Log-Concavity of Centered Polygonal Figurate Number Sequences

Fekadu Tolessa Gedefa

Department of Mathematics, Ambo University, Ambo, Ethiopia
Email: toli4rage@gmail.com, fekadu.tolessa@ambou.edu.et

Received 28 May 2016; accepted 23 June 2016; published 27 June 2016

Copyright © 2016 by author and OALib.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
This paper investigates the log-concavity of the centered m-gonal figurate number sequences. The author proves that for $m \geq 3$, the sequence $(C_n(m))$ of centered m-gonal figurate numbers is a log-concave.

Keywords
Log-Concavity, Figurate Numbers, Centered Polygonal, Number Sequences

Subject Areas: Discrete Mathematics, Combinatorial Sequences, Recurrences

1. Introduction
For $n \geq 1$ and $m \geq 3$, let $C_n(m)$ denote the n^{th} term of the centered m-gonal figurate number sequence. E. Deza and M. Deza [1] stated that $C_n(m)$ could be defined by the following recurrence relation:

$$C_{n+1}(m) = C_n(m) + mn$$

where $C_1(m) = 1$. E. Deza and M. Deza [1] also gave different properties of $C_n(m)$ and obtained

$$C_n(m) = 1 + \frac{m(n-1)n}{2} = \frac{mn^2 - mn + 2}{2}$$

where $n \geq 1$ and $m \geq 3$. For $m \geq 3$, some terms of the sequence $(C_n(m))$ are as follows:

$1,1 + m,1 + 3m,1 + 6m,1 + 10m,1 + 15m,1 + 21m,1 + 28m,\ldots$

Some scholars have been studying the log-concavity (or log-convexity) of different numbers sequences such as Fibonacci & Hyperfibonacci numbers, Lucas & Hyperlucas numbers, Bell numbers, Hyperpell numbers, Motzkin numbers, Fine numbers, Franel numbers of order 3 & 4, Apéry numbers, Large Schröder numbers,
Central Delannoy numbers, Catalan-Larcombe-French numbers sequences, and so on (see for instance [2]-[9]).

To the best of the author’s knowledge, among all the aforementioned works on the log-concavity and log-convexity of number sequences, no one has studied the log-concavity (or log-convexity) of centered \(m \)-gonal figurate number sequences. In [1] [10] [11], some properties of centered figurate numbers are given. The main aim of this paper is to discuss properties related to the sequence \(\{C_n(m)\}_{n \geq 0} \). Now we recall some definitions involved in this paper.

Definition 1. Let \(\{s_n\}_{n \geq 0} \) be a sequence of positive numbers. If for all \(i \geq 1, s_i^2 \geq s_{i-1} s_{i+1} \), the sequence \(\{s_n\}_{n \geq 0} \) is called log-concave.

Definition 2. Let \(\{s_n\}_{n \geq 0} \) be a sequence of positive numbers. If for all \(i \geq 1, s_i^2 \leq s_{i-1} s_{i+1} \), the sequence \(\{s_n\}_{n \geq 0} \) is called log-convex. In case of equality, \(s_i^2 = s_{i-1} s_{i+1}, i \geq 1 \), we call the sequence \(\{s_n\}_{n \geq 0} \) geometric or log-straight.

Definition 3. Let \(\{s_n\}_{n \geq 0} \) be a sequence of positive numbers. The sequence \(\{s_n\}_{n \geq 0} \) is log-concave (log-convex) if and only if its quotient sequence \(\left\{ \frac{s_{n+1}}{s_n} \right\}_{n \geq 0} \) is non-increasing (non-decreasing).

Log-concavity and log-convexity are important properties of combinatorial sequences and they play a crucial role in many fields, for instance economics, probability, mathematical biology, quantum physics and white noise theory [2] [12]-[18].

2. Log-Concavity of Centered \(m \)-gonal Figurate Number Sequences

In this section, we state and prove the main results of this paper.

Theorem 4. For \(m \geq 3 \) and \(n \geq 3 \), the following recurrence formulas for centered \(m \)-gonal number sequences hold:

\[
C_n(m) = R(n)C_{n-1}(m) + S(n)C_{n-2}(m)
\]

with the initial conditions \(C_1(m) = 1, C_2(m) = 1 + m \) and the recurrence of its quotient sequence is given by

\[
x_{n+1} = R(n) + \frac{S(n)}{x_{n-2}}
\]

with the initial condition \(x_1 = 1 + m \).

Proof. By (1), we have

\[
C_{n+1}(m) = C_n(m) + mn
\]

It follows that

\[
C_{n+2}(m) = C_{n+1}(m) + m(n+1)
\]

Rewriting (5) and (6) for \(n \geq 3 \), we have

\[
C_{n-1}(m) = C_{n-2}(m) + m(n-2)
\]

\[
C_n(m) = C_{n-1}(m) + m(n-1)
\]

Multiplying (7) by \(m(n-1) \) and (8) by \(m(n-2) \), and subtracting as to cancel the non homogeneous part, one can obtain the homogeneous second-order linear recurrence for \(C_n(m) \):

\[
C_n(m) = \left[\frac{2n-3}{n-2} \right] C_{n-1}(m) - \left[\frac{n-1}{n-2} \right] C_{n-2}(m), \forall n, m \geq 3.
\]

By denoting

\[
\frac{2n-3}{n-2} = R(n)
\]

and
\(\frac{n-1}{n-2} = S(n), \)

one can obtain

\[C_n(m) = R(n)C_{n-1}(m) + S(n)C_{n-2}(m), \forall n, m \geq 3 \] \hspace{1cm} (10)

with given initial conditions \(C_1(m) = 1 \) and \(C_2(m) = 1 + m \).

By dividing (10) through by \(C_{n-1}(m) \), one can also get the recurrence of its quotient sequence \(x_{n-1} \) as

\[x_{n-1} = R(n) + \frac{S(n)}{x_{n-2}}, n \geq 3 \] \hspace{1cm} (11)

with initial condition \(x_1 = 1 + m \).

\textbf{Lemma 5.} For the centered m-gonal figurate number sequence \(\{C_n(m)\}_{n \geq 1} \), let \(x_n = \frac{C_{n+1}(m)}{C_n(m)} \) for \(n \geq 1 \) and \(m \geq 3 \). Then we have \(1 < x_n \leq 1 + m \) for \(n \geq 1 \).

\textit{Proof.} Assume \(x_n \neq 1 \) for \(n \geq 1 \) and \(m \geq 3 \). Otherwise, \(1 = x_n = \frac{C_{n+1}(m)}{C_n(m)} = \frac{2 + mn(n+1)}{2 + mn(n-1)}. \) It follows that \(-1 = 1 \) which not true. Now it is clear that \(x_n \neq 1 \) and

\[x_1 = 1 + m, x_2 = 3 - \frac{2}{1+m}, x_3 = 2 - \frac{1}{1+3m} > 1, \text{ for } m \geq 3. \] \hspace{1cm} (13)

Assume that \(x_n > 1 \) for all \(n \geq 3 \). It follows from (11) that

\[x_n = \frac{2n-1}{n-1} \frac{n}{(n-1)x_{n-1}}, n \geq 2 \] \hspace{1cm} (14)

For \(n \geq 3 \), by (14), we have

\[x_{n+1} - 1 = \frac{n+1}{n} - \frac{n+1}{nx_n} \] \hspace{1cm} (15)

\[= \frac{(n+1)x_n - (n+1)}{nx_n} \] \hspace{1cm} (16)

\[= \frac{(n+1)(x_n - 1)}{nx_n} \] \hspace{1cm} (17)

\[> 0 \text{ for } m \geq 3. \]

Hence \(x_n > 1 \) for \(n \geq 1 \) and \(m \geq 3 \).

Similarly, it is known that

\[x_1 = 1 + m, x_2 = 3 - \frac{2}{1+m}, x_3 = 2 - \frac{1}{1+3m} < 1 + m, \text{ for } m \geq 3. \] \hspace{1cm} (18)

Assume that \(x_n \leq 1 + m \) for all \(n \geq 3 \). It follows from (11) that

\[x_n = \frac{2n-1}{n-1} \frac{n}{(n-1)x_{n-1}}, n \geq 2 \] \hspace{1cm} (19)

For \(n \geq 3 \), by (19), we have

\[x_{n+1} - (1 + m) = \frac{n+1 - mn}{n} - \frac{n+1}{nx_n} \] \hspace{1cm} (20)
F. T. Gedefa

\[(n+1-mn)x_n - (n+1) \]
\[\frac{nx_n}{2n-1} \]

Hence \(x_n \leq 1+m \) for \(n \geq 1 \) and \(m \geq 3 \).

Thus, in general, from the above two cases it follows that \(1 < x_n \leq 1+m \) for \(n \geq 1 \) and \(m \geq 3 \).

Lemma 6. For the centered \(m \)-gonal figurate number sequence \(\{C_n(m)\}_{n \geq 1} \), the quotient sequence \(\{x_n\}_{n \geq 1} \), given in (4), is a decreasing sequence for \(m \geq 3 \).

Proof. Let \(\{x_n\}_{n \geq 1} \) be a quotient sequence given in (4). We prove by induction that the sequence \(\{x_n\}_{n \geq 1} \) is decreasing. Indeed, since \(x_1 = 1+m, x_2 = 3- \frac{2}{1+m}, x_3 = 2 - \frac{1}{1+3m} \), we have \(x_1 > x_2 > x_3 \). Next we assume that \(x_n < x_{n-1} \).

By using (11), one can obtain

\[x_n = \frac{2n-1}{n-1} - \frac{n}{(n-1)x_{n-1}}, n \geq 2 \]

with initial condition \(x_1 = 1+m \).

For \(n \geq 3 \), by (22), we get

\[x_{n+1} - x_n = \frac{2n+1}{n} \frac{n+1}{n} \frac{2n-1}{n} \frac{n-1}{(n-1)x_{n-1}} \]

\[= \frac{2n+1}{n} - \frac{2n-1}{n} + \frac{1}{n} \left[\frac{n}{n-1} - \frac{n+1}{n} \right] + \frac{n}{n-1} \left[\frac{1}{n-1} \frac{1}{x_{n-1}} \right] \]

\[= \frac{x_n - 1}{n(n-1)x_n} + \frac{n}{n-1} \left[\frac{1}{x_{n-1}} \frac{1}{x_n} \right] < 0. \]

By Lemma 5 and induction assumption, one can get \(x_{n+1} - x_n < 0 \) for \(n \geq 3 \).

Thus, the sequence \(\{x_n\}_{n \geq 1} \) is decreasing for \(m \geq 3 \).

Theorem 7 For \(m \geq 3 \), the sequence \(\{C_n(m)\}_{n \geq 1} \) of centered \(m \)-gonal figurate numbers is a log-concave.

Proof. Let \(\{C_n(m)\}_{n \geq 1} \) be a sequence of centered \(m \)-gonal figurate numbers and \(\{x_n\}_{n \geq 1} \) its quotient sequence, given by (4). To prove the log-concavity of \(\{C_n(m)\}_{n \geq 1} \) for all \(m \geq 3 \), it suffices to show that the quotient sequence \(\{x_n\}_{n \geq 1} \) is decreasing.

By Lemma 6, the quotient sequence \(\{x_n\}_{n \geq 1} \) is decreasing. Thus, by definition 3, the sequence \(\{C_n(m)\}_{n \geq 1} \) of centered \(m \)-gonal figurate numbers is a log-concave for \(m \geq 3 \). This completes the proof of the theorem.

3. Conclusion

In this paper, we have discussed the log-behavior of centered \(m \)-gonal figurate number sequences. We have also proved that for \(m \geq 3 \), the sequence \(\{C_n(m)\}_{n \geq 1} \) of centered \(m \)-gonal figurate numbers is a log-concave.

Acknowledgements

The author is grateful to the anonymous referees for their valuable comments and suggestions.
References

Warmly welcome your paper submission to OALib Journal!

- Publication on a daily basis
- 9 subject areas of science, technology and medicine
- Fair and rigorous peer-review system
- Fast publication process
- Article promotion in various social networking sites (LinkedIn, Facebook, Twitter, etc.)
- Widely-targeted and multidisciplinary audience to read your research

Submit Your Paper Online: [Click Here to Submit](mailto:service@oalib.com)