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Abstract 
In this paper, we present a SARS (susceptible-adopted-removed-susceptible) social information 
spreading model with overlapping community structures on complex networks. Using the mean 
field theory, the spreading dynamic of the model has been studied. At first, we derived the 
spreading critical threshold value and equilibriums. Theoretical results indicate that the existence 
of equilibriums is determined by threshold value. The threshold value is obviously dependent on 
the topology of underlying networks. Furthermore, the globally asymptotically stable equili-
briums are proved in detail. The overlap parameter of community structures can't change the 
threshold value, but it can influence the extent of the social information spreading. Numerical si-
mulations confirmed the analytical results. 

 
Keywords 
Social Information Spreading, Overlap Parameter, Community Structures, Complex Networks, 
Threshold Value 
 
Subject Areas: Network Modeling and Simulation  

 
 

1. Introduction 
Complex networks can be described by many real-world systems [1]-[3], in which nodes represent individuals 
while edges represent the relationships or interactions between nodes. Examples include social information net-
works [4]. Social information networks offer a diverse range of possible group organizations, such as relation-
ship, communication and friendship circles. Some experiments on several networks with ground-truth groups 
and temporal attributes reveal that two nodes are likely to be connected if some of their neighbor nodes are in 
the same communities [5]. L.J. Zhao and J.J. Wang found that the dynamic behavior of rumor spreading is based 
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on the SIR (susceptible-infected-recovered) epidemic spreading model [6]. The DK and MK models have been 
used comprehensively for quantitative studies of rumor spreading [7]-[13], but the major deficiencies of these 
models are that they have not considered the topological characteristics of overlapping community structure for 
describing rumor spreading in social networks. 

With the study of network structural properties, the spread of an epidemic over complex networks has inves-
tigated very mature [14]-[16]. A SIQRS (susceptible-infected-quarantined-recovered-susceptible) epidemic model 
on scale-free network investigates the influence of heterogeneity of the underlying networks and quarantine 
strategy on epidemic spreading [17]. Pastor-Satorras and Vespignani set the absence of a SIS (susceptible-in- 
fected-susceptible) epidemiological model on the infinite scale-free network [18]. In addition, SIS spreading on 
scale-free networks with degree correlations has also been proved [19]. Besides, a SEIRS (susceptible-exposed- 
infected-recovered-susceptible) model with infectivity assumed to be either constant or proportional to the node 
degree on scale-free networks was presented in [20]. These models—the local stability analysis of the disease- 
free equilibrium and the permanence of the disease in the network, were provided and proved. In the reference 
[21], it has presented four real networks for both SIR and SI spreading models; the DS centrality is more precise 
than degree.   

In sum, the rumor or disease transmission model contributes to understanding the intrinsic mechanisms of 
those spreading processes and designing efficient control strategies. However, information spreading has differ-
ence from disease infections because of its specific features, such as time decaying influence [22], the link of 
nodes degree [23], information contents [24], effects of memory [25], social stabilize [26] [27], non-redundancy 
of contacts [28], etc. In this paper, we present a new model SARS to illustrate social information spreading on 
overlapping community structures. It has assumed a novel generative model and formalized the detection of 
overlapping communities as well as hubs as an optimization problem on it [29]. We propose each community in 
an oblivious way. That is, considering the membership of a node may belong to more than one community, and 
we do not care whether it has been already allotted to any communities. Overlapping communities are thus na-
turally supported. In the centrality matrix, a node ranked at the top of the community is seen as a center. There-
fore, regardless of the fact that the number of communities is given or not, the method that we proposed is capa-
ble of detecting overlapping communities as well as hubs simultaneously. 

In Section 2, we present a SARS social information spreading model with overlapping community structures 
and introduces related work on complex networks. In Section 3, we analyze the globally asymptotically stable 
equilibriums in detail. In Section 4, numerical experiments and simulation results are given to illustrate the 
theoretical results. Finally, conclusions and future works are drawn in Section 5. 

2. Model Formulation 
In this article, we discussed the social information spreading on complex networks with the overlapping com-
munity structure. Overlapping community structure is mainly to describe the network topology relatively 
strongly linked to the internal part of the node and the external characteristic of contact relatively sparse. We use 
a SARS model to illustrate the proposed social information spreading process. In this model, we assume that so-
cial information spreading is disseminated by direct contacts of adopted nodes with others, and the population is 
divided into three groups: susceptible (S), adopted (A), removed (R), where S, A, R represent the people who 
never heard the information (Susceptible), those who are spreading information (Adopted), and the ones who 
heard the information but have lost interest in diffusing it (Removed). From now on, we refer to the SARS model 
as the information spreading model. On the size of the N in the social information network, we suppose there are 
two communities with the same size A and B. We defined v is an overlap parameter. The probability of each 
adopted nodes connect to any node in the community A by v, with the probability of 1 v−  to the community B. 
On the edge of the process we do not allow the existence with the heavy side. Due to the symmetry between 
community A and B, so we take ( )0.5,1v∈ . A large number of experiments show that the social information 
network is a sparse network. In the course of social information spreading, a susceptible individuals is infected 
with rate α  if it is connected to an adopted individuals. Due to the invalidation and distortion of social infor-
mation the adopted individuals will change to removed individuals by β . However, some removed individual 
because temporary amnesia will join susceptible individuals again with probability γ . Here, we assume that the 
immigration rate l equals the emigration rate µ . The SARS model has the flow diagram given in Figure 1 with 
the above assumptions. 

For the SARS model on scale-free network, taking into account the heterogeneity included by the presence of  
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Figure 1. The flow diagram of the SARS model.                        

 
vertices with different connectivity, let ( )kS t , ( )kA t  and ( )kR t  be the relative densities of susceptible,  
adopted and removed nodes of degree k at time t respectively. With these signs and symbols, the dynamics 
mean-field reaction rate equations can be written as 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

d
d

d
d

d
d

k
k k k

k
k k k

k
k k k

S t
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t
A t

k t S t A t A t
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R t
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= − −
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                          (2.1) 

The dynamics of SARS subsystems are coupled through the function ( )tΘ . The probability ( )tΘ  describes 
a link pointing to an adopted individual. Which satisfies  

( ) ( ) ( ) ( )1A Bt v t v tΘ = Θ + − Θ , 

where 
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So  

( ) ( ) ( ) ( ) ( ) ( )1 11Ak Bk
k k

t v k kP k A t v k kP k A t− −Θ = + −∑ ∑                 (2.2) 

where ( ) 0P k >  is the probability that a node has degree k and thus ( )1 1n
k P k
=

=∑ ; ( )1
n
kk kP k
=

= ∑  de-
notes the average degree [30]. ( ) ( ) ( )1

n
kkA t P k A t

=
= ∑  is the total density of adopted individuals in the net-

work. Clearly, these variables obey the normalization condition: ( ) ( ) ( ) 1k k kS t A t R t+ + = . The initial condi-
tions for system (2.1) can be given as follows ( ) ( ) ( ) ( ) ( )0 1 0 0 0, 0 0, 0 0k k k k kS A R A R= − − > ≥ ≥ . 

Definition. The equilibrium is an information-free equilibrium if 0A = . 

Theorem 1. Let 
2
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k
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β µ

=
+

. The SARS system (2.1) has always exists an information-free equilibrium  

( )0 1,0,0E  and when 1λ >c , then the system (2.1) has a unique permanent equilibrium ( ), ,k k kE S A R∗ ∗ ∗ ∗ . 
Proof. To get the equilibrium solution ( ), ,k k kE S A R∗ ∗ ∗ ∗ , it should satisfy  
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http://dx.doi.org/10.4236/oalib.1102701


X. D. Liu et al. 
 

OALibJ | DOI:10.4236/oalib.1102701 4 May 2016 | Volume 3 | e2701 
 

Substituting (2.4) kA∗  into (2.2), we obtain that 

( )
( ) ( )( )
( )( ) ( ) ( ) ( )
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∑         (2.5) 

Clearly, 0, 0A BΘ ≥ Θ ≥ , 0∗Θ =  is a solution of (2.5), at that time 0A
∗Θ =  and 0B

∗Θ = . To ensure (2.5) 
has a nontrivial solution of ( ) 0f Θ = , it must be satisfied as following:  
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2

c

k
k

αλ
β µ

=
+

 

where ( )2 2
1

n
kk k P k
=

= ∑ . So a nontrivial solution of ( ) 0f Θ =  exists if and only if ( )1 1f ≤ , that is , 
1cλ > . It follows from (2.3) that (2.4) hold and for 1, 2, ,k n=  , 0 1,0 1,0 1.k k kS A R∗ ∗ ∗< < < < < <  

Hence the system (2.1) has an permanent equilibrium E∗ . This completes the proof.  

3. The Stability Analysis 
In this section, the globally asymptotically stable ( )0 1,0,0E  and ( ), ,k k kE S A R∗ ∗ ∗ ∗  will be investigated. We first 
consider the local asymptotic stability and then the global attractivity of the information-free equilibrium 0E . 
More specifically, we will show that if the threshold value 1cλ < , then 0E  is globally asymptotically stable. 
Otherwise, it is unstable. We now state the results of the local stability of 0E . 

Theorem 2. The information-free equilibrium 0E  of SARS system (2.1) is globally asymptotically stable if 
1.cλ <   

Proof. First, we prove that 0E  is locally asymptotically stable. 
We rewrite system (2.1) as 
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                 (3.1) 

After the linearization, we write the system (3.1) as 
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Then the Jacobian matrix of (3.2) at 0E  is given by 
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Using induction on n, the characteristic equation can be expressed as  
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The characteristic equation have n eigenvalues for 0λ µ− − < , 1n −  eigenvalues equal to ( ) 0β µ− + < , 
the 2nth  eigenvalue is  
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All the eigenvalues of J are negative if 1cλ < . Hence, 0E  is locally asymptotically stable and it is unstable 
if 1cλ > . This completes the proof. 

Next, we will prove that the equilibrium 0E  is indeed globally attractive. From the second equation of sys-
tem (2.1) we have 
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Now we consider the comparison equation with the condition ( ) ( )0 0ϕΘ =  as follows: 

( ) ( ) ( ) ( )d
1

d c
t

t
t

ϕ
µ β ϕ λ= + −  

Integrating from 0 to t yields, ( ) ( ) ( )( )10 e c tt µ β λϕ ϕ + −= , Since 1cλ < , we have ( ) 0tϕ →  as t →∞ . 
According to the comparison theorem of functional differential equation, we have ( ) ( )0 t tϕ≤ Θ ≤ , for all 

0t > . 
Therefore, ( ) 0tΘ →  as t →∞ , which means ( ) 0kA t →  as t →∞ , for 1, 2, ,k n=  . It follows that 

the information-free equilibrium 0E  is globally attractive. Hence, 0E  is locally asymptotically stable if 
1cλ <  and it is unstable if 1cλ > . This completes the proof.  

We now prove the globally asymptotically stable of equilibrium E∗  of SARS system (2.1). 
Theorem 3. When 1cλ > , the information spreading is persistence on the scale-free networks, there exists a 

0ς > , such that  

( ) ( ) ( )lim inf lim inf kx x k
A t P k A t ς

→∞ →∞
= >∑  

Proof.
 
We will utilize the result of Thieme in Theorem 4.6 [31] to prove it. Define 
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( ){ }max max max1 1 1 max, , , , , , : , , 0 and 1, 1, , ,k k k k k k k k kX S A R S A R S A R S A R k k= ≥ + + = = 
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Obviously, X is positively invariant with respect to system (2.1). If ( )0 0kS ≥ , ( ) 0k
k
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P k A t P k A µ β− +≥ >∑ ∑ . Thus, 0X  is also positively invariant. Furthermore, there exists a 

compact set Y in which all solutions of system (2.1) initiated in X will enter and remain forever after. The com-
pactness condition (C4.2) in Thieme [32] is easily proved for this set Y. Denote 
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where ( ) ( ) ( ) ( ) ( ) ( )( )max max max1 1 10 , 0 , 0 , , 0 , 0 , 0k k kS A R S A Rω 
 is the omega limit set of the solutions of system  

(2.1) starting in ( ) ( ) ( ) ( ) ( ) ( )( )max max max1 1 10 , 0 , 0 , , 0 , 0 , 0k k kS A R S A R
, Restricting system (2.1) on M ∂  gives 
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It is easy to verify that system (3.4) has a unique equilibrium 0E  in X. Thus 0E  is the unique equilibrium 
of system (2.1) in M ∂ . It is easy to demonstrate that 0E  is locally asymptotically stable. This means that 0E  
is globally asymptotically stable for (3.4) is a linear system. Therefore { }0EΩ = . And 0E  is a covering of X,  
which is isolated and is acyclic (since there exists no solution in M ∂  which links 0E  to itself). Finally, the 
proof will be done if we show 0E  is a weak repeller for 0X ,  

( ) ( ) ( ) ( ) ( ) ( )( )( )max max max

0
1 1 1lim sup , , , , , , , 0k k kt

dist S t A t R t S t A t R t E
→∞

> ,  

where ( ) ( ) ( ) ( ) ( ) ( )( )max max max1 1 1, , , , , ,k k kS t A t R t S t A t R t
 is an arbitrarily solution with initial value in 0X .  

By Leenheer and Smith [31], we need only to prove ( )0
0

sW E X∩ =∅  where ( )0sW E  is the stable mani- 

fold of 0E . Suppose it is not true, then there exists a solution ( ) ( ) ( ) ( ) ( ) ( )( )max max max1 1 1, , , , , ,k k kS t A t R t S t A t R t
 

in 0X , such that 

( ) 1,kS t →  ( ) 0,kA t →  ( ) 0kR t →  as t →∞ . 
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Since 
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V represent the proportion of all adopted individuals to all individuals. The derivative of V along the solution 
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∑ ∑ ∑
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

 

There 0ρ +→ . Hence ( )V t →∞  as t →∞ , which contradicts to the boundedness of ( )V t . This com- 
pletes the proof. 

4. Numerical Simulation 
In this section, we will give some numerical simulations to illustrate the theoretical analysis. We consider the 
system (2.1) on a scale-free network with the degree distribution ( ) 3P k kξ −= , where the parameter ξ  satis-
fies 3

1 1n
k kξ −
=

=∑ , we choose 1000n = . 
In Figure 2, we choose 0.15, 0.2, 0.2, 0.6, 0.5, 1l vα µ γ β= = = = = = , thus the threshold value 0 0.9757R =  
1< . The figure show that when 0 1R < , kA  approach to zero, the social information spreading will ultimately 

disappear, and the smaller the degree is, the faster the social information spreading fades out. It also suggests 
that the information-free equilibrium 0E  is globally asymptotically stable. 

In Figure 3, we choose 0.5, 0.2, 0.4, 0.6, 0.4, 1l vα µ γ β= = = = = = , thus the threshold value 0 2.84 1R = > . 
The figure illustrate that when 0 1R > , the social information spreading is persistent and the adopted individuals 
will converge to a positive constant. Which means, the permanent equilibrium E∗  is globally asymptotically 
stable. As the degree number’s influence in Figure 2, it also reflected in Figure 3. 
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Figure 2. The time series and orbits of system (4) with 0 1R <  and initial values ( )0 0.1,  50,  100,  200,  500.kA k= =            

 

 
Figure 3. The time series and orbits of system (2.1) with 0 1R >  and initial values ( )0 0.1,  50,  100,  200,  500kA k= = .        

 
In Figure 4(a), the parameters are 0.15, 0.2, 0.2, 0.6, 0.5lα µ γ β= = = = = , 0 0.9757R = . Likewise, we 

choose 0.5, 0.2, 0.4, 0.6, 0.4lα µ γ β= = = = =  in Figure 4(b), where 0 2.84R = . This two figure shows that 
the corresponding 100A  increases significantly as the overlap parameter v increase. In addition, it is also found 
that the larger overlap parameter is, the higher the social information spreading level will be. The biological 
meaning is that the closer overlapping communities is, the wider social information spreading will be, corres-
ponding to people’s frequency with each other. 

In Figure 5, when 0.4β = , it is observed that the 100A  increase as v increase. To compare with β , the v 
effect on even more significant. It shows that the overlap structures plays a significant role in social information 
spreading.  
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(a) 

 
(b) 

Figure 4. The prevalence 100A  versus t corresponding to different v, which are 0.5,  0.7,  0.9,  1  from (a) to (b), with iden-
tical initial value ( )100 0 0.1A = .                                                                                

5. Conclusion 
In this paper, a SARS social information spreading model with the overlapping community structures on com-
plex networks has been presented. By mean-filed theory, we have proved that there exists a threshold value cλ . 
The threshold value determines the existence of equilibriums. More specifically, we have shown that if cλ λ< , 
the information-free equilibrium is globally asymptotically stable; the sociology meaning is that the social in-
formation spreading will fade out eventually; if cλ λ> , there exists a permanent equilibrium E∗  which is 
globally asymptotically stable, meaning that the social information spreading is permanent. Moreover, increas-
ing overlap parameters can result in the social information spreading broader and faster. The study has valuable 
guiding significance in effectively controlling the spreading of social information. 
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Figure 5. The prevalence ( )100A  versus v corresponding to different β , 0.4β =  or 0.7.                             
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