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Abstract 
Parameter estimation by maximizing the marginal likelihood function in generalized linear mixed 
models (GLMMs) is highly challenging because it may involve analytically intractable high-dimen- 
sional integrals. In this paper, we propose to use Quasi-Monte Carlo (QMC) approximation through 
implementing Newton-Raphson algorithm to address the estimation issue in GLMMs. The random 
effects release to be correlated and joint mean-covariance modelling is considered. We demon-
strate the usefulness of the proposed QMC-based method in approximating high-dimensional in-
tegrals and estimating the parameters in GLMMs through simulation studies. For illustration, the 
proposed method is used to analyze the infamous salamander mating binary data, of which the 
marginalized likelihood involves six 20-dimensional integrals that are analytically intractable, 
showing that it works well in practices. 
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1. Introduction 
McCullagh and Nelder (1989) [1] analyzed a challenging salamander mating binary data set which was con-
ducted on two geographically isolated populations, Roughbutt (RB) and Whiteside (WS), in three experiments 
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(one in summer 1986 and two in fall 1986). The question of interest is to determine whether or not certain bar-
riers to interbreeding have evolved over time in geographically isolated populations. The second question is to 
determine whether or not heterogeneity between individuals (females and males) exists. The RB and WS popu-
lations are ideal for these experiments because salamanders would never meet those from different population in 
their natural environment, so that there are two closed groups in each experiment. Each group involved five fe-
males and five males from each population. Each female mated with six males, three from each population. So 
each closed group resulted in sixty correlated binary observations (1 for successful mating; 0 for failed mating). 
Therefore, the binary data set is crossed, balanced (as each female mated with a total of six males and vice verse) 
and incomplete (as each female mated with just three out of a possible five males, and vice verse). The data can 
be analyzed by using a specific generalized linear mixed model. 

Generalized linear mixed models (GLMMs) are very useful for non-Gaussian correlated or clustered data and 
widely applied in many areas including epidemiology, ecological, and clinical trials. Parameters estimation in 
GLMMs is, however, very challenging, and correlated binary data is even more difficult to analyze than conti-
nuous data. This is because the marginalized likelihood function, obtained by integrating out multivariate ran-
dom effects from the joint density function of the responses and random effects, is in general analytically intrac-
table. For example, the likelihood function for the pooled salamander mating data described above involves six 
20-dimensional integrals which are analytically intractable. In the literature, the marginalized likelihood function 
was considered by two typical methods: a) analytical Laplace approximation to integrals: This is represented by the 
work of Breslow and Clayton (1993) [2] who developed the penalized quasi-likelihood (PQL) estimation. Un-
fortunately, approaches based on Laplace approximation may yield biased estimates of variance components, 
particularly for modeling correlated binary data. This difficulty has stimulated a number of alternative ap-
proaches. For example, Lin and Breslow (1996) [3] proposed a corrected penalized quasi-likelihood, and Lee 
and Nelder (2001) [4] developed hierarchical generalized linear models (HGLMs) procedure; b) numerical tech-
niques to approximate the likelihood function and estimate the parameters: Karim and Zeger (1992) [5] devel-
oped a Bayesian approach with Gibbs sampling for GLMMs, but its computational efforts may be computation-
ally intensive. Monte Carlo Expectation-Maximization (MCEM) and Monte Carlo Newton-Raphson (MCNR) 
algorithms were proposed to approximate the maximum likelihood estimates in GLMMs by McCulloch (1994, 
1997) [6] [7]. However, iterations of MCEM and MCNR do not always converge to the global maximum and 
are also very computationally intensives for high-dimensional problems (Chan, Kuk and Yam, 2005) [8]. Pan 
and Thompson (2003, 2007) [9] [10] developed Gauss-Hermite Quadrature (GHQ) approach and Quasi-Monte 
Carlo (QMC) approximation. Aleid and Pan (2008) [11] used Randomized Quasi-Monte Carlo (RQMC) to solve 
the integration problem in GLMMs. It is noted that most of the work above assume that random effects in 
GLMMs, which characterize the heterogeneity among individuals, are mutually independent and normally dis-
tributed. 

However, these assumptions may not always hold due to the likely correlation of random effects, for instance. 
At least, the independence assumption of random effects should be testable. Misspecification of random effects 
covariance structure may yield inefficient estimates of parameters and can cause the problem of biased estimates 
of variance components, making statistical inferences for GLMMs unreliable. In this paper, we release the as-
sumption of independence for random effects and aim to develop a new methodology which can model the co-
variance structures of random effects in GLMMs. Covariance modeling strategy based on a modified Cholesky 
decomposition is studied within the framework of GLMMs. The paper is organized as follows. GLMMs and the 
marginalized Quasi-likelihood are briefly reviewed in Section 2. The QMC approximation, the simplest good 
point set and analytical form of the MLEs for GLMMs are discussed in Section 3. Covariance modeling strategy 
through a modified Cholesky decomposition is described in Section 4. In Section 5, the salamander data set is 
analyzed as an example for illustration of the use of the new method. Simulation studies with the same design 
protocol as the salamander data are conducted in Section 6. Discussions on the related issues and further studies 
are presented in Section 7. 

2. Generalized Linear Mixed Models 
Let iy  ( )1, ,i n=   denote the observed responses. Assume that ix′  is the thi  row of design matrix X; β  
is the 1p×  fixed effects parameter; iz′  is the thi  row of the second design matrix Z; and b is the 1q×  ran-
dom effects. 
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The GLMMs are of the form 

( )b b
i i i ig x z bµ η β′ ′= = + ,                               (1) 

where ( )g ⋅  is a monotonic and differentiable link function. Given random effects b, the responses iy  are in-
dependent and follow an exponential family of distributions with the density 

( ) ( )
( ) ( )exp , .i i i

i i
i

y b
f y b c y

a
ϑ ϑ

ϕ
ϕ

 − = + 
  

                        (2) 

The conditional mean and variances, given random effects b, are given by ( ) ( )b
i i iE Y b b bµ ϑ= = =   and  

( ) ( ) ( )b
i i i

i i

var Y b b b v
a a
ϕ ϕϑ µ= = = , respectively, where ia  is a prior weight, ϕ  is an overdispersion scalar,  

iϑ  is the so-called natural parameter, ( )ib ϑ  and ( )ib ϑ  are the first- and second-derivatives of ( )ib ϑ , and 
( )v ⋅  is the known variance function (McCullagh and Nelder, 1989) [1]. 
When the linear predictor b

iη  is identical to iϑ , i.e., b
i iη ϑ= , GLMMs are said to have a canonical link 

function. In this article we assume the model has a canonical link function, although the proposed method can be 
extended straightforwardly to non-canonical link functions. Like generalized linear models (GLMs), the choice 
of canonical link function depends on the distribution of data. For example, for binary responses the canonical 
link function is the logit function, which takes the form 

( )logit log
1

b
b b i
i i i i b

i

x z b
µ

µ β η
µ

 
′ ′= + = =  

− 
.                        (3) 

Note q-dimensional random effects b are assumed to be normally distributed with mean 0 and positive defi-
nite variance-covariance matrix ( )b θΣ , where θ  is an m-variant vector of variance components. 

Quasi-likelihood function of the fixed effects β  and variance components θ  in GLMMs, also called mar-
ginal quasi-likelihood function, can be expressed by 

( ) ( ){ } ( ) ( )
1

, exp , exp , d ;
n

i
i

L b F bβ θ β θ β θ θ
=

 = =  
 
∑∫ 

,                   (4) 

where 
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so that 

( ) ( ) ( ) ( )
1

, log , log exp , d ;
n

i
i

L b F bβ θ β θ β θ θ
=

 = =  
 
∑∫ 

                  (6) 

is the conditional log quasi-likelihood of β  and θ , given random effects b (Breslow and Claybon, 1993) [2]. 
F(b; θ) is CDF of random effect b. 

It is challenging to calculate the maximum likelihood estimates (MLEs), β̂  and θ̂ , that maximize the 
above conditional log quasi-likelihood, because it likely involves high-dimensional integrals which are analyti-
cally intractable. This computational problem becomes more severe when random effects are multivariate and 
correlated. 

3. Quasi-Monte Carlo Integration and Estimation 
3.1. Monte Carlo (MC) Integration 
In this section, Quasi-Monte Carlo (QMC) approach is used to approximate high dimensional integrals. The 
traditional Monte Carlo (MC) method is outlined first as follow. Let ( )f ⋅  be an integrable function over the 
q-dimensional unit cube [ )0,1 qqC = . Without loss of generality, we consider the following integrals 

( ) ( ) ( )1 1 1
1 2 1 20 0 0

d , , , d d d .q q qC
I f f x x f x x x x x x= =∫ ∫ ∫ ∫                    (7) 
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Assume K independent random samples { }:1kx k K≤ ≤  are drawn from the uniform distribution on qC  
and used to approximate the integral (7) through 

( ) ( )
1

1ˆ , .
K

K K k
k

I f f x
K =

= ∑                                 (8) 

According to the strong law of large number, the approximation ( )ˆ ,K KI f   converges to the true value of 
the integral ( )I f  with probability one as K →∞ . The central limit theorem assures that the distribution of 

( )ˆ ,K KI f   converges to normal distribution with mean ( )I f  and variance 2 0Kσ >  as K →∞ . The con-
vergence rate for MC integration has an order ( )1 2O K − , which is independent of the dimension of integral. 

Since the rate of convergence is independent of q, the MC approximation seems to be very appealing. How-
ever, the MC algorithm has some serious drawbacks (see, e.g., Niederreiter, 1992 [12]; Spanier and Maize, 1994 
[13]). One of these deficiencies is that even though the rate of convergence is independent of the dimension, the 
convergence is very slow. On the other hand, it may suffer from the problem of generating genuinely random 
samples. Instead, pseudo-random samples are generated and used to approximate the integral (Traub and Woz-
niakowski, 1992 [14]). It is also noted that the MC method only provides probabilistic error bounds, which is not 
a desirable as it does not guarantee reliable estimation results. As an alternative to the MC methods, Quasi- 
Monte Carlo approximation method is considered. 

3.2. Quasi-Monte Carlo Method and Lattice Rule 
Quasi-Monte Carlo (QMC) sequences are a deterministic alternative to Monte Carlo sequences (Niderreiter, 
1992). In contrast to MC sequences, QMC sequences have a property that they are uniformly distributed on the 
unit cube. Thus, QMC approximation has the same equation as (8) but the MC random samples are replaced by 
deterministic samples that are uniformly distributed on the domain. Uniformity of sequences is measured by 
means of discrepancy, and for this reason QMC sequences are also called low-discrepancy sequences. Note the 
Koksma-Hlawka inequality 

( ) ( ) ( ) ( )*ˆ , ,K K KI f I f V f D− ≤                             (9) 

where ( )I f  and ( )ˆ ,K KI f   are given in (7) and (8), respectively, ( )V f  is the variation of ( )f x  in the 
sense of Hardy and Krause (Fang and Wang, 1994, p. 64 [15]) and ( )*

KD   is the star discrepancy that meas-
ures the uniformity of distribution of a finite point set { }:1K kx k K= ≤ ≤ , see Fang and Wang (1994) for the 
details. The Koksma-Hlawka inequality implies that the absolute integration error is bounded by the star discre-
pancy of K  multiplied by the variation ( )V f . Since the latter is fixed as along as the function f is given, the 
absolute integration error can be minimized by carefully choosing the integration nodes K . It can be shown  
that the absolute integration error has an order ( )( )1log qO K K− , so that integration nodes K  should be  

chosen such that their start discrepancy is close to ( )( )1 1log qO K K− − . For large K, this rate of convergence is 
considerably faster than the crude MC approach whose error is bounded to ( )1 2O K − . More details regarding to 
the superiority of the QMC method over the MC method can be found in Morokoff and Caflisch (1995) [16], 
and Fang and Wang (1994) [15]. 

In the QMC approach, there are many good algorithms for generating such integration nodes. One set of such 
integration nodes is called good point set and discussed below. 

3.3. Good Point (GP) Set 
Denote a good point by ( )1 2, , , q

q Cν ν ν ν= ∈  where ( ){ }1 2, , , : 0 1, 1,2, ,q
q iC x x x x i q= ≤ ≤ = 

 is a hy-  
percube. The set K  consists of the first K points of the set { } { } { }( ){ }1 2, , , , 1, 2, ,qk k k k Kν ν ν =  , where  

{ }ikν  represents the fractional part of ikν  for 1, 2, ,i q= 
. In practice, the following form of the good point 

ν  is quite common to use, 

{ } { } { }( )1 2, , , qp p pν =  ,                             (10) 

where ip  is a prime number and ( )i jp p i j≠ ≠ , 1 i q≤ ≤ . For example, they can be chosen as the first q 
primes. 
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3.4. MLE via QMC Approximation 
Suppose { }: 1, 2, ,kc k K=   is a GP set. When the QMC method is applied to the marginal quasi-likelihood 
function (6), we obtain 

( ) ( ) ( )
1

12

1 1

1, log exp ,
K n

i b k
k i

F c
K

β θ β θ θ −

= =

    = Σ         
∑ ∑  ,                    (11) 

where ( )1F − ⋅  is the inverse of ( )F ⋅ , the CDF of random effects b, and ( )
1
2
b θΣ  is the square root of bΣ , for  

example, it can be taken as the Cholesky decomposition of bΣ  or eigenvalue-eigenvector decomposition. 

Let ( )
1

12
k b kb F c−= Σ , so that ( )

1
T T T T 12kb

ik i i k i i b kx z b x z F cη β β −= + = + Σ  and ( )k kb b
ik ikhµ η=  where ( )h ⋅  is  

the inverse function of the link function ( )g ⋅ . The maxima of ( ),β θ  with respect to β  and θ  is the so-
lution of the score equations 

( ) ( )
( ) ( )1 1

,
0

k

k k

bK n i i ik
k ib b

k i ik ik
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w x

v g

µβ θ
β φ µ µ= =

 −∂  = ⋅ =
 ∂
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∑ ∑
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,                           (12) 
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( ) ( ) ( )

1
12

1 1

,
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jk k

bK n i i ik
k i kb b

k i ik ik
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w z F c
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µβ θ
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−

= =

 −∂  ′= ⋅ Σ =
 ∂
 
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
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

                   (13) 

where 

1
1 2
2

j

b

j
θ θ

∂Σ
Σ =

∂
 , and kw  is a weight for the kth point given by 

( )

( )
1

1 1

exp ,
.

exp ,

n

i k
i

k K n

i k
k i

b
w

b

β θ

β θ

=

= =

 
 
 =
 
 
 

∑

∑ ∑





                            (14) 

Note that the weight kw  given above is a function of β  and θ , i.e., ( ),k kw w β θ≡ , which should be 
taken into account when calculating the second-order derivatives. 

In general, the score equations in (12)-(13) have no analytical solutions for β  and θ . We then propose to 
use Newton-Raphson algorithm to update the solutions, though calculation of Hessian matrix is somewhat diffi-
cult. In Appendices A and B of this paper, we report the detailed calculation of Hessian matrix. When the dif-
ference between ( )mβ  and ( )1mβ − , and/or the difference between ( )mθ  and ( )1mθ − , is small enough, the 
maximum likelihood estimates of β and θ  are achieved. At convergence, the asymptotic variance-covariance 
matrix of the MLE ( )ˆ ˆ,β θ ′  is also obtained straightforwardly through the inverse of Hessian matrix. 

4. Modeling of Covariance Structures of Random Effects 
Misspecification of covariance structures of random effects may cause problems of inefficient estimates of pa-
rameters in GLMMs. In some circumstances, it may lead to biased estimates of the parameters. Hence, in this 
paper we propose to model the covariance structure of random effects in GLMMs, rather than specify a structure 
to the covariance matrix bΣ  of random effects b. In a spirit of Pourahmadi (1999; 2000) [17] [18], we consider 
a modified Cholesky decomposition of 1

b
−Σ , instead of bΣ , for obtaining a statistically meaningful parametriza-

tion of the covariance matrix. The modified Cholesky decomposition removes three difficulties arising in mod-
eling covariance structures: a) covariance matrix is usually positive definite; b) covariance matrix may be of 
large size; and c) the parametrization has to take into account of computational efficiency and statistical inter-
pretation. In the past decade, an increasing attention to the decomposition was paid by many statisticians in-
cluding Daniels and Pourahmadi (2002) [19], Daniels and Zhao (2003) [20], Smith and Kohn (2002) [21], Pan 
and MacKenzie (2003) [22], and Ye and Pan (2006) [11] among others. The key of the modified Cholesky de-
composition is that a symmetric matrix bΣ  is positive definite if and only if there exist a unique unit lower tri-
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angular matrix T with 1’s as its diagonal entries, and a unique diagonal matrix D with positive diagonal entries, 
such that 

bT T D′Σ = ,                                    (15) 
where 

2
1

21 2
2

31 32

2

1 2 3

1 0 0 0
0 0

1 0 0
0 0

1 0 and .

0 0
1 q

q q q

T D

σ
φ

σ
φ φ

σ
φ φ φ

 
  −   
  − −= =   
  
   − − − 











   

    





              (16) 

Thus, ( ) 11
b T D T −− ′Σ =  and 1 1

b T D T− −′Σ = . The modified Cholesky decomposition of 1
b
−Σ  offers a simple 

unconstrained and statistically meaningful reparametrization of the covariance matrix. T and D are easy to com-
pute and interpret statistically: the below-diagonal entries of T are the negative of autoregressive coefficients 
(ACs), say jkφ , in the autoregressive model 

( )
1

1

ˆ 1
j

j jk k
k

b b k j qφ
−

=

= ≤ < ≤∑ ,                          (17) 

where kb  is the kth component of the vector of random effects b. In other words, ˆ
jb  is the linear least squares 

predictor of jb  based on its predecessors 1 1, ,jb b−  . On the other hand, the diagonal entries of D are the in-  
novation variances (IVs), i.e., ( )2

j jVar eσ =  where ˆ
j j je b b= − . Obviously, ( ), 0j kCov e e =  if j k≠   

( )1 ,j k q≤ ≤ . Let ( )1, , qe e e ′=  , then e Tb=  so that ( )0,qe N D∼ . 
In a spirit of Pourahmadi (1999) [17], we propose to model the ACs and the logarithm of the IVs using linear 

regression models 

2log
jk jk

j j

c

h

φ γ

σ λ

′=
 ′=

                                 (18) 

where ( )*
11jkc q′ ×  and ( )*

21jh q′ ×  are covariates, and γ  and λ  are low-dimensional parameter vectors. 
Hence, the parameter vector of variance components is ( ),θ γ λ ′′ ′= . 

5. Salamander Data Analysis 
Assume that ijy  is the outcome for the mating of the ith female salamander with the jth male. Consider the 
following logit mixed model for each experiment 

( ) ( )logit log , 1, , 20
1

b
ijb f m

ij ij i jb
ij

p
p x b b i j

p
β

 
′= = + + =  − 

                (19) 

where { }1 ,b f m
ij ij i jp Pr y b b= =  is the conditional probability of successful mating of the pair, 

( )1, , ,f m f m
ij i j i jx ws ws ws ws ′= ×  with 1f

iws =  if the thi  female comes from WS, and 0 otherwise. Similarly, 
1m

jws =  if the thj  male comes from WS, and 0 otherwise. 
Note that each experiment involves 40 salamanders so that the log-likelihood function for each experiment 

involves one 40-dimensional integral. It can be further reduced to the sum of two 20-dimensional integrals due 
to the block design of the two closed groups, see Karim and Zeger (1992) [5] and Shun (1997) [23] for more de-
tails about the design. When the three-experiment data sets are pooled as those in model (19), the log-likelihood 
function ( ),β θ  is a sum of six 20-dimensional integrals which are analytically intractable, so that the MLEs 
of the fixed effects β  and variance components θ  become extremely difficult to calculate. In the literature, 
several analytical and numerical approximations were proposed to overcome the difficulties in evaluating the 
log-likelihood function. Examples include MCMC method by Karim and Zeger (1992) [5], MCEM algorithm by 
McCulloch (1994) [6] and PQL estimation by Breslow and Clayton (1993) [2]. However, all the literature work 
assumed that the covariance matrix bΣ  of random effects has certain structures. 
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We now apply the proposed covariance modeling method to the salamander mating data. Note 20q = . We 
consider the following model for the autoregressive coefficients, 

2,1 2,1

3,1 3,1

3,2 3,2

,1 ,1

,2 ,2

, 1 , 1

q q

q q

q q q q

c
c
c

c
c

c

φ
φ
φ

γ γ
φ
φ

φ − −

′   
   ′   
   ′
   
   = = =   ′
   

′   
   
   
   ′   

C
 

 

Φ                            (20) 

where 
1 2,d dφ  is the negative of the ( )1 2,d d th element of the lower triangular matrix T in the modified Cho-

lesky decomposition ( 1 2, ,d q=  ; 2 1, , 1d q= − ), so that Φ  is a ( )1 2q q− -dimensional vector. C  is an 
( ) *

11 2q q q− ×  ( )*
1 4q =  design matrix with rows 

( )1 2 1 2 1 2 1 2 1 2, , , , ,1, , ,d d d d d d d d d dc G D G D′ = ×                         (21) 

where 
1 2, 1d dG =  if the 1

thd  and 2
thd  salamanders come from different genders, and 0 otherwise. Similarly, 

1 2, 1d dD =  if the 1
thd  and 2

thd  salamanders come from different districts, and 0 otherwise. γ is an *
1q -variant 

vector of parameters. 
The model for the innovation variances is 

*
2

2
1 1 1

2

log

log q q q

h

h

σ λ
λ

σ λ

   ′ 
    

= = =    
    ′      

H  Ω                           (22) 

where Ω  is an q-variant vector. H  is an *
2q q×  design matrix ( )*

2 4q =  with rows 

( )1, , , 1, ,j j j j jh Gender District Gender District j q′ = × =                  (23) 

where 1jGender =  if the thj  salamander is female, and 0 otherwise. Similarly, 1jDistrict =  if the thj  sa-
lamander comes from WS, and 0 otherwise. Note λ is an *

2q -variant vector of parameters and 2
jσ  ( )1, ,j q=   

are the diagonal elements of the matrix D in the modified Cholesky decomposition. 
The pooled data are now analyzed using the proposed QMC approach. The MLEs of the fixed effects and va-

riance components in the model are calculated. Specifically, we implement the simplest QMC points, square 
root sequences, to approximate the 20-dimensional analytically intractable integrals. A set of 20-dimensional 
points on the unit cube [ )2020 0,1C =  are generated to approximate the six 20-dimensional integrals in the mar-
ginalized log-likelihood function ( ),β θ . We then use Newton-Raphson algorithm to maximize the approx-
imated log-likelihood function for the pooled data. 

Note that the covariance modeling for ( )b Cov bΣ = , the covariance matrix of random effects, uses *
1 4q =  

parameters for modeling of the autoregressive coefficients and *
2 4q =  parameters for the innovation variances. 

By using the joint mean-covariance modeling strategy we can model the structure of bΣ  and estimate the cova-
riance matrix without specifying a covariance structure to bΣ . This avoids the problem of misspecification of 
covariance structures. In addition, the number of parameters in bΣ  reduces from ( )1 2q q +  to * *

1 2q q+ , 
which avoids high-dimensional problems of covariance estimation when q is large. Finally, the modeling strate-
gy based on the modified Cholesky decomposition guarantees that the resulting estimate of bΣ  is positive defi-
nite. 

We code our programme in FORTRAN and run on a PC Pentium (R) 4 PC (CPU 3.20 GHz). We choose the 
PQL estimate as the starting value of β , i.e., ( ) ( )0 1 2 3, , , 0.79, 2.29, 0.54,2.82β β β β β ′ ′= = − − , and zero as for 

( ),θ γ λ ′′ ′= . Table 1 reports the numerical results when increasing the number of integration nodes generated 
by the square root sequences. From Table 1, we can see that the simplest GP point set works reasonably well for 
calculating the MLEs of the parameters in models (19), (20) and (22). The results show that the maximized  
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Table 1. MLEs of the parameters via covariance modelling for the pooled salamander mating data using square root sequences by 
varying K, the number of square root sequence points (standard errors in parentheses). 

K  0β  1β  2β  3β  1γ  2γ  3γ  4γ  1λ  2λ  3λ  4λ  
maxl̂  

10,000 0.91 −2.94 −0.62 3.71 0.00045 0.00062 0.0044 0.0031 0.19 −0.022 −0.024 0.00021 −207.21 

 (0.38) (0.39) (0.33) (0.12) (0.0024) (0.0021) (0.0056) (0.0067) (0.046) (0.051) (0.025) (0.0046)  

20,000 0.77 −2.87 −0.59 3.58 0.00087 0.0019 0.0052 0.0039 0.064 0.0081 −0.0024 −0.00010 −207.43 

 (0.34) (0.52) (0.50) (0.52) (0.0056) (0.0055) (0.0089) (0.0087) (0.034) (0.044) (0.042) (0.0018)  

30,000 1.24 −2.88 −1.00 3.71 0.00030 0.0035 −0.00082 −0.0063 0.43 0.0050 0.00047 0.00054 −205.95 

 (0.15) (0.37) (0.22) (0.57) (0.0002) (0.0000) (0.0000) (0.0000) (0.0019) (0.026) (0.023) (0.0027)  

40,000 1.20 −2.84 −0.96 3.64 −0.00032 0.00092 −0.00091 0.0027 0.39 0.0031 0.0032 0.00012 −206.34 

 (0.32) (0.48) (0.25) (0.58) (0.00026) (0.0000) (0.0000) (0.0000) (0.031) (0.025) (0.031) (0.0033)  

50,000 1.20 −2.82 −1.00 3.70 0.00021 0.00093 0.000042 0.0014 0.43 0.00012 0.0029 0.00095 −206.46 

 (0.31) (0.46) (0.27) (0.54) (0.0000) (0.00024) (0.0000) (0.0000) (0.0022) (0.024) (0.019) (0.0000)  

60,000 1.16 −2.84 −0.97 3.68 0.00023 0.00089 −0.000053 0.00067 0.41 −0.00029 0.0017 −0.00036 −206.63 

 (0.33) (0.37) (0.30) (0.53) (0.00017) (0.0000) (0.00045) (0.00045) (0.016) (0.040) (0.032) (0.00064)  

70,000 1.22 −2.85 −0.95 3.72 0.00011 0.00057 −0.00021 −0.0023 0.52 −0.00034 0.0010 −0.00087 −206.75 

 (0.30) (0.49) (0.18) (0.57) (0.00022) (0.0000) (0.00023) (0.00054) (0.035) (0.055) (0.025) (0.00026)  

80,000 1.21 −2.91 −0.93 3.73 −0.00091 −0.0034 0.0045 −0.0032 0.51 0.00091 0.00024 0.00020 −206.25 

 (0.40) (0.41) (0.15) (0.49) (0.00087) (0.00095) (0.00066) (0.0037) (0.023) (0.026) (0.014) (0.00034)  

90,000 1.16 −2.86 −0.87 3.71 −0.00034 −0.0035 0.0054 −0.0086 0.50 −0.0027 −0.0023 0.00041 −206.94 

 (0.23) (0.45) (0.22) (0.60) (0.0013) (0.0037) (0.0034) (0.0000) (0.00031) (0.029) (0.026) (0.00091)  

100,000 1.25 −2.88 −0.91 3.68 −0.00042 −0.0022 0.0031 −0.0032 0.45 −0.0022 −0.00020 0.00034 −206.98 

 (0.41) (0.52) (0.17) (0.63) (0.0014) (0.00058) (0.00010) (0.0063) (0.018) (0.025) (0.020) (0.00062)  

 
log-likelihood max̂  changes very little when the number of integration nodes increases from 10,000 to 100,000, 
implying that any number of the points between these numbers would be fine to obtain reasonably good esti-
mates of the parameters. On the other hand, the parameter estimates using these sequences become stable quickly. 
We notice that the integral space is 20-dimensional so that the points are very sparse even if the number of the 
QMC points increases to 100,000K = . In the meantime, the algorithm gets convergence very quickly and it 
only takes a few of iterations to achieve the convergence. In the case of using 100,000K =  integration nodes, 
for example, our Fortran code takes only several minutes to obtain the estimation results. 

It is noted that in the autoregressive coefficients model, the estimates of γ , including 1̂γ , 2γ̂ , 3γ̂  and 4γ̂ , 
are all very close to zero and not statistically significant. Therefore, the estimates of the autoregressive coeffi-
cients can be regarded as zero. On the other hand, in the model of the log-innovation variances, the estimates of 
the regression parameters λ , except 1̂λ , are not statistically significant. 

In other words, T is an identity matrix and D is a diagonal matrix with an identical element on diagonals, im-
plying 2ˆ ˆb b qIσΣ =  where { }2

1̂ˆ expbσ λ= . Hence, it is concluded that the random effects in the modeling of the 
salamander mating data are uncorrelated, and so there is no heterogeneity between the female and male sala-
manders. 

By comparing the numerical results of the QMC estimation approach with the literature work, we find that 
they are quite close to those made by Gibbs sampling method. But the QMC method has much light computa-
tional loads and easy to use for practitioners. This is because Gibbs sampling method involves multiple draws of 
random samples and needs more experience, for instance, in specifying prior distributions of parameters, etc., 
whereas the QMC approximation method does not need such specifications. Also, Gibbs sampling may be very 
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slow in obtaining the parameter estimates. On the other hand, the PQL approach gives very biased estimates of 
the variance components for modeling clustered binary data, as reported by many authors including Breslow and 
Clayton (1993) [2], Breslow and Lin (1995) [24], Booth and Hobert (1999) [25] and Aiken (1999) [26]. 

6. Simulation 
In this section, we carry out simulation studies to assess the performance of the proposed QMC estimation me-
thod in GLMMs. In the simulation studies we consider the logistic model (19) and use the same protocol of de-
sign as the real salamander mating experiment, resulting in 360 correlated binary observations. We run 100 si-
mulations and calculate the average of the parameter estimates over the 100 simulations. The log-likelihood 
function for each simulated data set involves six 20-dimensional integrals that are analytically intractable. 

We generate 50,000K =  integration nodes on the unit cube [ )2020 0,1C =  using the square root sequences. 
We then use those integration nodes to approximate the integrated log-likelihood as the one given in (11), and 
use Newton-Raphson algorithm to maximize the approximated log-likelihood function. The true fixed effects 
β  are chosen to be ( )1.2, 2.8, 1,3.6β ′= − − , which is quite close to the one obtained in the real data analysis 
presented in the previous section. In the real data analysis there is no heterogeneity between female and male, 
but in our simulation studies we choose ( )1.2,0.6, 0.1,0.4γ ′= − −  for modeling the ACs and ( )2,1,0.5λ ′= −  
for the IVs in order to assess the performance of the proposed method when heterogeneity occurs. The starting 
values of the parameters are chosen to be the parameter estimates from the real data analysis. The estimation re-
sults of the simulation studies are summarized in Table 2, which presents the average of the parameter estimates 
over 100 replications and their standard errors as well. 

From Table 2 it is clear that the proposed QMC approach is able to produce reasonably good estimates of pa-
rameters in GLMMs even if there are heterogenous random effects. The estimates of the fixed effects and va-
riance components, based on the average of 100 simulation results, are quite close to the true values of the pa-
rameters. It implies that the proposed QMC approach with covariance modeling strategy works well in estimat-
ing parameters in GLMMs with correlated random effects. 

7. Discussions 
We have studied the performance of using QMC approach to calculate the MLEs of the fixed effects and va-
riance components in GLMMs with correlated random effects. We proposed to use Newton-Raphson algorithm 
to calculate the parameter estimates. The marginalized log-likelihood function that is in general analytically in-
tractable is approximated well through the use of the simplest QMC points, i.e., square root sequences. We also 
addressed the issue of covariance modelling for random effects covariance matrix through a modified Cholesky 
decomposition. As a result, pre-specification of covariance structures for random effects is not necessary and 
misspecification of covariance structures is thus avoided. The score function and observed information matrix 
are calculated and expressed in analytically closed forms, so that the algorithm can be implemented straightfor-
wardly. The performance of the proposed method was assessed through real salamander mating data analysis 
and simulation studies. Even though the marginalized log-likelihood function in the numerical analysis involves 
six 20-dimensional analytically intractable integrals, the QMC square root sequence approximation performs 
very well. 
 
Table 2. Average of 100 parameter estimates in the simulation studies, where the QMC approximation uses 50,000K =  
points implemented using the square root sequences (simulated standard errors are provided in parentheses). 

 0β  1β  2β  3β  1γ  2γ  3γ  4γ  

True 1.20 −2.80 −1.00 3.60 −1.20 0.60 −0.10 0.40 

QMC-gp 1.16 −2.82 −0.93 3.65 −1.21 0.55 −0.12 0.41 

StD 0.04 0.12 0.08 0.17 0.000094 0.0027 0.0020 0.016 

 1λ  2λ  3λ       

True −2.00 −1.00 0.50      

QMC-gp −1.99 −1.03 0.51      

StD 0.0028 0.0017 0.0017      
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In general, a practical issue for the use of the QMC points is the choice of the number of integration nodes. 
Pan and Thompson (2007) [10] suggested to increase the number of integration points gradually until the esti-
mation results become relatively stable. This is exactly what we have done in the numerical analysis displayed 
in Table 1. 
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Appendix A: Second-Order Derivatives of Log-Likelihood 
The second-order derivatives of log-likelihood function is given by 
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Appendix B: MLEs for Covariance Modeling 
The first and second derivative of bΣ  respect to γ  and λ  are: 
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Every element in *Φ  was rearranged into a response vector Φ , such that γ= CΦ , i.e., 
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We can put the jth column of C into a q q×  lower triangular matrix like *Φ . So we have *
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The first derivative can be calculated as 
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