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Abstract 
In this paper, we propose a rumor transmission model with incubation period considering the fact 
that incubators may move to stifler class and susceptibles may move to spreader class. The model 
is formulated with constant recruitment and varying total population. The full system of the model 
is studied qualitatively producing rumor-free and rumor-existence equilibriums. The existence 
conditions of the equilibriums are investigated. Moreover, the local and global stability analysis of 
both equilibriums is examined. Furthermore, numerical simulations are used to support the qua-
litative analysis. Finally, the impact of different management strategies on the dissipation of ru-
mors is analyzed numerically by varying key parameters in the model. 
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1. Introduction 
Rumors disseminate easily these days with expanding social networks. Although rumors are neither true nor 
false, this does not stop some individuals from spreading it any way before searching for some kind of con- 
firmation. Transmission of rumors has a major impact on human lives. It may have negative sides such as causing 
panic and chaos in emergency events or destroying credibility of someone or something. On the other hand, it 
may create awareness and draw public attention to take action. As a result, great importance lies in studying the 
dynamics of rumor propagation. 

Researchers have applied epidemiological models to study the dynamics of social systems. Daley and kendall 
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are among the earliest researchers to propose a rumor spread model that has some properties in common with 
epidemic model [1]. Also Cane [2] showed the similarity among the deterministic forms of models for the 
spread of an epidemic and of a rumor. This is based on the fact that both biological diseases and social behavior 
are a result from interactions between individuals. The model in [1] [2] divided the population into three disjoint 
classes of individuals: susceptible, describing people who had not yet been exposed to a particular rumor; infective, 
referring to people who spread the rumor through social interactions; and recovered, meaning people who had 
experienced the rumor, but had no interest in spreading it or had lost interest at some point. 

At the beginning of this century, several mathematical models are proposed considering different dynamics of 
rumor and idea transmission. Thompson et al. [3] explored a model for the dynamics of rumor spreading in chat 
rooms. Bettencourt et al. [4] applied models similar to epidemiology to study the spread of ideas. Kawachi [5] 
and Kawachi et al. [6] proposed deterministic models for rumor transmission and explored the effects of various 
contact interactions among three classes: susceptible (ignorant about the rumor), spreader (spread the rumor) and 
stifler (don’t spread the rumor). Later, Al-Amoudi et al. [7] [8] adopted the models in [5] to study the dynamics 
of constant and variable meme propagation with a comprehensive qualitative analyses. Also, they proposed a 
model to examine the impact of stiflers on the transmissions of memes in [9]. Wang and Wood [10] adopted an 
epidemiological approach to model viral meme propagation. Piqueira [11] examined an equilibrium study of a 
rumor spreading model according to propagation parameters and initial conditions. Furthermore, Huang [12] 
established two models for rumor spreading process with denial and skepticism. Recently, Zhao et al. proposed 
rumor spreading models in social networks considering the forgetting [13] [14] and refuting [15] mechanism of 
spreaders. Moreover, Zan et al. [16] examined the dynamics or rumor spread with counterattack mechanism and 
self-resistance parameter. Huo et al. [17] investigated the psychological effect with rumor spreading in 
emergency event. In addition, Afassinou [18] analyzed the impact of education rate on rumor final size. Zhao 
and Wang [19] established a dynamic rumor model considering the medium as a new subclass. Later, they 
refined the model by adding another subclass for government measures to control rumor propagation [20]. Also, 
they examined a model of information transmission with isolation [21]. Zhao et al. investigated a rumor model 
by extending a new class named hibernators. This class refers to spreaders who enter it due to forgetting 
mechanism and later leave it to become spreaders again due to remembering mechanism. They studied the 
model in homogeneous [22] and inhomogeneous [23] networks. 

The above rumor models do not consider the fact that an individual may take time before accepting or 
rejecting what they hear or read. Some individuals think about rumors for some time before they become 
spreaders or stiflers. This period is called rumor incubation time. Huo et al. [24] introduced incubation class in 
studying rumor spreading model. They assumed that ignorants (susceptibles) entered first incubation class as a 
result of spreader and incubator contact. After some time the incubators become either spreaders or stiflers. But 
they overlook the option that ignorants may move directly to the spreader class. They examined qualitatively the 
limiting dynamical system of the model. Later, Chen et al. [25] proposed another rumor transmission model 
with latent class. They assumed that ignorants might move at first to three classes: latent, spreader and stifler. 
However, the possibility that latents may move to stifler class after the latent period is ignored in the model. 
They also qualitatively studied the limiting system of the model. In this paper, we propose a rumor propagation 
model with incubation mechanism that accommodates for both possibilities: incubators move to stifler class and 
susceptibles move to spreader class. In reality, not all individuals seek more information to ascertain the validity 
of a rumor before spreading it. At the same time, when some individuals do seek authenticity of a rumor, they 
may find it false or not worth spreading. Our aim here is to investigate the full dynamics of the model system 
using qualitative theory to have a better understanding and acquire more insight on the key parameters for 
controlling the dissipation of rumors. The rest of this paper is organized as follows. We describe the formulation 
of the proposed rumor transmission model with incubation mechanism and examine the existence of equilibriums 
and basic reproduction number in Section 2. In Section 3, we analyze the model system qualitatively and derive 
the local and global stability conditions for the equilibriums. In Section 4, we illustrate numerical simulations of 
the model and discuss the parameters that have impacts on the cessation of rumors. Finally, a brief conclusion is 
given in Section 5. 

2. Mathematical Model 
We consider a variable population size at any time t and denote it by ( )N t . We divide the population into four 
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disjoint classes of individuals: Susceptible, Incubator, Spreader, and Stifler denoted by ( )S t , ( )C t , ( )I t , and 
( )Z t , respectively. 
The susceptible class ( )S t , describes people who have not yet been exposed to a particular rumor. The 

incubator class ( )C t , refers to people who are thinking about the rumor, but has not taken any action towards it. 
The spreader class ( )I t , refers to people who take an active interest in the idea or concept that a rumor 
represents, and therefore have a tendency to talk about the rumor in social interactions. The stifler class ( )Z t , 
indicates people who have experienced the rumor, but have no interest or have lost interest at some point. The 
mathematical model is illustrated in the transfer diagram (Figure 1). 

As shown in Figure 1, the dynamics of the model are based on the following assumptions. The rumor is 
constant, that is, the same rumor is being propagated throughout the classes at all times. Individuals are recruited 
through the susceptible class and it occurs at a positive constant B, namely immigration constant. They leave 
each class at the same emigration rate, µ . A susceptible know about the rumor when contacting a spreader at a 
rate α , namely transmitting rate, where cqα =  such that c is the average number of contact per unit time and 
q is the probability of transmitting the rumor. After knowing about the rumor from a spreader, some susceptibles 
with probability ( ]0,1θ ∈  experience an incubation period and move to incubation class. However, other 
susceptibles with probability ( )1 θ−  believe the rumor and start spreading it immediately without any 
confirmation and move to spreader class. During the incubation period, the incubators try to think about the 
rumor and acquire more information to decide whether, on the one hand, the rumor is valid or not, and on the 
other hand, is it worth spreading or not. Based on the incubators judgement, they either move to spreader class at 
a rate β , namely spreading rate, or move to stifler class at a rate γ , namely stifling rate. At any time, a 
spreader may lose interest in spreading the rumor, as a result becomes a stifler at a rate ε , namely removed rate. 
All rates are positive constants. 

Taking the above considerations, the model is described according to the dynamic theory by the following 
nonlinear system of ordinary differential equations: 

( ) ,S t B SI Sα µ′ = − −  

( ) ,C t SI C C Cαθ β γ µ′ = − − −  

( ) ( )1 ,I t SI C I Iα θ β ε µ′ = − + − −                              (1) 

( ) .Z t C I Zγ ε µ′ = + −  

Note that ( ) ( ) ( ) ( ) ( )N t S t C t I t Z t= + + + . It follows from system (1) that ,N N Bµ′ + =  which can be 

solved easily to give ( ) ( ) ( )0 exp ,N t N B t Bµ µ µ= − − +  where ( )0 0 ,N N=  and therefore,  

( )limt N t B µ→∞ = . Thus, the considered region for system (1) is 

( ), , , : , > 0, 0, 0, 0 .BS C I Z S C I Z S C I Z
µ

 
Γ = + + + ≤ ≥ ≥ ≥ 

 
 

The vector field points into the interior of Γ  on the part of its boundary when .S C I Z B µ+ + + =  Hence, 
Γ  is positively invariant, i.e., every solution of system (1), with initial conditions in Γ  remains there for all 

0t > . 
To find the equilibriums of system (1), we set the rates in (1) to zero:  

0,B SI Sα µ− − =                                     (2) 

 

 
Figure 1. The flowchart of rumor spreading model with incuba- 
tion mechanism.                                         
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0,SI C C Cαθ β γ µ− − − =                                 (3) 

( )1 0,SI C I Iα θ β ε µ− + − − =                                (4) 

0.C I Zγ ε µ+ − =                                     (5) 

The model has a rumor free equilibrium if there are no spreaders and no incubators, that is, 0I C= = , which 
means that the rumor dies out. By solving Equations (2)-(5), we find that the rumor free equilibrium is 

( )0 ,0,0,0E B µ= . Before obtaining the other equilibriums, we first find the basic reproduction number 0R  
using the method of next generation matrix [26]. Here 0R  is defined as the expected number of secondary 
cases of rumor spreaders produced by a single spreader. The basic reproduction number plays a significant role 
when designing control intervention for a system. Let ( )T, , , ,X C I Z S=  then system (1) can be written as:  

( ) ( )X X X′ = −    

where  

( ) ( ) ( )
1

, .
0
0

SI C C C
SI C I I

X X
C I Z

B SI S

αθ β γ µ
α θ β ε µ

γ ε µ
α µ

+ +   
   − − + +   = =
   − − +
   

− + +   

   

The Jacobian matrices of ( )X  and ( )X  at the rumor free equilibrium point 0E , are 

( ) ( )
0

0 0 0
0 1 0 0 0

,
0 0 0 0 0 0
0 0 0 0

B
B F

D E

αθ µ
α θ µ

 
 −   = =     
 
 

  

( )0
1 2

0 0 0
00 0

,
0

0 0

V
D E

J J
B

β γ µ
β µ ε
γ ε µ

α µ µ

+ + 
 − +   = =   − −  
 
 

  

where  

( ) [ ]1

0 0 0 0
0 1 0 , 0 , 0 0 ,
0 0 0

B
F B V J B

αθ µ β γ µ
α θ µ β µ ε α µ

γ ε µ

+ +   
   = − = − + =   
   − −   

 and [ ]2J µ= . 

Thus the next generation matrix is 

( )( ) ( )
( )

( )( )
( )
( )

1

0

1 1
0 .

0 0 0

B B

B
FV

αθβ αθ
µ µ ε β γ µ µ µ ε

αβ θ α θ
µ ε β γ µ µ µ ε

−

 
 + + + + 
 − −

=  
+ + + + 

 
 
  

 Hence, the basic 

reproduction number of system (1) is the spectral radius of matrix 1FV − , that is, 
( )( )

( )( )0

1
.

B
R

α β θ γ µ
µ µ ε β γ µ

+ − +  =
+ + +

 

Next, we solve Equations (2)-(5) to find a positive (rumor existence) equilibrium E∗  of system (1). From 
Equation (2), (3) and (5) we find that:  

,BS
Iα µ

∗
∗=
+
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,S IC αθ
β γ µ

∗ ∗
∗ =

+ +
 

.C IZ γ ε
µ

∗ ∗
∗ +
=  

Substituting for S∗  and C∗  in Equation (4), we get:  

( ) ( )2 21 0.BI B Iβαθαε αµ α θ εµ µ
β γ µ

∗ ∗ 
− + + − + − − = + + 

 

The non trivial root of the above equation is: 
( )( )
( )( )

1
.

B B
I

θ β γ µ βθ µ
µ ε β γ µ α

∗ − + + +
= −

+ + +
 In terms of the basic 

reproduction number, I ∗  is rewritten as: ( )01I Rµ
α

∗ = − − . So, if 0 1R < , then 0I ∗ <  which means that I ∗  

does not exist biologically. 
Theorem 1 System (1) has two equilibria: the rumor free equilibrium ( )0 ,0,0,0E B µ=  which exists 

always; and the rumor existence equilibrium ( ), , ,E S C I Z∗ ∗ ∗ ∗ ∗=  which exists if 0 1R > .  

3. Stability Analysis 
3.1. Local Stability 
Here we investigate the local stability of 0E  and E∗  using linearization method [27] and matrix analysis [28]. 
We state the following theorems: 

Theorem 2 (stability of E0) If 0 1R <  and ε γ< , the rumor free equilibrium point 0E  is locally 
asymptotically stable. If 0 1R =  and ε γ< , 0E  is locally stable. If 0 1R > , 0E  is unstable.  

Proof. Linearizing system (1) (by linearization method [27]) we obtain the Jacobian matrix evaluated at the 
equilibrium ( )0 ,0,0,0E B µ= : 

( )
( )

0

0 0

0 0
.

1
0 0

0

B

B
J E

B

αµ
µ

αθβ γ µ
µ

α θ
β µ ε

µ
γ ε µ

− − 
 
 − − − =  
 −

− − 
 
 − 

 

Clearly the eigenvalues of the characteristic equation [28] are: 1,2 0λ µ= − <  and 3 4,λ λ  satisfy the equation 
2

1 2 0,a aλ λ+ + =                                      (6) 

where, 

( )
1

1
2 ,

B
a

α θ
β γ µ ε

µ
−

= + + + −  

( ) ( ) ( ) ( )2

1
1 .

BBa B
αγ θαβ ε β γ µ µ β γ µ α θ

µ µ
−

= − + + + + + + − − −  

Based on Routh-Hurwitz Criteria [28], Equation (6) has two negative eigenvalues if both 1 0a >  and 2 0a > . 

If 0 1R < , that is, ( )( ) ( )( )1 .Bα β θ γ µ µ µ ε β γ µ+ − + < + + +    Then also  

( )( ) ( )( )1Bα θ γ µ µ µ ε β γ µ− + < + + + . Now, if ε γ< , then 
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( ) ( )( )
( )

1
,

Bα θ µ ε β γ µ
β γ µ

µ γ µ
− + + +

< < + +
+

 

( )
1

1
2 0.

B
a

α θ
β γ µ β γ µ ε

µ
−

< + + < + + + ⇒ >  

Simplifying 2a , we have: 

( )( ) ( )( )

( )( )( )

2

0

1

1 .

Ba

R

αβ γ µ ε µ β θ γ µ
µ

β γ µ ε µ

= + + + − + − +  

= + + + −
 

Therefore, if 0 1R <  and ε γ< , then 1 2, 0a a >  and the eigenvalues 3 4,λ λ  have negative real parts. So, 
all eigenvalues have negative real part if 0 1R <  and ε γ< , and hence, 0E  is locally asymptotically stable. If 

0 1R =  and ε γ< , then 1 0a >  and 2 0a = , thus 0E  is locally stable. If 0 1R > , then 2 0a < , therefore 0E  
is unstable. 

Theorem 3 (stability of E*) The rumor existence equilibrium E∗  is locally asymptotically stable if 
( ) 2

0 0 1 .R R Bα µ− >   

Proof. Linearizing system (1) at the equilibrium ( ), , ,E S C I Z∗ ∗ ∗ ∗ ∗=  gives 

( ) ( ) ( )

0 0
0

.
1 1 0

0

I S
I S

J E
I S

α µ α
αθ β γ µ αθ

α θ β α θ µ ε
γ ε µ

∗ ∗

∗ ∗
∗

∗ ∗

 − − −
 

− − − =
 − − − −
 

−  

 

The eigenvalues of the characteristic equation are: 1 0λ µ= − <  and 2 3 4, ,λ λ λ  satisfy the equation 
3 2

1 2 3 0,a a aλ λ λ+ + + =  

where, 

( )1 2 1 ,a I Sµ β γ α µ ε α θ∗ ∗ = + + + + + − −   

[ ] ( )( )
( )( ) ( )

2
2 2 2 2 1

1 ,

a I S

S I S

αγ αµ αε βµ γµ µ µ µ ε α θ

βε γ µ ε α θ αβ

∗ ∗

∗ ∗ ∗

= + + + + + + + − −

+ + + − − + −
 

( )( )
( )( ) ( )

2 2
3

2

1

1 .

a I S

S I S

βε γµ γε µε µ α µ β βεµ µγ µ ε α θ

µ µ ε α θ αβµ

∗ ∗

∗ ∗ ∗

 = + + + + + + + + − − 

+ + − − + −
 

From (4), ( )1 0Sµ ε α θ ∗ + − − >   since ( )1 .S C Iµ ε α θ β∗ ∗ ∗+ − − =  Moreover,  

( ) ( ) 2
0 0 01 0I S R R B Rα µ µ α∗ ∗  − = − − >   if ( ) 2

0 0 1 .R R Bα µ− >  Therefore, 1 2 3, , 0.a a a >  Now, 

( ) ( )
( )( ) ( ) ( )

( )( ) ( )( )
( )( ) ( )

2 2
1 2 3

2

3 1 3

2 2 2 1

2 2 2 1 1

1 2 2

2 1

a a a I S I I I S

S I S I

I S S

S I S I I I

αβµ αγµ αµ αεµ βεµ µγ µ ε α θ µ γ

µ βµ µ µ µ ε α θ β γ αβ αγ

αµ βµ γµ µ µ ε α θ βε γ µ ε α θ

µ ε α θ αβ αγ αµ αε βµ γµ

µ µ ε α

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

 − = − + + + + + + − − + 
  + + + + − − + + − +  

+ + + + + − − + + + − − 
+ + − − − + + + + +

+ + − ( )( ) ( )( )
( )

( )( ) ( )( )

2

1

2 2

2 1 1 .

S S S

I I S I I I

S S

θ βε γ µ ε α θ

α αβ αγ αµ αε βµ γµ µ

µ µ ε α θ βε γ µ ε α θ

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗

− + + + − − 
+ − + + + + + +

+ + − − + + + − − 
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If ( ) 2
0 0 1 ,R R Bα µ− >  then 1 2 3 0a a a− > . Hence by Routh-Hurwitz Criteria [29] 2 3 4, ,λ λ λ  have 

negative real parts if ( ) 2
0 0 1 .R R Bα µ− >  Thus, all eigenvalues of ( )J E∗  have negative real parts. 

Consequently E∗  is locally asymptotically stable. 

3.2. Global Stability 

First, we explore the global stability of 0E . Consider the Lyapunov function [30]: ( ) ( ) ( ) ( ) ,L t C t I t Z t= + +  

( ) ( ) ( ) ( )1 .L t SI C C C SI C I I C I Z S I C Zαθ β γ µ α θ β µ ε γ ε µ µ α µ′ = − − − + − + + − + + − = − + − +  S i n c e 

0E ∈Γ , then S B µ≤  and we have, ( ) ( ) 0BL t I C Zαµ µ
µ

 ′ ≤ − + − + ≤ 
 

 if Bα µ µ≤ . Moreover, since 

µ  is non-negative, it follows that ( ) 0L t′ <  if 2Bα µ≤ ; with ( ) 0L t′ =  if and only if 0I C Z= = = .  
Hence, the only solution of system (1) in Γ  on which ( ) 0L t′ =  is 0E . Therefore, by LaSalle’s Invariance 
Principle [30], every solution of system (1), with initial conditions in Γ , approaches 0E  as t →∞ . Hence, 

0E  is globally asymptotically stable and we can state the following theorem. 
Theorem 4 (stability of E0) If 2Bα µ≤  then 0E  is globally asymptotically stable in Γ .  
Next, we examine the global stability of E∗ . Consider the Lyapunov function [30]: 

( ) ( )( ) ( )( ) ( )( ) ( )( ) 21 .
2

L t S t S C t C I t I Z t Z∗ ∗ ∗ ∗ = − + − + − + −   

( ) ( ) ( ) ( ) ( ) [ ]

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 2

,

0.

L t S S C C I I Z Z S C I Z

S S C C I I Z Z S C I Z S C I Z

S S C C I I Z Z

µ µ µ µ µ µ µ µ

µ

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

 ′ ′ ′ ′ ′= − + − + − + − + + + 
   = − + − + − + − + + + − − − −  

 = − − + − + − + − ≤ 

 

Here, we used B S C I Zµ µ µ µ∗ ∗ ∗ ∗= + + + . Hence, E∗  is globally stable and we can state the following 
theorem. 

Theorem 5 (stability of E*) The rumor existence equilibrium E∗  is globally stable.  
We summarize the result of this section as follows: 
• If 0 1R <  and ε γ< , then 0E  is locally asymptotically stable. If 2Bα µ≤  then 0E  is globally asymp- 

totically stable and in this case E∗  does not exist. 
• If ( ) 2

0 0 1R R Bα µ− >  then E∗  is locally asymptotically stable. It is globally stable unconditionally 
whenever it exists.  

4. Discussions and Simulation 
In this section, we illustrate numerical simulations of system (1) to support the qualitative analysis. Furthermore, 
we examine key parameters that may contribute in controlling the spread of rumors. 

Numerical simulations of system (1), with different initial conditions, show that the rumor disappears at an 
equilibrium level ( )0 ,0,0,0E B µ=  when 0 1R <  and ε γ<  (Figure 2). However, the rumor persists at an 
equilibrium level ( ), , ,E S C I Z∗ ∗ ∗ ∗ ∗=  when ( ) 2

0 0 1R R Bα µ− >  (Figure 3). 
In reality, rumors prevail if there exist many spreaders. Therefore, It is clear that the parameters: ,α θ  and 

γ  in system (1) may affect the size of the spreader class. To have a better understanding of the role of these 
parameters, we carry out numerical simulations by varying only one parameter to see its impact on the spread of 
a rumor. These investigations give more insight on useful management strategies to control the dissipation of a 
rumor. 

By varying the transmitting rate α  and holding all other parameters at a fixed value, we can see in Figure 4 
the changes in the size of the spreader class over time. It is clear that the lower the transmitting rate α , the 
smaller the size of the spreader class. With a lower α  value, fewer susceptibles become spreaders and 
incubators. This means that the chances of a spreader having contact with susceptibles is small. Therefore, the  
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Figure 2. When 00.05,  0.34,  0.015,  0.0125,  0.333,  0.0044,  2,  0.151182B Rβ µ γ α θ ε= = = = = = = = .     

 

 
Figure 3. When 00.05,  0.34,  0.015,  0.4,  0.333,  0.0044,  2,  4.83782B Rβ µ γ α θ ε= = = = = = = = .         
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Figure 4. Size of the spreader class over time under different transmitting rate α  with 

0.05,  0.34,  0.015,  0.333,  0.0044,  2Bβ µ γ θ ε= = = = = = .                                
 

transmission of a rumor becomes difficult. This implies that governments should impose laws with strict 
punishment as a control measurement to stop the transmission of rumors in order to preserve the stability of a 
society. 

Figure 5 demonstrates how the size of the spreader class changes with time by varying the probability 
parameter ( ]0,1θ ∈  and fixing all other parameters. If θ  is large, then the probability of susceptibles becoming 
incubators is greater than the probability of becoming spreaders. As shown in Figure 5 the higher the probability 
parameter θ , the smaller the size of the spreader class. With a higher θ  value, fewer susceptibles become 
spreaders. This means that the incubator class is a significant cause of decreasing the number of spreaders. In 
other words, acquiring more information about a rumor before deciding to take any action minimizes rumor 
dissipation. This indicates that increasing public awareness towards the importance of thinking before speaking 
is an essential strategy to control rumor spreading. In addition, awareness towards the role and responsibility of 
individuals in dealing with rumors is of great benefit to the society. 

Figure 6 illustrates the changes in the size of the spreader class over time with different values of the stifling 
rate γ , while holding other parameters fixed. It is clear that the higher the stifling rate γ , the smaller the size 
of the spreader class. With a higher γ  value, fewer incubators become spreaders. The increase of the stifling 
rate γ  depends on the incubators’ scientific knowledge during the incubation period. If incubators have logical 
reasoning, then it is easy to discriminate a rumor. On the other hand if not, then more information must be 
available for incubators in order to reach a good judgement. This implies that the incubation period is crucial to 
crack down a rumor. Therefore, a powerful strategy to cease a rumor is to release information with logical facts 
about it. For this strategy to be effective it must be carried out as soon as a rumor starts to circulate. 

5. Conclusion 
In this paper, we formulated a rumor transmission model with incubation period, constant recruitment and 
varying total population. The model accommodates for both possibilities: incubators move to stifler class and 
susceptibles move to spreader class. The full dynamical system of the model is studied qualitatively producing 
two equilibrium points: rumor-free and rumor-existence. The existence conditions of the equilibriums are 
investigated. The rumor free equilibrium 0E  exists always, whereas the rumor existence equilibrium E∗   
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Figure 5. Size of the spreader class over time under different parameter θ  with β = 0.05, μ = 0.34, 
γ = 0.015, α = 0.4, ε = 0.0044, B = 2.                                                     

 

 
Figure 6. Size of the spreader class over time under different stifling rate γ  with β = 0.05, μ = 
0.34, θ = 0.015, α = 0.4, ε = 0.0044, B = 2.                                                  
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exists only if 0 1R > . The local and global stability analysis of both equilibriums is examined. We find that 0E  

is locally and asymptotically stable if 0 1R <  and ε γ< , and is globally and asymptotically stable if 2Bα µ≤ . 

Moreover, E∗  is locally and asymptotically stable if ( ) 2
0 0 1R R Bα µ− > , and is globally and 

unconditionally stable whenever it exists. The results of the numerical simulations are found to be in good 
agreement with the qualitative analysis. In other words, a rumor terminates when 0 1R <  and ε γ<  and prevails 

when ( ) 2
0 0 1R R Bα µ− > . The impact of different management strategies on the dissipation of rumors is 

analyzed numerically by varying key parameters in the model. It is found that the number of spreaders is 
minimized if the transmitting rate α  is small and both the probability parameter θ  and the stifling rate γ  
are large. Consequently, some effective strategies for rumor disappearance are: strict laws imposed by govern- 
ments, public awareness towards thinking before speaking, and the immediate release of information with logical 
facts about a rumor. 
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