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Abstract 
The paper concerns certain consequences of discrete time hypothesis includ-
ing physical regularities of a particle representation in the form of a flow of 
elementary events. In the context of the proposed formal description, particle 
observability has been determined; dependence of observability on a particle 
energy value has been shown. In terms of the proposed approach, a statistical 
rationale was given to the relative amount of dark (unobservable) matter. 
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1. Introduction 

What is time: Discrete set or continuum? The problem remains to be open. 
Classical mechanics, relativity theory and quantum physics rely upon ideas of 
continual time. However, ideas of discrete time are still popular subject of dis-
cussion [1] [2] [3] [4] [5]. The main efforts of the authors of these papers are 
focused on justifying the hypothesis of discreteness. Present paper concerns cer-
tain interesting consequences of this hypothesis. If a particle approves itself 
within the outside world non-continuously it means that the particle can be 
represented by means of a sequence of elementary events which range of defini-
tion is countable set of time moments. As a rule, such a sequence is identified as 
a flow of events. In the general case, a flow of elementary events is a sequence of 
all possible random points within time axis with random gaps dividing them. In 
the context of these random points, by some means or other a particle approves 
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itself in the universe. Flow formalism proposed in the paper opens the door to 
analyze temporal characteristics of matter as a random process which states fol-
low each other in the form of the simplest (Poissonian) flow of events. States of a 
quantum particle are described with the help of a wave function within continual 
time. States of a particle-flow have been determined in terms of discrete time. In 
the both cases being just different representation forms, states of one and the 
same particle are considered. Hence, a mechanism to transform certain states 
into other ones should be available. Specifically states preset during discrete time 
moments should help reactivate wave function uniquely; moreover, discrete 
states themselves should be samples of the preset wave function. Similar me-
chanism is known in a theory of time series as sampling (Nyquist) theorem [6] 
[7] and [8]. Its application to the analysis of flows of events of high-energy par-
ticles forecasts a phenomenon which was not studied previously that is substitu-
tion of frequency (energy, mass) of a particle [9]. The phenomenon lies in the 
fact that after the energy (frequency) of particle exceeds a certain level (i.e., the 
Nyquist limit), the particle stops to be unambiguous interpretation. With dif-
ferent probability degrees, measuring process may determine two different val-
ues of frequency (energy, mass). It looks like a pair of random particles (initial 
particle and that dual to it) originates replacing it. 

2. Particle-Flow in the Context of Discrete Time 

Using formal description of deformed Heisenberg algebra [5], has obtained time 
component of deformed Schrödinger equation with accuracy up to the first-order 
of deformation parameter α  in the form of  

2 2
t tj Eψ α ψ ψ∂ + ∂ =  ,                    (1) 

where E —energy of the particle. Solution of the equation for wave function 
ψ  specified within arbitrary time interval T  with boundary conditions  
( ) ( )0 0Tψ ψ= =  obtained by the authors of the mentioned paper means that 

time is quantized  
2π ,    0,1, 2,

1 4
T

E
ατ τ

α
= =

−


                 (2) 

We are interested in the consequences arising from the conclusion. In the 
context of inertial frame of reference connected with a particle under study (that 
is such frame of reference in terms of which the particle is fixed) its proper 
energy E  is equal to rest energy 0E . Classical Schrödinger equation applied 
by authors of paper [5] describes wave function the more accurate the less is the 
particle velocity to compare with light velocity. Thus, expression (2) delivers ex-
act value of quantized time when rest energy of the particle 0E  is inserted. 
Substituting 1τ =  and 0E E=  into Equation (2) determine 0t′∆  a quantum 
of proper time of a particle  

0
0 0

2π
1 4 1 4

Pl

Pl

at t
E Ea

E

α
α

′∆ = =
−

−

                (3) 
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where Pla Eα=  is dimensionless constant specifying ratio between a quantum 
of proper time of a particle with zero rest mass and Planck time Plt , and PlE  is 
Planck energy. In [9] there is an attempt to substantiate the constant value being 
equal 33.648676282 10a −= × . The value is a half of fine-structure constant. It is 
determined by the maximum possible protons energy ~1020 eV. 

A flow of elementary events in terms of intrinsic frame of reference connected 
with specific particle is regular by definition. It means that time intervals be-
tween events are exact and equal to the determined non-random 0t∆  value. 
This implies the following: сlocks within reference system connected with a par-
ticle selected as reference body are synchronized with a flow of elementary 
events of the particle. 

Consider the simplest flows of elementary events. The flows are ordinary ones 
having no aftereffect. The former means that probability for two or more ele-
mentary events of the particle under study to get into 0t∆ →  area is negligible 
to compare with probability for one event to get into it (the events are not si-
multaneous). The latter means that future time moments of the occurrence of 
events of a flow with the help of which a particle is represented cannot depend 
on the moments the event took place in the past. 

Mathematical expectation ( ),t tΜ τ ∆    of random ( ),t tτ ∆  number of ele- 
mentary events within t∆  interval being determined by the expression  

( ) ( ), d
t t

t

t t t tΜ τ λ
+∆

∆ =   ∫                     (4) 

Value ( )tλ  is the intensity (density) of the flow of elementary events of the 
particle being observed. This value can also be considered as the frequency of 
time discretization of the particle being observed. As shown in [9]  

( ) ( )
0

,
t

t
t

β
λ =

′∆
                         (5) 

where 0t′∆ -quantum proper time observed particle, ( ) 0t E Eβ = . 
Using Equation (3) determine flow density of elementary events of the particle 

being observed.  

( ) ( ) 01 4
Pl Pl

t Et a
at E
β

λ = − .                    (6) 

Within the simplest flow with ( )tλ  density number of events ( ),X t θ  fallen 
on the time period with θ  duration has Poisson distribution ( ){ },P X t kθ =  
with the parameter  

( ) ( )

( ){ } ( )

, d

, ,    0,1, 2,
!

t

t
k

t t t

eP X t k k
k

θ

η

η θ λ

ηθ

+

−

=

= = =

∫



.            (7) 

Function  

( ) ( ) ( ) 0, exp d exp 1 4 d
t t

Pl Plt t

t EF m t t a t
at E

θ θ β
θ λ

+ +    = − = − −   
    

∫ ∫        (8) 
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is the probability of the fact that no state of a particle with 0
2

Em
c

=  mass within  

θ  time period can be detected ( )0k = . 
Consequently, probability ( ),F mθ  to find a particle with m  mass within 

θ  time period is equal to  

( ) ( ) 0, 1 exp 1 4 d
t

Pl Plt

t EF m a t
at E

θ β
θ

+  = − − − 
  
∫ .           (9) 

In case of free particle ( ) consttβ =  

( ) 0, 1 exp 1 4 d
Pl Pl

EF m a t
at E
βθθ

  = − − − 
  

.           (10) 

3. Observability of a Particle-Flow 

Quantum mechanics describes state of a particle by wave function. Its parame-
ters (frequency and wave vector) characterizes particle as a material object pos-
sessing energy and impulse. The domain of wave function is expressed by con-
tinuous time. However, if particle is considered as a flow of elementary events, 
then the domain of wave function is expressed by discrete time and the very 
wave function being expressed by the multitude of sampled values belongs to the 
class of generalized functions. In this relation, the problem of how well sampled 
values represent wave function being determined by energy and particle mo-
mentum is of high topicality. To find the solution we should use sampling theo-
rem. According to the theorem, in application to the process being described by 
( ),r tψ  wave function determined within t−∞ < < ∞  infinite time period  

having 0E
h

ν =  fixed frequency, wave function can be recaptured according to  

the sampling only under condition that 1λ−  time period between sampling 
meets the inequality  

1

02
h
E

λ− ≤ .                       (11) 

If within 
02

h
E

θ =  observation interval the particle with 0E  energy-mass  

proves itself by more than one elementary event interval of its wave function 
quantization meets sampling theorem and the particle is recognized unambi-
guously. 

If within the interval the particle with 0E  energy-mass does not prove itself 
by any elementary event, it means that it is not observable as the flow of ele-
mentary events distributed through time in more than θ  interval cannot show 
ambiguously the fact that it is the particle with 0E  energy-mass being observed 
at the moment (wave function of the particle cannot be recaptured on the sam-
pling basis uniquely). Taking into account the aforementioned thesis, we will call 
observability of the particle which energy-mass is equal to 0E  the probability of 
the fact that the particle will prove itself by more than one elementary event  
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within 
02

h
E

θ =  observation period. While putting this θ  value into (10) we  

obtain formula to calculate particle observability  

( )
1 4
21F e

µ
β

µµ
−

−
= − ,                    (12)  

where 0 0
Pl

Pl

E Ea at
E h

µ = =  is energy-mass of a fixed particle in terms of relative 

units relative to PlE
a

 basis. The dependence of particle observability upon its  

relative mass in terms of various values of relativistic multiplier is demonstrated 
on the Figure 1. 

The observability tends to a zero when velocity tends to light velocity, and 
particle mass is more than a zero; the observability tends to a unit when velocity 
tends to light velocity and particle mass tends to a zero. 

4. Substitution of the Frequency of Particle Wave Function 

According to sampling theorem, ( ),r tψ  function can be recovered according 
to the sequence of functions ( ),rψ τ  only if λ  is such frequency of time dis-
cretization when  
 

 
Figure 1. Dependence of particle observability upon its energy. 
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2π 2 2π
FF ωω λ

≤ = = ,                       (13) 

where F  and Fω  is Nyquist frequency.  

Substituting 2π
ω

 frequency its corresponding value of particle energy 
E
h

 as  

well as substituting value λ  from (6) we obtain inequality (13) in the form of  

( ) 0 21 4
Pl Pl

t E Ea
at E h
β

− ≥ .                    (14) 

Substituting 0E
E

β =  value into (14) we obtain the condition of single-valued  

recovering of a wave function according to its discrete samples  
2

0 0 21 4
Pl Pl

E E Ea
at E h

− ≥ .                    (15) 

The obtained result means following. Until particle energy exceeds value  

0 01 4
2F

Pl Pl

hE EE a
at E

= − ,                   (16) 

its wave function being characterized by 
Eω =


 frequency can be recovered  

unambiguously according to discrete series of instantaneous values following 
each other at λ  frequency. 

If particle energy exceeds F FE ω=   threshold, then as [9] shows there is a 
substitution of wave function frequency. Instead of a particle with  

FE ω ω= >   energy, one can find its dual particle with 2 FE E Eω′ ′= = −  
energy. 

Taking into account the phenomenon of particle frequency substitution we 
have following ratio of wave function Ω  frequency (which can take values ei-
ther of ω  initial frequency or ω′  dual one) and energy of the initial particle. 
The ratios can be considered as the extension of de Broglie equations to 
high-energy domains. 

( )

( ) ( )

,  
,

0,
,  

, ,
2, 4, ,  even number

,  
1 , ,

1,3, ,  uneven number

F

F
F

F
F

EE
z
E zE Ez
z
E zE Ez
z

ω

ω
ω

ω
ω

 ≤


=
 >   Ω = −    =  
 >   + −   =   







 



 

       (17) 

where z  is a multiplicity of Nyquist frequency exceedance. 
Figure 2 demonstrates the diagram of wave function frequency substitution 

visualizing the ratio between the energy of initial and dual particles. 

5. Uncertainty of Particle Energy after Frequency  
Substitution 

Substitution of wave function energy means that when particle energy exceeds  
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Figure 2. Diagram of wave function frequency substitution. 

 

F FE ω=   level its energy becomes many-valued. The many-validness should 
be manifested in further measurements, which can detect within time-space 
range where before there was only initial particle or only initial particle with E  
energy, or only its dual particle with 2 F FE Eω ω′ = − ≤   energy, or both par-
ticles.  

Mark as 0s  the probability of the fact that particle energy after frequency 
substitution is equal to the energy of the initial particle before substitution. Mark 
probability of the fact that particle energy after frequency substitution is equal to 
the energy of dual particle of z  multiplicity as zs . Two possible effects of fre-
quency substitution are compatible (one does not excludes another) but inde-
pendent (one does not result from another). Consequently, in this case condition 
of probabilities normalization is as follows  

0 0 1z zs s s s+ + = .                      (18) 

Energy conservation law should not be violated in terms of frequency substi-
tution. Assume that, for instance, there are N  of initial particles each having 
ω  energy. If the energy exceeds Fω  threshold, there is a substitutions of 

frequency of all the particles. Owing to energy many-valuedness beyond the 
threshold of frequency substitution we will find ( )0 0 0 zN s s s N= +  of particles 
with E  initial energy and ( )0z z zN s s s N= +  with E′  dual energy. Energy 
conservation law requires the total energy of the particles to be equal to the total 
energy of the initial particles. Consequently, energy of the initial particle should 
be equal to the sum of mathematical expectation of initial particle energy after 
frequency substitution and mathematical expectation of dual particle energy. 

5.1. Energy Law Conservation in Terms of Odd Multiplicity  
Frequency Substitution 

( ) ( ) ( )0 0 0 1z z z Fs s s s s s zω ω ω ω= + + + + −      .            (19) 

While solving (18) and (19) together, we will find 0s  and zs  probabilities 
in terms of odd frequency substitution  

( )0 1 ,1
1 F

s
z

ω
ω ω

  
= −   + −   

,                   (20) 

( )0

0

2 11 3 ,0
1

F
z

zss
s

ω
ω

 + −
= = −  +    

.                (21) 
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From 00 1s≤ <  condition we obtain range of energy values  

( ) ( )1 2 1
2 3F F

z z
ω ω ω

+ +
≤ < .                   (22) 

As it is seen from the inequality, 00 1s≤ <  condition is met for odd z  val-
ues if only 1z = .  

If 3,5,z =  , then frequency takes 3 , 5 ,F Fω ω ω ω≥ ≥   values; to meet  

00 1s≤ <  condition, 
22 , 4 ,
3 F Fω ω ω ω< <   is required respectively. 

5.2. Energy Law Conservation in Terms of Even Multiplicity  
Frequency Substitution 

( ) ( )[ ]0 0 0z z z Fs s s s s s zω ω ω ω= + + + −    .            (23) 

While solving (18) and (23) together, we will find 0s  and zs  probabilities 
in terms of substitution of even multiplicity frequency. 

0 ,1F

F

zs
z
ω

ω ω
  

=   −  
.                      (24) 

1 2 ,0F
z

zs ω
ω

  = −    
.                      (25) 

From 00 1s≤ <  condition we will obtain range of energy values  

2 Fzω ω> .                          (26) 

As z  is an even integer redoubling after frequency exceeds ( )1 Fzω ω≥ +  
value, then it is impossible for (26) to be valid for any 0z >  values. Thus, if 

0z = , then there is no frequency substitution by convention and the obtained 
result means that the substitution at the even multiplicity frequency cannot be 
detected. Dual particles can be generated only within frequency range from Fω  
to 4 3 Fω . Figure 3 shows dependences of 0s  and zs  probabilities upon 
wave function frequency. 

6. Evaluation of the Number of Nonobservable (Dark) Matter  

As we can see from the abovementioned, Matter is not quite observable. Particle 
observability ( )F µ  is a conditional (a posteriori) probability of detecting the  
 

 
Figure 3. Range of probabilities of wave function frequency subs-
titution: (a) initial particle probability, (b) dual particle probability. 
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particle if its mass is equal to µ . Assume that mass of the initial particle with 

0 0 zs s s+  a priori probability is equal to µ . Total probability ( )P µ  of the fact 
that the initial particle will be detected is equal to the product of a prior proba-
bility by a posteriori probability  

( ) ( ) ( )0 0 zP s s s Fµ µ= + ⋅ .                  (27) 

Consider linearly ordered series ( )R µ  of possible relative masses of ( )1β ≈  
nonrelativistic particles  

( ) ( )0 1 1 sup, , , , , ,F FR µ µ µ µ µ µ=   ,              (28) 

Were 0 1 1 supF Fµ µ µ µ µ< < < < < <  . The series is limited by sup 0, 25µ =  
maximum possible mass ratio that arises from formula (3). The series has value 
of Fµ  mass beginning from which substitution of frequency - mass - energy,  

appears. Find the mass from (15) substituting value Fµ  instead of 0

Pl

E
a

E
 and 

Pl
Eat


 

1 4 2F Fµ µ− = .                    (29) 

While solving the equation we obtain ( )1 2 1 0, 207
2Fµ = − ≈ . 

Mass substitution means that the particle with Fµ µ>  mass can prove itself 
as the particle with 2 F Fµ µ µ− <  mass. 

The domain of mass (frequency) values within which substitution can take  

place, as it is shown before (22) is between Fµ  and 
4 0, 273
3 Fµ =  values.  

However, due to the fact that maximum possible particle mass is less than the 
upper limit determined from 0 1s <  condition, the domain is limited at the top 
by sup 0, 25µ =  limit mass value. 

Initial particles “leave” range of heavy particles due to frequency substitution 
and “move”, becoming dual ones, to the range of medium-mass and light par-
ticles. In this context owing to energy conservation (19) total mass of all the par-
ticles in the universe does not change. 

Use mean (averaged in terms of all the masses) value of total particle observa-
bility possibility as an approximate estimation of the ratio of the observable par-
ticles masses to the masses of all the particles  

( ) ( ) ( )
sup

0 0
sup 0

1 dzP s s s F
µ

µ µ µ
µ

= + ⋅∫ .                (30) 

Then we obtain the estimation of DMµ  relative mass of material (large), cold 
1β ≈  nonobservable particles in the form of  

( ) ( )
sup

0
sup 0

1 1 1 dDM zs s F
µ

µ µ µ
µ

= − + ⋅  ∫ .               (31) 

Inserting previously determined values of limits of ranges of masses of initial 
particles as well as prior probabilities and posterior probabilities we obtain  
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1 40,207 0,25 
2

0 0,207

1 40,25  
2

0,207

4 d 4 d

0,207 0,828           8 2 1 d 0,22.
0,414

DM e

e

µ
µ

µ
µ

µ µ µ

µ µ
µ µ

−
−

−
−

= + −

   −  − − − ≈   −    

∫ ∫

∫
    (32) 

Thus, theoretical estimation of relative amount of nonobservable (dark) cold 
matter with reference to the whole energy being mass of universe is almost 22% 
which is equivalent of the available empirical data (20% … 30%). 

7. Conclusions 

Matter being considered as a flow of elementary events which frequency of oc-
currence is restricted due to time discreteness can be observed in part only. 

It should be noted that the square of wave function amplitude does not fit the 
observability properly. It is the density of probability to find a particle at t  
moment within the given spatial point under condition that the particle is ob-
servable, i.e. it is well known that it occurs within some area of universe. This 
condition is represented mathematically by normalization of wave function. 
Observability is the probability that the particle of the specified energy is present 
(somewhere) in the universe. As for the observability, it is the probability that a 
particle of preset energy is available somewhere in the universe. Observability 
value of the particle decreases along with the increase of its energy. 

Dark matter is that its part which cannot be observable principally owing to 
time discreteness. 

Time quantization applies restrictions upon the value of maximum allowable 
particle mass at which time interval between elementary events becomes indefi-
nitely great. As a result, particles with the maximum large mass are not observa-
ble both at rest and at any movement velocity. 
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