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Abstract 
The objective of this paper is to prove by simple construction, generalized by induc-
tion, that the bounded areas on any map, such as found on the surface of a sheet of 
paper or a spherical globe, can be colored completely with just 4 distinct colors. Ra-
ther than following the tradition of examining each of tens of thousands of designs 
that can be produced on a planar surface, the approach here is to all the ways that 
any given plane, or any given part of a plane, can be divided into an old portion 
bearing its original color as contrasted with a new portion bearing a different color 
and being completely separated from the former colored portion. It is shown that for 
every possible manner of completely carving out any piece of any planar surface by 
an indexical vector, the adjacent pieces of the map, defined as ones sharing some 
segment of one of their borders of a length greater than 0, can always be colored with 
just 4 colors in a way that differentiates all the distinct pieces of the map no matter 
how complex or numerous the pieces may become. 
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1. Introduction and a Brief Literature Review  

Easy to express but difficult to prove, the “four-color map theorem” is a proposition 
plainly put by Francis Guthrie in 1852. It seemed to be an almost trivial problem for 
map-making, and though evidently true, it turned out to be more interesting and com-
plex than it seemed on first look [1]-[7]. In its simplest form, the theorem says that “no 
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more than four colors are required to color the regions” of any planar map “so that no 
two adjacent regions have the same color” ([6], p. 1383). The theorem presupposes that 
corners, consisting of points shared by three or more colored spaces do not qualify as 
“adjacent” borders or edges. Logically, this is a necessary presupposition so long as any 
given “corner” shared by two or more colored spaces consists of a single dimensionless 
point. This is the same as saying that any adjacent border between two distinct regions 
of the map must have a length greater than zero. 

However, proof of the four-color theorem turned out to be more difficult than seemed 
likely at first blush [1] [6] [7] and even now it ranks higher in complexity than many 
others including, for instance, Riemann’s Hypothesis [2] [3]. It is not known whether it 
is possible to meaningfully define a “highest complexity order of well-known mathe-
matical problems” ([2], p. 10) or how high in the mix the four-color theorem might 
rank with respect to such a theoretical limit if one could be defined, but we do know 
historically that the first satisfactory proof of the four-color theorem was not achieved 
until 1976, 124 years after it was clearly stated. Also, the first satisfactory proof relied 
heavily on the brute force of modern computing to examine the multitudinous adjacent 
pieces of map coloring puzzles that were constructed by combinatory algorithms on a 
planar surface [1].  

Over the last several decades, it has become increasingly feasible to assess the validity 
of cumbersome formalized mathematical proofs by taking advantage of the speed, power, 
and accuracy of modern computing. However, the advantages of automated auditing of 
formalized proofs, such as the proofs of the four-color theorem, presents special diffi-
culties to human auditors. Efforts along that line have led to a rephrasing of the long- 
standing question of “artificial intelligence”. Govindarajalulu, Bringsjord, and Taylor 
put that question like this: “Is it possible to apply computational power to generate en-
tirely new proofs not previously discovered by humans?” ([8], p. 2077). Of course, it 
almost goes without saying that proofs, or audits of proofs, dependent on the brute 
force of modern computing are probably going to be difficult for slower and more falli-
ble human auditors who are hard-pressed to access, remember, or otherwise carry out 
very large numbers of computations in whole lifetimes not to mention in reasonable 
segments of our ordinary wakeful experience [9] [10]. If humans have difficulty check-
ing the computations of a super-computer or a network of such computers, how will it 
be possible for them to check the computer audit of a proof of one or many difficult 
formalized proofs dependent on the speed, power, and accuracy of the technology? For 
that reason, as argued long ago by the Earl of Ockham, by Galileo, and also by C. S. 
Peirce [11] [12], simpler theories and simpler proofs are much to be preferred. 

Although the four-color theorem is believed to be true, and its complex computer- 
assisted proofs are believed to be valid, certain conjectures related to that theorem re-
main unproved and simpler proofs of the four-color theorem itself are still being 
sought. In 2012 Cooper, Rowland, and Zeilberger took some steps toward what they 
described as a “language theoretic proof” involving the parsing of binary trees. They 
argued that within their simple grammar the proposition “that every pair of trees has a 
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common parse word is equivalent to the statement that every planar graph is four-co- 
lorable” and they also supposed that the results they achieved “are a step toward a lan-
guage theoretic proof of the four color theorem” ([4], p. 414). Yet they do not claim to 
have completed such a proof though it seems that if such a proof can be completed, it 
may be simpler than the existing computer-assisted proofs.  

In the meantime, according to the Web of Science Core Collection, Gonthier’s 2008 
computer-assisted proof of the four-color theorem has been cited at least 75 times at 
the time of this writing (June 14, 2016). Also, continuing interest in proofs of the four- 
color theorem is shown in the non-linear increase in citations of Gonthier’s proof as 
shown in Figure 1. More than half (57.33%) of the citing articles referring to that eight- 
year-old proof (43 of the 75) have appeared in the most recent three and a half years.  

Therefore, in light of all the foregoing, a simple constructive proof of the four-color 
theorem might be of interest. In building the following proof, as in my mathematical 
proofs about biosemiotic entropy [13] [14], I follow Peirce. He summed up his method 
by saying: “I never introduce a distinction without having deduced the necessity for it” 
([15], p. 340). In applying such a method of “exact logic”, he claimed in 1867 to have 
proved that “... all mathematical reasoning is diagrammatic and that all necessary rea- 
 

 
Figure 1. Number of citations appearing in sources both included and not included in the Web 
of Science Core Collection of Gonthier’s “Formal Proof-The Four Color Theorem” in Notices of 
the American Mathematical Society, 55(11), 1382-1393. 
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soning is mathematical reasoning, no matter how simple it may be. By diagrammatic 
reasoning, I mean reasoning which constructs a diagram according to a precept ex-
pressed in general terms, performs experiments upon this diagram, notes their results, 
assures itself that similar experiments performed upon any diagram constructed ac-
cording to the same precept would have the same results, and expresses this in general 
terms. This was a discovery of no little importance, showing, as it does, that all know-
ledge without exception [including mathematical knowledge] comes from observation” 
([16], pp. 47-48). Peirce argued that mathematical thinking in consisting of experimen-
tation carried out on diagrams is itself a form of material (empirical) observation. Yet 
he refused to believe that “mathematics depends in any way upon logic” because he 
contended “all formal logic is merely mathematics applied to logic” ([17], p. volume 4, 
paragraph 228). 

Interestingly, if the proof proposed here bears up under intense critical scrutiny, it 
will be, I believe, because of the peculiar binary nature of the kinds of sign systems 
known as indexes in Peircean logic. It is their particular binary character, hinted at in 
the “step toward a language theoretic proof of the four color theorem” by Cooper, 
Rowland, and Zeilberger ([4], p. 414), I believe, that renders the following proof both 
rigorous and complete. To help mathematicians who may be unfamiliar with Peircean 
concepts to understand the proof, it is useful to point out the fact that indexes always 
aim to separate some entity (or abstract concept) that is singled out for attention, or for 
coloring in the four-color map problem, from all other things (or from all other con-
cepts) that might have been attended to (or that might be colored distinctly from all 
adjacent pieces in the four-color map problem).  

In the case of map-making, it is the role of every index in a well-formed map to sep-
arate any colored space contained within its scope from all other spaces. To accomplish 
that function, every indexical boundary in any well-formed planar map must be binary 
in two critical respects: for one, it forms a boundary completely separating (1) its con-
tained space from (2) all other spaces on the map, and, for another, if during the con-
struction of the map, the completed boundary is cut by a new index so as to form a new 
and distinct space on the map, the index in question can only possess at most two ends: 
(1) the beginning end and (2) the final end of the cut that joins its own beginning or 
some other edge of an existing boundary to fully enclose the new bounded space on the 
map. It is necessary that the two ends of the new space meet up with each other by be-
ing connected through the completed boundary enclosing the new space. If these binary 
aspects of every index that might be used to create a new space on a colored map are 
kept in mind, that peculiar binary nature will assist the reader in understanding the ri-
gor and completeness of the following proof.  

2. A Simple Indexical Proof of the Four-Color  
Theorem by Construction 

To begin, we can color any bounded surface in 1 color as in Figure 2. Next, we can cut 
the existing map into two completely bounded and separated pieces with an index that  
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Figure 2. Any planar surface can be colored completely in just one color. 
 
defines a new space, a completely bounded island in the plane that is distinct from the 
rest of the plane. Provided the new island does not cover the whole map, in which case 
only 1 color would be needed, only 2 colors will be required to differentiate the emer-
gent new island and it may take any shape whatsoever. For simplicity’s sake, however, 
on the map abstracted in the diagram of Figure 2, the new island is represented by the 
smaller red circle that is cut out of the whole, but absolutely any closed planar polygon 
would give exactly the same result with respect to coloring the whole map so that all its 
adjacent areas are distinguished. Only 2 colors would be required.  

Given such a 2-colored map consisting of two colored spaces in any possible ar-
rangement, if a new island (of any shape whatsoever) should emerge completely con-
tained within either of the existing colored spaces, as abstracted with circles in the dia-
gram of Figure 3, the color not overlapped could in all possible cases be used as in Fig-
ure 4, A or B, so that all adjacent areas on the whole map could be distinguished by 
only 2 colors. If however the emerging island (of any shape whatsoever) should overlap 
both the existing colored spaces (also irrespective of its or their shapes), as abstractly 
shown in Figure 5, only 3 colors would be needed to color each bounded portion of the 
whole map.  

Given a map in any shape divided into three adjoining spaces colored distinctly in 3 
colors, suppose that a new island completely contained within any of the existing co-
lored spaces should emerge as shown by the black circles added in three places in Fig-
ure 6. In any such case, regardless which of the existing colored spaces might be se-
lected for the new island (and irrespective of the shape of either the old or new 
bounded space), if the new polygon (having any number of corners up to an infinite 
number) is completely contained within any one of the existing spaces, there must re-
main 2 color choices to differentiate the new island from all adjacent spaces as shown 
abstractly in Figure 6. But suppose the new island should partially overlap all three of 
the existing colored spaces in any configuration as abstracted in Figure 7. In that case, a  
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Figure 3. An emergent island anywhere on the map requires a second color. 
 

 
(a)                                             (b) 

Figure 4. An emergent island contained in an existing colored space does not require any new 
color. 
 

 
Figure 5. An emergent island overlapping two existing colors requires a third color. 
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Figure 6. An emergent island within any of the existing colored spaces does not require any new 
color. 
 

 
Figure 7. An emergent island overlapping three existing colors requires a fourth color. 
 
4th color would be needed, but with just 4 colors all of the adjacent bounded parts of the 
whole surface could be colored and would be differentiated in all possible cases con-
structed in the manner described irrespective of the shapes of the adjoining spaces fill-
ing the entire map.  

Yet, suppose next that a new island should emerge anywhere on the now four-co- 
lored map: 1) If the new island (entirely irrespective of its shape) should be completely 
contained within any distinctly colored area of the map, any of the other 3 contrasting 
colors could be chosen to differentiate that island (exactly as already shown in the ab-
stracted diagrams in Figure 3, Figure 4, and Figure 6 which together cover all possible 
cases up to that level of complexity); 2) if the newly emergent island should overlap 2 
existing colored areas, either of the 2 non-overlapped colors could be chosen to diffe-
rentiate the new island for all possible cases of that complexity (as abstracted in the di-
agram of Figure 5); 3) if the new island should overlap 3 existing colored spaces, irres-
pective of its shape, the 4th color could be chosen for all possible cases of that complexi-
ty (as abstracted in Figure 7). Finally, we can prove that if the new island should over-
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lap any number of spaces already colored by at least one of the 4 distinct colors, it must 
always be possible to recolor the whole map using no more than the 4 existing colors so 
as to differentiate the new space from all the existing adjacent colored spaces no matter 
how numerous the overlapped spaces might be. 

To see that this must be so for all possible cases, consider first the four corners prob-
lem illustrated in the actual map of the United States at the intersection of Arizona, 
Utah, Colorado, and New Mexico, as shown in Figure 8. The proof that an emergent 
island overlapping all four existing colored spaces can always be differentiated from 
them by recoloring all or some portions of the map can be demonstrated by imagining 
a map of the sort abstractly represented in Figure 9 where, to illustrate the following  
 

 
Figure 8. The problem of an island emerging so that it overlaps at least 4 existing colored spaces 
as found in the map of the United States at the Four Corners Monument. 
 

 
Figure 9. An emergent island covering all four existing colors that, at first look, might seem to 
require a fight color. 
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solution, exactly 4 colored spaces share a border with the new island colored in black. 
But let the new island be transformed into a different shape by cutting to its center and 
stretching it into a ribbon as suggested in Figure 10. We can, in principle, always do 
this kind of transformation at any nexus of borders of any given newly created polygon. 
This expansion is possible for the entire polygon regardless of the number of corners it 
may share with other colored spaces at its perimeter. To prove this is so, imagine the 
point where the borders of Arizona, Utah, Colorado, and New Mexico meet at or near 
the Four Corners Monument as shown in Figure 8. By expanding the point at any such 
corner into a circle of radius greater than zero, or into a polygon of any number of 
sides, as abstractly suggested by the black circle in Figure 9, we discover the necessary 
outcome that every adjacent surface sharing an arc of the circle, or any segment of any 
polygon, no matter how small that arc or segment might be, can only be bordered by a 
maximum of 3 spaces as shown in Figure 11 and Figure 12 (see the inside of each of 
the dashed circles) thus leaving a 4th color to differentiate the new island. No more than 
2 colored spaces can share a common border with the new island (colored in black and 
numbered 5) at any corner of its entire perimeter. The reason this must be so for all 
possible cases is bound up in the binary nature of an index.  

If the end points of the cutting index the one that differentiates a new island or that 
divides an existing colored piece of the map into an old and a new piece should meet 
each other without crossing any border of any other colored space on the map, then the 
new island irrespective of its shape can take any of the 3 remaining colors that contrast 
with that of the colored space inside which the new island appears. If however, the in-
dexical line should divide any existing colored space by intersecting any pair of existing 
borders, corners, or any border and corner in combination, the newly carved out out 
space can always be distinguished with a 4th color, exactly as shown in the abstracted 
diagrams of Figure 11 and Figure 12.  
 

5 

 
Figure 10. A polygon of any shape can be cut at some part of its border and straightened into a 
ribbon as suggested abstractly by the cutting of a circle to its center and stretching it into a ribbon 
while maintaining the sequence of points along its border including any that may be shared by an 
adjacent but distinctly colored part of the map. 



J. W. Oller Jr. 
 

10/12 OALib Journal

 
Figure 11. However, given that no more than three adjacent colors can exist at any point (cor-
ner) shared by three or any number of adjacent spaces having such an un-extended corner point 
(one of 0 dimensionality), exactly four colors are sufficient to color any planar surface whatsoever 
as suggested in the following figure. 

 

 
Figure 12. Four colors are sufficient to color any emergent island covering any point shared by 3 
or more adjacent already colored spaces. 
 

The constructive proof is produced by straightening the abstracted border of the new 
island whether it be a perfect circle as suggested abstractly in the diagram of Figure 10, 
or whether it be a polygon with any number of its own internal corners which may or 
may not be shared by more than one of the other colored spaces on the map. The con-
structive proof only requires that the border of any newly constructed island (whether 
it be a perfect circle or a polygon of any number of sides) that may be added to the map 
be transformed into a ribbon (a binary index). As shown in Figure 11 and Figure 12 
for the case of an island overlapping all four existing colors on the map, by cutting the 
circle (or any polygon) at some point on its border and straightening it into a ribbon 
(see Figures 10-12), provided only that adjacent colored spaces are kept in the same 
relative positions moving away from the cut in either direction, no corner bordering the 
new island at any point on its perimeter (now stretched into a line segment as abstractly 
shown in Figure 12) can be bordered by more than 2 distinct adjacent spaces. Moreo-
ver, given that any adjacent pair of corners marks the division of at most 3 spaces on 

1 1 32
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the perimeter of the new island at any junction of 2 or more adjacent spaces as shown 
abstractly in Figure 12 the newly formed island can always be colored by a 4th color 
rendering the new construction colorable by a maximum of 4 colors.  

Further, given that it is not possible to construct any additional spaces in any portion 
of any planar map by any method other than the ones already examined, the proof is 
complete. To fault the proof it would be necessary for any would-be critic to show by 
any method of construction how it is possible to make an indexical cut of any bounded 
portion of a map in a manner that divides an existing space so as to produce a nexus of 
2 adjacent corners on the perimeter of that new island that mark the intersection of 
more than 3 spaces with boundaries adjacent to the new island. But, that cannot be 
done, because we have already examined all of the possible ways of dividing any colored 
space on any map into an old space and a new one. We have also examined the corner 
problem in a manner showing that any number of corners joined at any single point on 
the map, or at any number of points on the perimeter of any given piece of the map, old 
or new, can always be resolved as already shown by the foregoing construction. Also, 
the simple proof presented here suggests that a “language theoretic proof” along the 
lines of [4] can probably be completed. 

3. Conclusion 

By induction from the foregoing constructions, it follows that any map, including the 
infinitely complex sorts constructed in the complex number plane as differentiated into 
the fractal patterns of the Mandelbrot set, sampled in Figure 13, can also be colored so 
that all of its bounded spaces are differentiated by no more than 4 colors.  
 

 
Figure 13. A bit of the Mandelbrot Set in the complex number plane. Reprinted under the GNU 
Free Documentation License, Version 1.2 retrieved at  
https://commons.wikimedia.org/wiki/File:Mandel_zoom_14_satellite_julia_island.jpg on May 7, 
2016. 

https://commons.wikimedia.org/wiki/File:Mandel_zoom_14_satellite_julia_island.jpg
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