK/STAT signalling pathways on activation of immune cells. 

Cytokines 
Signalling 
pathway 

Effect Cytokines secreted Reference 

IFN-γ JAK1/STAT-1 Macrophage 
TNF-α, IL-12, IL-23, IL-6, 

chemotactic factors 
[64] 

IL-12 JAK2/STAT-4 
T cell  

differentiation  
to Th1 

IFN-α, TNF-α, IL-6 [34] 

IL-23 JAK2/STAT-3 Th17 TNF-α, !L-6, IL-17, IL-22 [34] 

IL-27 JAK1/STAT-3 Treg IL-10, TGFRβ1 [34] 



K. M. Hamid et al. 
 

7/15 OALib Journal

JAK/STAT4 and NF-κB play important role in the pathways involved in 
pro-inflammatory processes [54]. Activation of the NF-κB transcription factor 
results in production of proinflammatory cytokines, nitric oxide (NO) and se-
cretion of chemokines by macrophages, whereas on Dendritic cells there is in-
crease expression of CD83, CD86, and CD40, as well as MHC class II [64] which 
could be important in MS pathogenesis. A study by Jiang and co-workers re-
ported significant upregulation of JAK/STAT4 and NF-κB signaling pathways in 
EAE [65]. However, STAT4 knockout mice failed to develop EAE [66], this sug-
gests STAT4 pathway could be irrelevant in EAE. However, CD4/STAT3 
knockout mice are resistant to EAE, this shows the important role of STAT3 
pathway in CNS inflammatory diseases [57].  

Th17 cells produce wide range of effector cytokines such as IL-17A, IL-17F, 
IL-6, IL-9, IL-21, IL-22, IL-23, IL-26, and TNFα [67] [68]. In a brain, these cyto-
kines induce inflammation which is characterized by infiltration of neutrophil 
into CNS and myelin loss [69]. High levels of IL-17 in MS lesion are associated 
with strong inflammatory response which could lead to exacerbations of the 
disease [70]. The IL-17-producing T cells (CD4+ or CD8+) have been detected 
in both acute and chronic MS [71]. Therefore, various studies linked this cyto-
kine with autoimmune and chronic inflammatory conditions [72]. For instance, 
a study on IL-17 knockout mice shows a significant reduction in severity of EAE; 
this denotes the important role of this cytokine in EAE pathogenesis [72]. 
Moreover, the upregulation of IL-10 by immunoregulatory cytokines IL-27, 
suppresses IL-17, this action ultimately suppresses EAE [73]. Both Th1 and Th17 
cells responses are required for EAE development [74]. IL-6/STAT3 pathway 
was identified as regulators of Th17 cells differentiation and function by in-
creasing the expression and activation of the IL-6 itself, IL-17 and STAT3 [75]. 
IL-2/STAT5A/B signalling pathway regulates Th17 differentiation [76] by com-
peting with STAT3 in binding to the IL17A/F locus [77]. STAT3 directly binds 
to IL17A/F, RAR-related orphan receptor C (RORC) and interleukin-23 receptor 
(IL23R) and some genes involved in Th17 differentiation to influence the regula-
tion of the differentiation [78]. However, STAT3 upregulates anti-inflammatory 
cytokines such as IL-10 and TGF-β1 to inhibit proinflammatory proteins IFN-γ, 
IFN-β, TNF-α, IL-12, chemokines, MHC II, CD80, CD86 [79]. Of interest, 
STAT3 physically associates with Foxp3 [34]. 

IL2/STAT5A/B signalling pathway plays an important role in differentiation 
of Treg cells, in that STAT5/A directly binds the Foxp3 gene and influence the 
expression of the gene [80]. In addition, STAT5A/B regulates the expression of 
interleukin-2 receptor alpha (IL2RA), which is also required by Treg cells. Treg 
cells play an important role in regulating the proliferation of T cells but to some 
extent unable to inhibit Th17 mediated pathology [34]. However, Treg cells 
could promote Th17 differentiation due to involvement of IL-2 [81] [82].  

5. JAK/STAT Pathway as Therapeutic Target in MS 

The pathway has received attention as a therapeutic target in autoimmune dis-
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eases [17] [24] [83]. Many of the MS-promoting cytokines such as IL-1β, TNF-α 
and especially that of IL-6 and IL-12 either signal through or induce JAK/STAT 
signaling molecules [84]. Studies have implicated the JAK/STAT axis in regulat-
ing clinical manifestations of EAE [85]. JAK inhibitors produced promising re-
sult in some inflammatory diseases [86] [87]. JAK inhibitors interrupt cytokine 
signaling; consequently, break the inflammatory process, a useful process in MS 
and EAE [85] (Figure 2). Indeed, previous study reported tyrphostin B42, a 
JAK2 inhibitor; ameliorate EAE [84]. A study found that AZD1480 treatment is 
effective in suppressing clinical symptoms in EAE. Similarly Peroxisome proli-
ferator activated receptor-γ (PPARγ) and Cyclooxygenase 2 (COX2) inhibitors 
block the activation of JAK/STAT pathway to some extent by IL-12 thus will be 
able to ameliorate EAE condition [88]. In a Study using AG490 to inhibit the ac-
tion of JAK2 and TYK2 as treatment of EAE showed a decrease in the activity of 
Th1, NK and microglial cells and reduces IL-12 levels [84]. Plumbagin (PL) and 
berberine are herbal compounds which inhibit the activation of JAK-STAT 
pathway and Th1 and Th17 cell differentiation thus prevent exacerbation of EAE 
model [89] [90]. Similarly, in EAE, glatiramer acetate (GA) to some extent inhi-
bits the phosphorylation of STAT4 and STAT3 in T-cells thus exerts some effect 
on Th1 and Th17 cell differentiation, respectively [91]. IFN-β action in treat-
ment of MS requires the activity of JAK1 to activate phosphoinositide 3-kinase 
(PI3K) and protein kinase B (PKB), this result in repression of glycogen synthase 
kinase-3 beta (GSK3β) activity in EAE [92].  

6. Conclusion 

JAK/STAT signalling pathway involvement in MS could be physiological or pa-
thological. This pathway plays a role in regulation of neurogenesis and gliogene-
sis via proliferation, differentiation, survival/apoptosis and regeneration of brain 
cells and neural cells precursors. JAK/STAT pathways are also involved in the 
signalling of both pro- and anti-inflammatory cytokines via regulation of proli-
feration and differentiation of immune cells responsible for the secretion of 
these cytokines and interference in cytokine signalling pathways for inflamma-
tory process ameliorates or exacerbates MS pathogenesis. STAT1 induces the ac-
tion of several cytokines and some are important in inflammatory diseases such 
as MS whereas STAT3 plays multiple roles in regulation of immune responses. 
In modern days, JAK/STAT pathways could serve as a potential therapeutic tar-
get for managing MS. Inhibitors of these pathways could interrupt signalling 
process leading to inflammation, a useful process in MS and EAE. Recently 
promising compounds were identified as potential inhibitors of the pathways. 
Researches related to JAK/STAT and MS need good attention and concern, con-
sidering the complex nature of the disease and its treatment. 
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