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Abstract 
This piece of research addresses an interesting comparative analytical study, which 
considers two concepts of diverse algorithmic computational intelligent paradigms 
related tightly with Neural and Non-Neural Systems’ modeling. The first computa- 
tional paradigm was concerned with practically obtained psycho-learning behavioral 
results after three animals’ neural modeling. These are namely: Pavlov’s, and Thorn-
dike’s experimental work. In addition, the third model is concerned with optimal solu-
tion of reconstruction problem reached by a mouse’s movement inside Figure 8 maze. 
Conversely, second algorithmic intelligent paradigm was originated from observed 
activities’ results after Non-Neural bio-inspired clever modeling namely Ant Colony 
System (ACS). These results were obtained after attaining optimal solution while 
solving Traveling Sales-man Problem (TSP). Interestingly, the effect of increasing 
number of agents (either neurons or ants) on learning performance was shown to be 
similar for both introduced systems. Finally, performances of both intelligent learn-
ing paradigms have been shown to be in agreement with learning convergence 
process searching for least mean square error LMS algorithm. While its application 
was for training some Artificial Neural Network (ANN) models. Accordingly, 
adopted ANN modeling is a relevant and realistic tool to investigate observations 
and analyze performance for both selected computational intelligence (biological 
behavioral learning) systems.  
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1. Introduction 

This research work introduces a systematic investigational analysis for two naturally 
diversified adaptive learning phenomena’ paradigms. These diversified paradigms con-
sider two typical behavioral learning performance algorithms of non-human creatures 
which were biologically classified as Neural (animals), and Non-Neural (ant colonies) 
Systems’ modeling [1]-[6].  

The first paradigm is associated to adaptive neural behavioral learning inside three 
animals’ brain: a Dog, a Cat, and a Mouse. However, the second belongs to analysis of 
bio-inspired behavioral learning associated to ant colony optimization for observed 
swarm intelligence phenomenon aiming to get optimal solution Traveling Salesman 
Problem (TSP), based on realistic simulation foraging of behavioral phenomenon ob-
served by real Ant Colony System. Analysis and evaluation of such interdisciplinary 
challenging learning issue are carried out using Neural Networks’ Conceptual Ap-
proach. Herein, this paper presents analytical details for both intelligent behavioral ap-
proaches, which were considered via two hand folds as follows. Firstly, on one hand: 
autonomous inferences and perceptions were performed in nature by non-human brain 
(animals: Dogs, Cats, and Mice). Secondly, on the other hand paradigm is inspired by 
source of ant colony optimization originated from intelligent foraging behavioral phe-
nomenon observed by real ant colonies in natural environment. This behavior is ex-
ploited in artificial ant colonies for the search of approximate solutions to optimization 
problems namely Traveling Salesman Problem (TSP). 

1.1. First Learning Paradigm 

More specifically, the first behavioral algorithmic paradigm considers three nonhuman 
models. All three neural creatures’ models have been inspired by results observed after 
behavioral psycho-learning performance in natural real world. Two of introduced 
models are based on Pavlov’s and Thorndike’s excremental work. In some details, Pav-
lov’s dog learns how to associate between two inputs sensory stimuli (audible, and visu-
al signals). However, Thorndike’s cat behavioral learning tries to get out from a cage to 
reach food out of the cage. Both behavioral learning models improve their performance 
by trial to minimize response time period. The third model is concerned with behavior-
al learning of mouse while performing trials for getting out from inside Figure 8 maze. 
That is performed as optimal trial to solve reconstruction problem [7].  

1.2. Second Learning Paradigm 

The second algorithmic paradigm is concerned with searching for optimal solution of 
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TSP by using non-neural systems namely, colony system ACS. That model simulates a 
swarm (ant) intelligent system used for solving TSP optimally. Briefly, ACS algorithm is 
inspired by the foraging behavior of ants, specifically the pheromone communication 
between ants regarding a good path between the colony and a food source in an envi-
ronment. This mechanism is called stigmergy. Interestingly, that mechanism performed 
by bringing food from different food sources to store (in cycles) at ant’s nest. Interes-
tingly, all of presented models herein shown to behave analogously in agreement with 
Least Mean Square LMS Algorithm previously suggested at ANN learning.  

Principles of biological information processing concerned with learning convergence 
for both bio-systems have been published at [8] [9] [10]. By some details, in this work 
an interesting comparative analysis introduced for concepts of behavioral learning 
phenomenon, versus optimal solution of TSP using swarm intelligence optimization 
(ACS) [1] [10] [11] [12]. In other words, an investigational analytical overview is pre-
sented herein to get insight with behavioral intelligence of non-human creatures’ per-
formance as Neural and Non-Neural Systems [1] [4] [5] [12].  

Briefly, analysis of obtained results by such recent research work leads to discovery of 
some interesting analogous relations between both behavioral learning paradigms. That 
concerned with observed resulting errors, time responses, learning rate values, gain 
factor values versus number of trials, training dataset vectors intercommunication 
among ants and number of neurons as basic processing elements [5] [13] [14]. Howev-
er, it seems to observe diversity of behavioral learning curves performance (till reaching 
optimum state) for proposed biological systems, both are similar to each other (consi-
dering normalization of performance curves) [3] [6]. Interestingly, behavioral intelli-
gence & learning performance phenomena carried out by both nonhuman biological 
systems are characterized by their adaptive behavioral responses to their living envi-
ronmental conditions. So, all introduced models for both approaches consider input 
stimulating actions provided by external environmental conditions versus adaptive 
reactions carried by creatures’ models [1] [9] [15].  

The rest of this paper is organized as follows. At next section, a simple interactive 
learning model is presented along with a generalized ANN block diagram simulating 
learning process. Revising of Thorndike’s, Pavlov’s, and mouse’s behavioral learning 
are introduced briefly at the third section. The fourth section is dedicated to illustrate 
learning algorithm at ACS. 

Obtained simulation results compared with the experimental results are given at the 
fifth section. Finally, at the last sixth section, some conclusions and valuable discussions 
are introduced. 

2. Interactive Learning Model 
2.1. Simplified Interactive Learning Process 

Referring to Figure 1, it illustrates a general view of a teaching model qualified to per-
form simulation of above mentioned brain functions. Inputs to the neural network 
teaching model are provided by environmental stimuli (unsupervised learning). How-
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ever, correction signal(s) in the case of learning with a teacher given by output re-
sponse(s) of the model that evaluated by either the environmental conditions (unsu-
pervised learning) or by supervision of a teacher. Furthermore, the teacher plays a role 
in improving the input data (stimulating learning pattern) by reducing the noise and 
redundancy of model pattern input. That is in accordance with tutor’s experience while 
performing either conventional (classical) learning or CAL. Consequently, he provides 
the model with clear data by maximizing its signal to noise ratio [12]. Conversely, in 
the case of unsupervised/self-organized learning, which is based upon Hebbian rule 
[15], it is mathematically formulated by Equation (7). For more details about mathe-
matical formulation describing a memory association between auditory and visual sig-
nals, please refer to [16]. 

The presented model given in Figure 2 generally simulates two diverse learning pa-
radigms. It presents realistically both paradigms: by interactive learning/ teaching 
process, as well as other self-organized (autonomous) learning. By some details, firstly 
is concerned with classical (supervised by a tutor) learning observed in our classrooms 
(face to face tutoring). Accordingly, this paradigm proceeds interactively via bidirec-
tional communication process between a teacher and his learners (supervised learning) 
[16] [17]. However, the second other learning paradigm performs self-organized (au-
tonomously unsupervised) tutoring process [16].  

2.2. Mathematical Formulation of Learning Paradigms 

Referring to above Figure 2; the error vector ( )e n  at any time instant (n) observed 
during learning processes is given by: 

 

 
Figure 1. Simplified view for interactive learning process. 

 

 
Figure 2. Generalized ANN block diagram simulating two diverse learning paradigms adapted 
from [18]. 
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( ) ( ) ( )e n y n d n= −                          (1) 

where ( )e n  … is the error correcting signal that adaptively controls the learning 
process, ( )y n  … is the output obtained signal from ANN model, and ( )d n  … is the 
desired numeric value(s).  

Moreover, the following four equations are deduced:  

( ) ( ) ( )T
k j kjV n X n W n=                         (2) 

( ) ( )( ) ( )( ) ( )( )1 e 1 ek kV n V n
k kY n V n λ λϕ − −= = − +                (3) 

( ) ( ) ( )k k ke n d n y n= −                         (4) 

( ) ( ) ( )1kj kj kjW n W n W n+ = + ∆                      (5) 

where X is input vector and W is the weight vector. φ is the activation function. Y is the 
output. ke  is the error value and kd  is the desired output. Note that ( )kjW n∆  is the 
dynamical change of weight vector value. Above four equations are commonly applied 
for both learning paradigms: supervised (interactive learning with a tutor), and unsu-
pervised (learning though student’s self-study). The dynamical changes of weight vec-
tor value specifically for supervised phase is given by: 

( ) ( ) ( )kj k jW n e n X nη∆ =                        (6) 

where η is the learning rate value during the learning process for both learning para-
digms. At this case of supervised learning, instructor shapes child’s behavior by posi-
tive/negative reinforcement Also, Teacher presents the information and then students 
demonstrate that they understand the material. At the end of this learning paradigm, 
assessment of students’ achievement is obtained primarily through testing results. 
However, for unsupervised paradigm, dynamical change of weight vector value is given 
by:  

( ) ( ) ( )kj k jW n Y n X nη∆ =                        (7) 

Noting that ( )ke n  Equation (6) is substituted by ( )kY n  at any arbitrary time in-
stant (n) during the learning process. Instructor designs the learning environment.  

3. Models of First Learning Paradigm  
3.1. Revising of Pavlov’s Work [11] 

The psycho-experimental work of Pavlov is known for classical conditioning. It is cha-
racterized by following two aspects: A spontaneous reaction that occurs automatically 
to a particular stimulus, and to alter the “natural” relationship between a stimulus and a 
reaction response was viewed as a major breakthrough in the study of behavior [15] 
[19]. By referring to the original Pavlov’s work, let us define what is meant by latency 
time. This time is briefly, defined as the delay period elapsed since acquisition of two 
input stimulating signals (pairings), till developing output response signals [10]. In 
more details, responding signals are held to be of zero value during their correlated la-
tency time periods. Hence, by the end of these periods, output actions are sponta-
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neously developed in a form of some number of salivation drops representing response 
signals intensities. These intensities observed to be in proportionality with the increase 
of the subsequent number of trials. So, this relation agrees with odd sigmoid function 
curve as reaching saturation state [3] [4]. Conversely, on the basis of Pavlov’s obtained 
experimental results, it is well observed mathematical interrelationship between latency 
time period versus subsequent number of trials can be illustrated explicitly in the form 
of hyperbolic function curve that mathematically expressed by following equation:  

( )t n
nβ

α
=                              (8) 

where α and β are arbitrary positive constant in the fulfillment of some curve fitting to 
a set of points as shown by graphical relation illustrated in Figure 3. 

3.2. Revising of Thorndike’s Work [12] 

Referring to behaviorism learning theory presented at [19], Thorndike had suggested 
three principles, which instructors (who adopted teaching based on behaviorism learn-
ing theory) should apply in order to promote effectiveness of behavioral learning 
process. These principles are given as follows:  
• Present the information to be learned in small behaviorally defined steps. 
• Give rapid feedback to pupils regarding the accuracy of their learning. (Learning 

being indicated by overt pupil responses). 
• Allow pupils to learn at their own pace.  

Furthermore, building on these he proposed an alternative teaching technique called 
programmed learning/instruction and also a teaching machine that could present pro-
grammed material. Initially, cat’s performance trials results in random outputs. By se-
quential trials, following errors observed to become minimized, by increasing number 
of training (learning) cycles. Referring to Figure 4, which illustrates original Thorn-
dike’s work results. This figure presents the relation between response time and num- 

 

 
Figure 3. Fitting curve for latency time results observed by Pavlov’s experimental work. 
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Figure 4. The original result of Thorndike representing learning performance for a cat to get out 
from the cage for reaching food. 

 

 
Figure 5. Thorndike normalized results seem to be closely similar to exponential time decay. 

 
ber of trials. Furthermore, referring to that original Thorndike’s experimental results 
given at Figure 4, represent behavioral learning performance of Thorndike’s work. 
However, normalized learning curve that presents performance curve of experimental 
work is given approximately at Figure 5. Interestingly, the comparative analogy be-
tween performance curves of Pavlov’s and Thorndike’s work shown to behave similar 
to each other [4]. 

In general, principle of adaptive learning process (observed during creatures’ interac-
tion with environment) illustrated originally at [17] [20].  
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Referring to Figure 6, it observed that by increasing number of training cycles, the 
first learning algorithm converges to some fixed limiting values (for normalized time 
response). That observed results consider normalization of both number of trials values 
versus their corresponding normalized time response (for both original experimental 
work of Pavlov and Thorndike given at Figure 3 & Figure 4 respectively).  

3.3. Mouse’s Trails for Solving Reconstruction Problem  

Referring to [18], the timing of spikes in a population of neurons can be used to recon-
struct a physical variable is the reconstruction of the location of a rat in its environment 
from the place fields of neurons in the hippocampus of the rat. In the experiment re-
ported here, the firing part-terns of 25 cells were simultaneously recorded from a freely 
moving mouse [7]. The place cells were silent most of the time, and they fired max-
imally only when the animal’s head was within restricted region in the environment 
called its place field [19]. The reconstruction problem was to determine the rat’s posi-
tion based on the spike firing times of the place cells. Bayesian reconstruction was used 
to estimate the position of the mouse in the Figure 8 maze shown at Figure 7, which 
adapted from [6]. Assume that a population of N neurons encodes several variables 
( )1 2, ,x x 

, which will be written as vector x. From the number of spikes  
( )1 2, , , Nn n n n= 

 fired by the N neurons within a time interval τ , we want to esti-
mate the value of x using the Bayes rule for conditional probability:  

( ) ( ) ( ) ( )| |P x n P n x P x P n=                      (9) 

Assuming independent Poisson spike statistics. The final formula reads 

( ) ( ) ( ) ( )
11

| expi
N Nn

i i
ii

P x n kP x f x f xτ
==

   = −   
  

∑∏              (10) 

 

 
Figure 6. Comparison between Pavlov and Thorndike work. Considering normalized results af-
ter application of ANN. 
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where k is a normalization constant, P(x) is the prior probability, and fi(x) is the meas-
ured tuning function, i.e. the average firing rate of neuron i for each variable value x. 
The most probable value of x can thus be obtained by finding the x that maximizes 
( )|P x n , namely, 

( )ˆ arg max |x P x n=                         (11) 

By sliding the time window forward, the entire time course of x can be reconstructed 
from the time varying-activity of the neural population. This appendix illustrates well 
Referring to results for solving reconstruction (pattern recognition) problem solved by 
a mouse in Figure 8 maze [7] [21]. That measured results based on pulsed neuron 
spikes at hippocampus of the mouse brain. In order to support obtained investigational 
research results and lightening the function of mouse’s brain hippocampus area, three 
findings have been announced recently as follows:  
1) Referring to [22], experimental testing performed for hippocampal brain area ob-

served neural activity results in very interesting findings. Therein, ensemble record-
ings of 73 to 148 rat hippocampal neurons were used to predict accurately the ani-
mals’ movement through their environment, which confirms that the hippocampus 
transmits an ensemble code for location. In a novel space, the ensemble code was 
initially less robust but improved rapidly with exploration. During this period, the 
activity of many inhibitory cells was suppressed, which suggests that new spatial in-
formation creates conditions in the hippocampal circuitry that are conducive to the 
synaptic modification presumed to be involved in learning. Development of a new 
population code for a novel environment did not substantially alter the code for a 
familiar one, which suggests that the interference between the two spatial represen-
tations was very small. The parallel recording methods outlined here make possible 
the study of the dynamics of neuronal interactions during unique behavioral events. 

2) The hippocampus is said to be involved in “navigation” and “memory” as if these 
were distinct functions [23]. In this issue of Neuron this research paper evidence has 
been provided that the hippocampus retrieves spatial sequences in support of mem-
ory, strengthening a convergence between the two perspectives on hippocampal 
function. 

3) Recent studies have reported the existence of hippocampal “time cells,” neurons that 
fire at particular moments during periods when behavior and location are relatively 
constant as introduced at [24]. However, an alternative explanation of apparent 
time coding is that hippocampal neurons “path integrate” to encode the distance an 
animal has traveled. Here, we examined hippocampal neuronal firing patterns as 
rats ran in place on a treadmill, thus “clamping” behavior and location, while we va-
ried the treadmill speed to distinguish time elapsed from distance traveled. Hippo-
campal neurons were strongly influenced by time and distance, and less so by minor 
variations in location. Furthermore, the activity of different neurons reflected inte-
gration over time and distance to varying extents, with most neurons strongly in-
fluenced by both factors and some significantly influenced by only time or distance. 
Thus, hippocampal neuronal networks captured both the organization of time and 
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distance in a situation where these dimensions neuronal networks captured both the 
organization of time and distance in a situation where these dimensions dominated 
an ongoing experience as illustrated at Figure 7 [24]. 

According to following Table 1, the error value seems to decrease similar to expo-
nential curve decays to some limit value versus (place field) cells.  

Noting that, the value of mean error converges (by increase of number of cells) to 
some limit, excluded as Cramer-Rao bound. That limiting bound is based on Fisher’s 
information given as tabulated results in the above and derived from [21]. That implies 
LMS algorithm is valid and obeys the curve.  

Furthermore, it is noticed that the algorithmic performance learning curve referred 
to Figure 7, converged to bounding limit (of minimum error value) fixed Cramer Rao 
bound (Limiting value). That is analogous to minimum time response corresponding to 
maximum number of trials limit by referring to above Figure 2. Interestingly, consi-
dering comparison between learning curve performances at Figure 8 and learning that 
at ACS. It observed the analogy when comparing number of place field cells (at hippo-
campus mouse’s brain area) versus the number of cooperative ants while searching for 
optimized TSP solution adopting ACS. More details are presented at the simulation re-
sults’ Section 5. 

4. Second Learning PARADIGM 
4.1. Revising Ant Colony System Performance 

Referring to Figure 1, ants are moving on a straight line that connects a food source to 
their nest. It is well known that the primary means for ants to form and maintain the 
line is a pheromone trail. Ants deposit a certain amount of pheromone while walking, 
and each ant probabilistically prefers to follow a direction rich in pheromone. This 
elementary behaviour of real ants can be used to explain how they can find the shortest 

 
Table 1. Relation between number of cells and mean error in solving reconstruction problem. 

No. of neuron cells 10 14 18 22 26 30 

Mean error (cm) 9 6.6 5.4 5 4.5 4 

 

 
Figure 7. Dissociation between Elapsed Time and Path Integration in the Hippocampus During 
the delay period of a working memory task required the mouse to run on a treadmill for either a 
fixed amount, adapted from [24]. 

http://www.cell.com/neuron/abstract/S0896-6273(13)00491-1
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Figure 8. The dashed line indicates the approach to Cramer-Rao bound based on Fisher infor-
mation adapted from [6]. 

 
path that reconnects a broken line after the sudden appearance of an unexpected ob-
stacle has interrupted the initial path (Figure 9(A)). In fact, once the obstacle has ap-
peared, those ants which are just in front of the obstacle cannot continue to follow the 
pheromone trail and therefore they have to choose between turning right or left. In this 
situation we can expect half the ants to choose to turn right and the other half to turn 
left (Figure 9(B)). A very similar situation can be found on the other side of the ob-
stacle (Figure 9(C)). It is interesting to note that those ants which choose, by chance, 
the shorter path around the obstacle will more rapidly reconstitute the interrupted 
pheromone trail compared to those which choose the longer path. Thus, the shorter 
path will receive a greater amount of pheromone per time unit and in turn a larger 
number of ants will choose the shorter path. Due to this positive feedback (autocatalyt-
ic) process, all the ants will rapidly choose the shorter path (Figure 9(D)). The most 
interesting aspect of this autocatalytic process is that finding the shortest path around 
the obstacle seems to be an emergent property of the interaction between the obstacle 
shape and ants distributed behaviour: although all ants move at approximately the same 
speed and deposit a pheromone trail at approximately the same rate, it is a fact that it 
takes longer to contour obstacles on their longer side than on their shorter side which 
makes the pheromone trail accumulate quicker on the shorter side. It is the ants’ prefe-
rence for higher pheromone trail levels which makes this accumulation still quicker on 
the shorter path. This process is adapted with the existence of an obstacle through the 
pathway from nest to source and vice versa, however, more detailed illustrations are 
given through other published research work, [1]. Therein, ACS performance obeys 
computational biology algorithm used for solving optimally travelling salesman prob-
lem TSP [1]. 

The paradigm consists of two dominant sub-fields 1) Ant Colony Optimization that 
investigates probabilistic algorithms inspired by the foraging behavior of ants [1] [25], 
and 2) Particle Swarm Optimization that investigates probabilistic algorithms inspired 
by the flocking and foraging behavior of birds and fish [26]. Like evolutionary compu-
tation, swarm intelligence-based techniques are considered adaptive strategies and are 
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typically applied to search and optimization domains. That simulation the foraging be-
havioral intelligence of a swarm (ant) system used for reaching optimal solution of TSP 
a cooperative learning approach to the traveling salesman problem optimal solution of 
TSP considered using realistic simulation of bio-inspired clever Non-neural model 
namely: ACS [27].  

Referring to two more recent research work [2] [24], an interesting view distributed 
biological system ACS is presented. Therein, the ant Temnothorax albipennis uses a 
learning paradigm (technique) known as tandem running to lead another ant from the 
nest to food with signals between the two ants controlling both the speed and course of 
the run. That learning paradigm involves bidirectional feedback between teacher and 
pupil and considered as supervised learning [24] [25] [26] [28].  

ACS optimization process versus MICE reconstruction problem. Finally the relation 
between cooperative process in ACS and activity at hippocampus of the mouse brain is 
illustrated well at two recently published works [3] [4]. 

4.2. Cooperative Learning by ACS for Solving TSP 

Cooperative learning by Ant Colony System for solving TSP referring to Figure 9, 
which adapted from [1], the difference between communication levels among agents 
(ants) develops different outputs average speed to optimum solution. The changes of 
communication level are analogues to different values of λ in sigmoid function as 
shown at Equation (13) in below. This analogy seems to be illustrated well as referring 
to Figure 4 where the output salivation signal is increased depending upon the value of 
no of training cycles. When the number of training cycles increases virtually to an infi-
nite value, the number of salivation drops obviously reach a saturation value addition-
ally the pairing stimulus develops the learning process turned in accordance with Heb-
bian learning rule [17]. However in case of different values of λ other than zero impli-
citly means that output signal is developed by neuron motors. 

 

 
Figure 9. Illustrates the process of transportation of food (from food source) to food store (nest). 



H. M. H. Mustafa et al. 
 

13/20 OALib Journal

5. Simulation Results 
5.1. Intercommunication among Ants 

Referring to Figure 10 shown in below, the relation between tour lengths versus the 
CPU time is given. It is observed the effect of ant cooperation level on reaching opti-
mum (minimum tour). Obviously, as level of cooperation among ants increases (better 
communication among ants) the CPU time needed to reach optimum solution is de-
creased. So, that optimum solution is observed to be reached (with cooperation) after 
300 (msec) CPU the while that solution is reached after 600 (msec) CPU time (without 
cooperation). 

In other words, by different levels of cooperation (communication among ants) the 
optimum solution is reached after CPU time τ placed somewhere between above two 
limits 300 - 650 (M. sec). Referring to [1], cooperation among processing agents (ants) 
is a critical factor affecting ACS performance as illustrated at Figure 11. So, the number 
of ants required to get optimum solution differs in accord with cooperation levels 
among ants. This number is analogous to number of trials in OCR process. Interesting- 

 

 
Figure 10. Illustrates performance of ACS with and without communication between ants, 
adapted from [1]. 

 

 
Figure 11. Cooperating ants find better solutions in a shorter time. Average on 25 runs. The 
number of ants was set to m = 4, adapted from [25]. 
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ly, in natural learning environment, the (S/N) signal to noise ratio is observed to be di-
rectly proportional to leaning rate parameter in self-organized ANN models. That 
means in less noisy learning environment (clearer) results in better outcome learning 
performance given in more details at [19] [29]. More precisely, such learning environ-
ment with better (S/N) ratio, implicitly results in increasing of stored experience (inside 
synaptic connectivity) while nonhuman creatures are adopting self-organized learning 
via interaction with environment [17]. Referring to Equation (11) introduced for solv-
ing reconstruction problem (corresponding to the most probable value of x) has great 
similarity to the equation presented to search for optimal solution considering TSP 
reached by ACS (for random variable S) as follows. 

( ) ( ){ } 0arg max , , if

otherwise
ku M

r u r u q q
s

S

β
τ η

∈

 ⋅ ≤       = 


             (12) 

where τ(r,u) is the amount of pheromone trail on edge (r,u), η(r,u) is a heuristic func-
tion, which was chosen to be the inverse of the distance between cities r and u, β is a 
parameter which weighs the relative importance of pheromone trail and of closeness, q 
is value chosen randomly with uniform probability in [0, 1], q0 (0 ≤ q0 ≤ 1) is a para-
meter, Mk is memory storage for k ants activities, and S is a random variable selected 
according to some probability distribution [24] [25]. Synergistic effect by Ant colony 
intercommunications is given by mathematical formulation for ACS optimization as 
follows. At recent previous work analogy between ACS performance and ANNs has 
been illustrated at [2] [5] [6] [30] [31] [32]. The performance of the synergistic effect of 
ACS referring to the generalized sigmoid function is given as function of discrete in-
teger (+ve) value representing for number of ants as follows: 

( ) 1 e
1 e

n

nf n
λ

λα
−

−

 −
=  

+ 
                        (13) 

where α … is an amplification factors representing asymptotic value for maximum av-
erage speed to get optimized solutions and λ in the gain factor changing in accords with 
communication between ants. However by this mathematical formulation of that mod-
el normalized behavior it is shown that by changing of communication levels 
(represented by λ) that causes changing of the speeds for reaching optimum solutions. 
More appropriate that declares the slope (gain factor) for suggested sigmoid function is 
a direct measure for intercommunications level among ants in ACS in other words, the 
slope, λ is directly proportional to pheromone trail mediated communication among 
agents of ACS. Consequently, ACS global performance has become nearly parallel 
(slope = 0) to the X-axis (number of ants), nevertheless increasing of ants comprising 
tested colony (slope, λ = 0), that’s the case when no intercommunications between ants 
exists.  

In the given Figure 12, it is illustrated that normalized model behavior according to 
following equation.  

( ) ( )( )( ) ( )( )( )1 exp 1 1 exp 1i iy n n nλ λ= − − − + − −            (14) 
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Figure 12. Graphical representation of learning performance of ACS model with different com-
munication levels (λ). 

 
where λi represents one of gain factors (slopes) for sigmoid function. 

5.2. Realistic Simulation Program 

By referring to Figure 13, it introduces the flowchart for simulation program which 
applied for performance evaluation of behavioral learning processes. Considering the 
two adopted cases of biological creatures having either neural or non-neural systems. 
That figure presents a simplified macro-level flowchart which describes briefly algo-
rithmic steps for realistic simulation program of adopted Artificial Neural Networks’ 
model for different number of neurons using. The results are shown at the three Fig-
ures 14-16 after that program running. 

5.3. Least Mean Square LMS Algorithm 

At the Figure 14, it presents the learning convergence process for least mean square 
error as used for training of ANN models [18]. It is clear that this process performed 
similarly as ACS searching for minimum tour when solving TSP [1]. Furthermore, it 
obeys the learning performance observed during psycho experimental work carried for 
animal learning [3].  

6. Conclusions and Discussion 

According to the above animal learning experiments (dogs, cats, and mice), and their 
analysis and evaluation by ANNs modeling, all of them agree well as for ACS, optimiza-
tion process. Also, the performance of both (ant and animals) is similar to that for la-
tency time minimized by increasing of number of trials. Referring to Figure 6, it is 
shown that both learning performance curves presenting both work for Thorndike and  
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Figure 13. A simplified macro level flowchart describing algorithmic steps for Artificial Neural 
Networks modeling considering various neurons’ number. 

 

 
Figure 14. Illustrate learning performance to get accurate solution with different gain factors 
0.05, 1, and 2, while #cycles = 300 and Learning rate = 0.3. 
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Figure 15. Illustrate learning performance error-rate with different gain factors when #cycles = 
300 and Learning rate = 0.3. 

 

 

Figure 16. Illustrate learning performance error-rate with different learning rates when #cycles = 
300 and gain factor = 1. 

 
Pavlov are commonly characterized by their hyperbolic decay and also, both obey ge-
neralized LMS for error minimization by learning convergence.  

In this context, the algorithm agrees with the behavior of brainier mouse behavior 
(that is genetically reformed) as illustrated at [16]. Generally, the four introduced non-
human models in this work perform their behavioral learning functions similar to LMS 
error algorithm, which is introduced at Figure 17.  

By some details, artificial neural network models perform computation either on 
analogue signaling base or on pulsed spikes decoding criterion; they both lead to learn-
ing convergence following LMS error algorithm. It is noted that, reconstruction method 
following Bayesian rule is bounded to Cramer Rao’s limit. This limit is analogous to 
minimum response time in Pavlov experiment, and Thorndike work as well. Similarly, 
for ACS, optimization processes are following as LMS error algorithm when perform-
ing solution TSP. Additionally; adaptation equations for all of three systems are run-
ning in agreement with dynamic behavior of each other. Additionally, the learning  
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Figure 17. Idealized learning curve of the LMS algorithm adapted from [18]. 

 
algorithms for the presented four models are close to each other with similar iterative 
steps (either explicitly or implicitly). Finally, it is worthy to note that the rate of in-
crease of salivation drops is analogous to rate for reaching optimum average speed in 
ACS optimization process. Similarly, this rate is also analogous to speed of cat getting 
out from cage in Thorndale’s experiment. It is noted that, increase on number of artifi-
cial ants is analogous to number of trials in Pavlov’s work. 
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