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Abstract 
Hereby it studied the fundamental theory created by the London brothers for inter-
pretation of the magnetic field reduction in superconductors. As demonstrated, this 
theory is not correct. The author of this work has developed the new theory of su-
perconductivity. The equation describing the electron distribution function under 
the effect of magnetic field explains existence of the Meissner-Ochsenfeld effect. It is 
shown that the critical field equation matches the width of a potential well in the ki-
netic energy dependence of mean electron energy. As a result, the supercurrent den-
sity formula has been derived. Existence of magnetic fields is explained by two 
steady-state Maxwell equations. There are magnetic fields that are found to be 
created in individually shaped metals. Penetration of the external magnetic field in a 
superconductor has been explained. 
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1. Introduction 

Kamerlingh Onnes discovered the phenomenon of superconductivity at Leiden Labor-
atory, Holland, in 1991 [1]. While investigating temperature dependence of Hg resis-
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tance, he could find that when the material is cooled down to about 4 K temperature 
the resistance drops abruptly to zero. The very phenomenon was called superconduc-
tivity. Shortly thereafter, other elements exhibiting similar properties were discovered. 
The superconductor resistance measurement pattern is demonstrated in Figure 1. 

A superconductor is immersed in liquid helium. Initially, weak current is supplied 
from a battery. Then, temperature is reduced. When temperature falls below the de-
fined value, the superconductor circuit is shorted. The superconductor circuit current 
sustains its steady state as long as it can. A magnetic needle provided as a detector finds 
some persistent current in the superconductor, thus indicating to the magnetic field 
produced in the solenoid. The pattern of temperature T dependence of specific resis-
tance ρ in a superconductor is shown in Figure 2. Temperature Tc is named for critical 
temperature. This means that we cannot measure resistance of the superconductor. The 
matter is that the superconductor has the property that makes impossible to measure 
any specific resistance. 
 

 
Figure 1. The magnetic needle detects a supercurrent-induced magnetic field. 

 

 
Figure 2. Temperature dependence of the resistivity. 
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Shortly thereafter, it was discovered that such superconductivity disappears when a 
test piece is placed in a relatively weak magnetic field. This phenomenon was discov-
ered by Meissner and Ochsenfeld [2]. Value Hm of the magnetic field strength in which 
superconductivity is disrupted is called a critical field. The temperature dependence of 
the critical field is described by the following empirical formula: 

( ) ( )
2

0 1 ,m m
c

TH T H
T

  
 = −  
   

                    (1.1) 

where ( )0mH  is a critical field produced at absolute zero of temperature T = 0. De-
pendence (1.1) is shown in Figure 3. Plane (H, T) represents a phase diagram of the 
superconductive state. Substance in the superconductive state S is shown below the 
curve (1.1) and this substance in the normal state N–above the curve. The supercon-
ductor that demonstrates such states is named for the type-I superconductor. 

Brothers Fritz and Heinz London developed the first macroscopic theory of super-
conductivity in 1935 [3]. They mathematically formulated the theory based on principal 
experimental factors:  

0,  0.ρ = =B                            (1.2) 

Here B is magnetic induction inside a superconductor. Such facts have been accepted 
a priori. But why does the specific resistance go to zero? There might be other super-
conducting factors that make it impossible to measure ρ. Why does it occur that the 
magnetic induction inside a superconductor gets equal to zero? The facts accepted a 
priori should be proved. 

Let’s take B for magnetic induction of the external field. The London brothers have 
derived the following external magnetic field equation: 

2

1 0,
λ

∆ − =B B                           (1.3) 

where 
2

24π
mc

ne
λ =                          (1.4) 

 

 

Figure 3. Phase diagram of the type-I superconductive state at coordinates ( ),H T . 
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Value λ  is called London length of the magnetic field to be penetrated in a super-
conductor. 

Let us assume the superconductor occupies half-space 0y > , and region 0y <  is 
filled with the vacuum where magnetic field Bo runs along the interfacial area (see Fig-
ure 4). In this case, the Equation (1.3) is formulated as: 

2

2 2

1 0.x
xy λ

∂
− =

∂
B

B                        (1.5) 

The solution of the Equation (1.5) is formulated as follows: 

( ) exp( )  at   0.x oy y yλ= − ≥B B                  (1.6) 

It should be noted that this function does not agree with the Meissner-Ochsenfeld 
effect. When magnetic field strength at the surface of the conductor exceeds critical 
value ( )mH T  the superconductivity disappears. But the function (1.6) does not de-
pend on the critical field at all. In addition to, the superconductivity is taken for the 
equilibrium state of a substance–i.e. all values are not to depend on time t. But all these 
dependences are derived in the London brothers’ equation. The supercurrent can flow 
over the entire surface of the superconductor. This current can create self-magnetic 
field ( )cH  in the substance. The London brother’s theory does not take into consider-
ation such self-magnetic field. 

There are two magnetic fields in the superconductor. One magnetic field is created 
by the supercurrent and another external field is induced from other sources. The 
compass needle shown in Figure 1 responds to the supercurrent-induced field. Let’s 
denote such strength of field by parameter ( )cH  and name this field for the super 
conductor self-generated magnetic field. We shall denote strength of other magnetic 
fields by parameter ( )exterH . This is an external magnetic field. Let the strength of the 
external magnetic field on the surface of the superconductor is equal to ( )exter

oH=H . 
The Meissner-Ochsenfeld effect may be expressed by the following inequality. Super-
conductivity is generated in metal when its temperature T drops down below the criti-
cal temperature Tc: 
 

 
Figure 4. Half-space filled by the superconductor in the magnetic field. 
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c ,T T<                            (1.7) 

wherein the strength of the external magnetic field at the surface of the superconductor 
is less than that of the critical field: 

( ).o mH H T<                         (1.8) 

In other cases the superconductor will represent ordinary metal properties. 

2. New Theory of Superconductivity 

The new density-matrix based superconductivity theory has been developed and de-
scribed in the works [4]-[12]. The formula that explains two electron metal interaction 
energy εkk' with wave vectors k and k’ has been derived in the work [6]. 

,I Jε δ δ′ ′ ′+ −= −kk k k k k                       (2.1) 

where I and J are energy dimension constants, δk  is a Kronecker symbol. Value I spe-
cifies the electron repulsion energy with wave vectors k and −k and value J is the elec-
tron attraction energy with equal wave vectors. Using the variational principle it is 
possible to derive the equation for the wave vector electron distribution function wk:  

( )l
ln  ,

w
I w Jw

w
β ε µ−

−
= + − −k

k k k
k

               (2.2) 

where function wk  satisfies the normalizing condition  

,G w N=∑ k
k

                          (2.3) 

Here G is a number of valence states specified in one crystal lattice point, N is a 
number of electrons within the lattice. 

The equations (2.2) may be easily solved by means of a computational modeling me-
thod. At temperatures cT T≥ , the kinetic energy ε dependence of function ( )w w ε=  
is specified as the single-valued one. But when ,cT T<  the plot of function ( )w w ε=  
to be specified within a certain range of values of kinetic energy ε is represented by the 
multi-valued function. Consequently, the critical temperature value will be expressed as 
follows:  

( ) 4c BT I J k= +                        (2.4) 

The plot of the distribution function w(ε, τ) that complies with temperature T = 0 
and parameters 3J I=  is demonstrated in Figure 5. Wherein: 

.cT Tτ =                           (2.5) 

Let us denote the values of multiple-valued function ( ),w ε τ  by two single-valued 
functions, in particular, ( )1w ε  and ( )2 .w ε  These functions can be expressed as:

( ) ( )1 2  .w wε ε<  
There can be the anisotropic solution made when functions ( )1w ε  and ( )2w ε  are 

unequal. At higher temperatures the anisotropic solution is decreased and thereafter 
disappears when the temperature goes to the critical value. The superconductive state 
of metal can be obtained by means of the anisotropic electron distribution func-
tion. 
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Figure 5. Anisotropic energy distribution function of conduction electrons when 3J I=  and at 
temperature 0τ = . 
 

Actually, electrons exhibit their lowest energy macro-state. At T = 0, the energy will 
be minimized to the state expressed by the following formula: 

1       at   ,
0      at    .

w
I

ε µ
ε µ

≤
=  > −

k
k

k

                    (2.6) 

This function obtains anisotropy at Iµ ε µ− < ≤k . This function is graphically de-
mon-strated in Figure 6. 

The mean electron energy is: 

Iw Jwε ε −= + −k k k k  .                      (2.7) 

The kinetic energy ε dependence ( )ε ε ε=  of the mean electron energy can be ex-
pressed by the following formulas: 

( ) ( ) ( )1 2 1 2   at . Iw Jwε ε ε ε ε ε εε = + − < <                (2.8) 

( ) ( ) ( ) 1 2   at  ,oJ I wε ε ε εε ε ε ε= − − ≤ ≥                (2.9) 

Here, 1 2 .ε ε ε< <  is an electron kinetic energy interval with the anisotropic distri-
bution function. The function produced beyond the above interval is isotropic and 
brought to ( )ow ε . This dependence is graphically demonstrated in Figure 7 for vari-
ous temperatures τ. 

The plots demonstrated have the following specific features. At temperature ,cT T<  
a “well” is formed at each curve of dependence ( )ε εε=  that meets the values of ki-
netic energy satisfying the following inequalities: 

1 2ε ε ε< <k                         (2.10) 

Value ε  is the least one of electron kinetic energy ε applicable for determination of 
functions ( )1w ε and ( )2w ε . Value 2ε  satisfies the condition that is shown below: 

( ) ( )1 2ε ε ε ε=                       (2.11) 

according to which the “well” edges graphically specified by dependence ( )ε εε=  are 
positioned at the same level. Some kind of an opening occurs at the right-hand edge of  
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Figure 6. Real-valued anisotropic energy distribution function of conduction electrons when 

3J I=  and at 0τ = . 
 

 
Figure 7. Kinetic energy ε dependence of mean electron energy ε  at various temperature τ  
values: 1 0;  2 0.75;  3 0.95τ τ τ− = − = − = . 
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the function. This means that there is a “gap” in the range of values of the electron 
energy ε . Gap width ∆ grows up from zero to J value while temperature is reduced 
from Tc to zero. The well width 

2 1δε ε ε= −                         (2.12) 

also grows up from zero to I value while temperature is decreased down to T = 0. 

3. Superconductor-Derived Magnetic Field 

Let us assume that a superconductor is in the magnetic field which strength will be de-
noted by the H value. The electron energy values have been found in the works [9] [11] 
[12], in particular: 

( ) ( )21Λ ,
2

E G w Iw w Jwε −
 = − + −  

∑ k k k k k
k

            (3.1) 

where 

( )B
1Λ ,
4

Hfµ τ=                       (3.2) 

( ) ( ) ( )( )2 21 2 1 2 ,f x xσ σ
σ

τ = − −∑                 (3.3) 

Bµ  is a Bohr magneton, ( )1 2xσ ±  is a spin wave function. 
On minimizing thermodynamic potential Ω with account for the energy values (3.1), 

we can obtain the nonlinear equation to be applied for determining wave vector elec-
tron distribution function wk  within the magnetic field: 

( )l
ln Λ .

w
Iw Jw

w
β ε µ−

−
= − + − −k

k k k
k

              (3.4) 

If 

ε Λε′ = −k k                          (3.5) 

than the Equation (3.4) will have the previous solution: 

( )ln .
l w

Iw Jw
w

β ε µ−

− ′= + − −k
k k k

k

                (3.6) 

Let’s assume that ε µ′ =k . As provided by the Equation (3.5), we shall obtain the ex-
pression ε µ= + Λk . This means that the plot of the electron wave vector distribution 
function is shifted to the right by value Λ as compared with that when no magnetic field 
isapplied. 

It is necessary to find the lowest electron energy (3.1) for obtaining the real-valued 
distribution function. Now, let us study the case when a magnetic field destroys super-
conductivity at T = 0. 

Let 

Λ I= .                          (3.7) 

The lowest energy (3.1) may be found when function wk is expressed as follows: 
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1     at   ,
0     at     .

w
ε µ
ε µ
≤

=  >
k

k
k

                     (3.8) 

As it is shown above, function wk is to be isotropic–i.e. the superconductive state 
disappears. The distribution function plot is shifted to the right by value I while the 
magnetic field destroys the superconductive state that consequently disappears (see 
Figure 8). 

4. Meissner-Ochsenfeld Effect 

Let’s assumed that value Λ is equal to I. In this case, the distribution function is shifted 
to the right. We shall find the critical magnetic field strength at T = 0 using the Formu-
las (3.2) and (3.7). 

( ) ( )1 0 0 .
4 B mH f Iµ =                       (4.1) 

If the τ  temperature grows up above zero, the critical magnetic field strength, ac-
cording to the Formula (3.2), will be represented by the expression: 

( ) ( ) ( )1 ,
4 B mH fµ τ τ δε τ=                     (4.2) 

where ( )δε τ  is the width of the potential well (2.12) in the kinetic energy dependence 
of the mean electron energy. Using the above formulas we can obtain the relation: 

( )
( )

( )( ) .
0 (0)

m

m

H f
I H f

τ τδε τ
=                       (4.3) 

The relation ( ) ( )0  f fτ  is approximately equal to 1: 

( ) ( ) 0 1f fτ   

Now, we shall compare the plot of the critical field (see Figure 3) with the theoretical 
points set out on the curve of the kinetic energy dependence of the mean electron 
energy (see Figure 7). The matching point pattern is shown in Figure 9. 
 

 
Figure 8. Real-valued function of the conduction electron energy distribution at 0τ = . The su-
percon-ductive state is destroyed with the magnetic field produced. 
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Figure 9. Meissner-Ochsenfeld effect. 

5. Supercurrent 

If no magnetic field is applied, the width of the well is to be equal to ( )δε τ . With the 
magnetic field of H strength applied to the surface of the superconductor, the electron 
distribution function is shifted to the right by value Λ. In this case, the pattern of the 
energy well remains unchanged but it is shifted to the right. Let us assume that accord-
ing to (3.2) the electron energy will accept the least value while a portion of the well is 
shifted by the value obtained from the ( )B 4Hfµ τ  expression. Consequently, the su-
perconducting width of the well will be: 

( ) ( ) ( )1 .
4 B Hfε τ δε τ µ τ∆ = −                     (5.1) 

We shall now substitute value ( )δε τ  of the Equation (5.1) using the Formula (4.2). 
As a result, we are to obtain: 

( ) ( ) ( )1 .
4 B mf H Hε τ µ τ τ∆ = −                     (5.2) 

When strength H of the magnetic field gets its critical value ( )mH τ , the supercon-
ducting with of the well will be brought to zero. 

Now, we shall use the formula derived in the works [11] [12] for the current density 
in superconductors: 

( ) ( ) ( )
3

,
16 2

B
m

F

en f
j H H

m
µ τ

τ τ
ε

= −                     (5.3) 

where ( )mH H τ≤ , Fε  is the energy Fermy. When the magnetic field strength ex-
ceeds its critical value, superconductivity disappears and thereafter the substance con-
ductivity only may be applied for determination of the current density vector. 

6. Magnetic Field within the Planar Structure 

Basically, equilibrium values of the magnetic field ( ) ( ),= =H H r B B r  may be ob-
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tained from steady state Maxwell’s equations: 

4πrot ,
c

=H j                           (6.1) 

div 0.=B                             (6.2) 

For finding the solution to this problem, it is necessary to know the current density 
( )j j= r . 

Let us study the magnetic field applied to the planar surface of the superconductor 
when the H-vector induces the effect acting paralleled to this surface. The x axis is 
placed along the conductor and parallel to the H-vector, the y axis is arranged perpen-
dicularly to the surface and the z axis faces us (see Figure 10). 

In this case, the Equation (6.1) is expressed as follows: 

d 4π
d

x
z

H
j

y c
− =                          (6.3) 

Since the supercurrent is created by a negative component zj  of vector : zj j= −j , 
with the equation value (5.3) substituted we shall obtain: 

( ) ( )d
,

d
x

m x
H

g H H
y

τ τ= −                      (6.4) 

where 

( ) ( )3π
.

4 2
B

F

en f
g

c m
µ τ

τ
ε

=                      (6.5) 

The superposition principle-based H-vector is equal to the sum of the external field 
and magnetic field as being induced by supercurrent flows: 

( ) ( )exter .c= +H H H                       (6.6) 

The projection of the complete field will be represented by the following expression: 

( ) ( ) ( ) ( ) ( )exter .c
x x xH y H y H y= +                   (6.7) 

With the above equation substituted into the Formula (6.4), the following expression 
is formulated: 
 

 
Figure 10. Arrangement of the axes of the coordinate system running lengthwise the plain sur-
face.Graphic representation of the superconducting electron-induced currents. 
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( ) ( )
( ) ( ) ( ) ( )

exter
exterd d

.
d d

c
cx x

m x x
H H

g H H H
y y

τ τ + = − −             (6.8) 

Let’s assume that any supercurrent to be produced in a substance is flowing along the 
z axis and the external magnetic field is not applied: 

( )exter 0=H  

Such current may flow along the surface of the superconductor for an unlimited du-
ration. The supercurrent creates the ( )c

xH  self-magnetic field that will satisfy the equa-
tion: 

( )
( ) ( ) ( )d

.
d

c
cx

m x
H

g H H
y

τ τ = −                    (6.9) 

The supercurrent-induced field strength applied to the superconductor surface will 
be equal to zero: 

( ) ( )0 0.c
xH =                          (6.10) 

The strength that satisfies such condition will be expressed by the formula: 
( ) ( ) ( ) ( )1 e .c g y
x mH y H ττ − = −                    (6.11) 

The plot of this function is demonstrated in Figure 11. 
Now, we shall create the x-directed external magnetic field with its strength denoted 

by the ( ) ( )exter
xH y  parameter. This function will satisfy the equation derived from the 

expression (6.8): 

( ) ( )
(exter)

exterd
.

d
x

x
H

g H
y

τ= −                      (6.12) 

Let us assume that the magnetic field satisfies the original condition: 
( ) ( )exter 0 .x oH H=                          (6.13) 

The solution of this equation will be formulated as follows: 
( ) ( ) ( )exter e .g y
x oH y H τ−=                        (6.14) 

 

 
Figure 11. Supercurrent-induced self-magnetic field. 
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Hence, we have obtained some kind of decay of the superconductor inwardly di-
rected external magnetic field strength. But the character of decay does not match the 
function predicted by the London equation: 

( ) 1.g τ λ−≠                             (6.15) 

The plot of the function (6.14) is shown in Figure 12. 
The complete field (6.7) will take up the following form: 

( ) ( ) ( ) ( )e 1 e .g y g y
x o mH y H Hτ ττ− − = + −                (6.16) 

Now, we shall find the supercurrent density by the Formula (5.3) as a function of the 
y coordinate. For this purpose, we shall substitute the Formula (6.16) into the Equation 
(5.3). As a result, we shall obtain: 

( ) ( ) ( ) ( ), e .g y
o m oj y H K H H ττ τ τ −= −                 (6.17) 

where 

( ) ( )3
.

16 2
B

F

en
K

m
µ τ

τ
ε

=                        (6.18) 

As it is seen from the above formula, the current density exponentially decays in the 
direction off the superconductor surface. When the strength of the external field goes to 
that of the critical field ( )o mH H τ= , the strength of the complete field (6.16) will be 
expressed by equation ( ) ( )x mH y H τ= . In this case, the supercurrent density (6.17) 
will be equal to zero and the superconductivity disappears.  

Let us study the case when the external field strength is applied in the opposite direc-
tion: 

( ) ( ) ( )exter e .g y
x oH y H τ−= −                     (6.19) 

This will result in failed application the Meissner-Ochsenfeld effect. For correcting 
such condition it should be noted that the external field actually changes direction of 
supercurrent flow. Hence, it should be noted that the direction of the superconductor 
self-magnetic field H-vector matches that of the external magnetic field strength. As  
 

 
Figure 12. Superconductor inwardly directed external magnetic field. 
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provided by the above calculations, the external magnetic field decays inside a conduc-
tor when being exposed to the supercurrent-induced magnetic field.  

We have discussed the absolutely correct solutions of the Maxwell’s and current den-
sity equations in this Section. Some approximate expressions for supercurrent and 
magnetic fields will be discussed below. 

7. Penetration of Magnetic Field in Flat Disc of Superconductor 

Let the superconductor be a flat disk. An external magnetic field is perpendicular to the 
plane of the disk (see Figure 13). Self-magnetic field will be directed in the same direc-
tion as the external field. If the temperature is less than critical: cT T< , then the metal 
will be superconductive. But this external field strength should be less than the critical 
field: ( ) ( )exter

x o mH H H τ= < . 
The superconducting current density j  will flow over the disk surface (see Figure 

14). We write the approximate expression for the unit j of the superconducting current 
density j  by analogy with Formula (6.17): 
 

 

Figure 13. External magnetic field ( )exter=H H  produced in the flat disk of conductor at 

cT T> . 

 

 
Figure 14. Magnetic field in the flat disk of conductor at cT T<  .The external magnetic field is 
forced out of the superconductor and its strength gets less than that of the critical field: 

( )exter
mH<H . 
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( ) ( ) ( ) ( )( ), e .g R r
o m oj r H K H H ττ τ τ − −= −                  (7.1) 

where r is the radial coordinate, R is the radius of the superconducting disk. The mod-
uli of tension of self-magnetic field produced by superconducting current and the ex-
ternal magnetic field inside the drive will be approximately equal, if these formulas are 
constructed like Formulas (6.11) and (6.14): 

( ) ( ) ( ) ( )( )) 1 e ,c g R r
x mH r H ττ τ − − = −                    (7.2) 

( ) ( ) ( )( )exter , e .g R r
x o oH r H H ττ − −=                   (7.3) 

If you turn off the external magnetic field, a superconducting current will flow 
through the disk, the magnitude of which is equal to 

( ) ( ) ( ) ( )( ),0 e .g R r
mj r K H ττ τ τ − −=                   (7.4) 

and the magnitude of the tension of the self-magnetic field remains the same. Figure 15 
shows field lines. 

8. Magnetic Field inside a Superconducting Sphere 

Let’s discuss the behavior of the H magnetic field inside and outside a spherically 
shaped superconductor. The conductor with no superconducting properties induced at 
temperature cT T>  is shown in Figure 16. External magnetic field (exter)=H H  pe-
netrates inwards the conductor in such a ways as described by the solution of the Max-
well equation. 

When temperature drops down below the critical value: cT T<  superconductive 
function is induced in the conductor. This is the condition when the magnetic field is 
forced out of the conductor. This condition is demonstrated in Figure 17. Such pattern 
is produced under the Meissner-Ochsenfeld effect and exists until the strength of the 
external field modulus applicable to the superconductor surface remains less than that  
 

 

Figure 15. Self-magnetic field ( )cH  in the flat disk conductor produced by supercurrent at 

cT T< . No external magnetic field ( )exterH  is applied. 
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Figure 16. External magnetic field ( )exter=H H  induced in the conductor at cT T> . 

 

 
Figure 17. External magnetic field applied to the conductor at cT T< . External magnetic field 

( )exterH  is forced out of the superconductor and its strength applicable to the conducting surface 
is less than that of the critical field: ( ) ( )exter

o mH H T< . 

 
of the critical field: ( ) ( )exter

o mH H T< . Should the external field strength go to its critical 
value, the superconductivity disappears and the function is brought to the pattern 
shown in Figure 16. 

Let’s implement spherical coordinates r  and  ϑ  inside the sphere where r  is a 
distance from the sphere center to any arbitrary point of a space;  ϑ  is a longitude an-
gle. The modulus of vector  j  to be produced by superconductive current is equal to: 

( ) ( ) ( ) ( )( ), , cos ,g R r
o m oj r H K H H e τυ τ τ τ ϑ− −= −             (8.1) 

where R is a sphere radius. For the purpose of current density, conditions 1τ <  and  
( )o mH H τ<  are to be followed to apply the superconductive function. As soon as 

1τ =  or ( )o mH H τ= , the current density (8.1) goes down to zero and the supercon-
ductive function disappears. Supercurrent  j  flows along the spherical surface (see 
Figure 17). 
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External magnetic field ( )exterH  is not capable to penetrate deep inwards the super-
conductor and its modulus is equal to 

( ) ( ) ( )( )exter , , e cos   at    .g R r
o or H H r Rτυ τ ϑ− −= ≤H           (8.2) 

The above formula demonstrates the influence of the external field on the supercur-
rent density. As soon as ( )o mH H τ= , the current density (8.1) goes down to zero. As 
a result, the superconductive function disappears. Now, we can use magnetic field 

( )cH  induced by the supercurrent inside the conductor. Its modulus is equal to: 
( ) ( ) ( ) ( )( ), 1 e cos at     .  c g R r

mH r H r Rτυ τ τ ϑ− − 
 = − ≤           (8.3) 

These fields are shown in Figure 17. 
Now, we switch off the external magnetic field. In this case, its modulus applicable to 

the conductor surface is to be equal to zero ( )0oH = . When temperature goes down 
below the critical value ( )cT T< , the superconductive function does not disappear. 
The supercurrent being expressed by the following equation 

( ) ( ) ( ) ( )( ), ,0 e cosg R r
mj r K H τυ τ τ τ ϑ− −=                (8.4) 

will be much the same as before. The pattern of self-magnetic field lines only will obtain 
a few changes (see Figure 18). 

9. Supercurrent Flowing through a Coil 

Let us discuss about a superconducting wire coil. Current flows through such conduc-
tor passing each circular loop. Much the same current flows over a thin-coat disk sur-
face (see Figure 15). For making a circular coil a core of the disk may be cut out (see 
Figure 19). Both the self-magnetic field (7.2) and current density (7.4) shall save their 
characteristics: 
 

 
Figure 18. Supercurrent-induced self-magnetic fieldin the conductor at cT T< . No external 
magnetic field is applied. 
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( ) ( ) ( ) ( )( )1 e ,c g R r
x mH r H ττ τ − − = −                   (9.1) 

and coil plain: 

( ) ( ) ( ) ( )( ),0 e .g R r
mj r K H ττ τ τ − −=                    (9.2) 

10. Supercurrent Flowing through a Solenoid 

Now, let’s discuss about a superconducting solenoid. Current may flow passing through 
a circular loop similar to that described in the previous section. But the solenoid will 
have exceeded self-magnetic field. If there are N coils in the solenoid, then the strength 
of the magnetic field within its core will go to mNH —i.e. the strength will grow up 
proportionally (see Figure 20). 
 

 
Figure 19. Supercurrent-induced self-magnetic field in the wire coil. 

 

 
Figure 20. Supercurrent-induced self-magnetic field in the solenoid. 
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11. Conclusions 

Hence, we can explain the cause of behavior by reference to external magnetic field 
( )exterH  that is forced out of a superconductor. In case of absence of any superconduc-

tivity, external magnetic field ( )exterH  in metal passes through the material. With su-
perconductivity being induced in metal (i.e. newly generated supercurrent in material), 
current flowing along the surface is featured with its specific density. Currents flow 
over closed curves and create self-magnetic field ( )cH . Self-magnetic field ( )cH  is 
added to external magnetic field ( )exterH  due to the superposition principle. 

If to compare moduli of such fields, we can seen that the external magnetic field 
modulus is characterized by Ho and self-magnetic field–by ( )mH T . According to the 
Meissner-Ochsenfeld effect, superconductivity can exist when ( )o mH H T< . This is 
the reason why an external magnetic field is forced out of a superconductor. External 
magnetic field ( )exterH  is forced out under the effect of self-magnetic field ( )cH  due 
to supercurrent that exists in the material. 
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