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Abstract 
Sorrel (Rumex vesicarius L.) is an underutilized, underexploited, traditional, valuable medicinal 
and vegetable herb. It is wildly distributed as an environmental weed and is sparsely cultivated in 
market and truck gardens as a minor leafy vegetable crop in south India. Concerning nutritional 
and health security of developing country like India, increasing production either by introducing 
its cultivation in non-traditional areas or by enhancing its productivity can be an important issue 
in near future. It is, therefore, most essential to predict possible potential new growing areas for 
sorrel in India. Habitat suitability modeling provides a tool for researchers and managers to under- 
stand the potential extent of concerned species spread. One dataset for sorrel presence locations 
(n = 21 points) in Karnataka and Andhra Pradesh states of south India was generated following 
two field surveys organized by the National Bureau of Plant Genetic Resources Regional Station, 
Rajendranagar in collaboration with Vegetable Research Station, Dr. Y. S. R. Horticultural Univer-
sity, Rajendranagar during 2010-2011. WorldClim dataset comprising of 19 bioclimatic data lay-
ers representing current climatic conditions was downloaded from http://www.worldclim.org. 
Sorrel presence locations dataset and WorldClim dataset were used with maximum entropy 
(MaxEnt) modeling to develop preliminary habitat suitability map for sorrel in India. MaxEnt 
model was able to precisely predict current suitable sorrel habitat (training AUC = 0.993 and test 
AUC = 0.985). Further study is needed to examine the potential for sorrel to cultivate beyond its 
current range. Habitat suitability modeling provides an essential tool for enhancing our under-
standing of sorrel species spread. 
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1. Introduction 
The docks and sorrels, genus Rumex L., are a genus of about 200 species of annual, biennial and perennial herbs 
in the buckwheat family Polygonaceae widely distributed around the World. Members of this family are very 
common perennial herbs growing mainly in the northern hemisphere, but various species have been introduced 
almost everywhere. Some are nuisance weeds and are sometimes called dock weed, but some are grown for their 
edible leaves. The genus Rumex is the ancient Latin name for the docks or sorrels, while the species vesicarius, 
vesica, is a bladder; from the inflated pods following the flowers on these herbs. Rumex vesicarius L. is an an-
nual, pale green, glabrous herb branched from the root [1]. It is known by various names in different languages 
viz., chukkakura (Telugu), Bladder dock (English), chooka (Hindi), Chuka (Marathi), Tamil (Shakkankirai), 
Punjab (Kattamitha), Chukra or amlavetasa (Sanskrit), and Sukki soppu (Kannada) [2]. It is cultivated through-
out the world as a pot herb. It is sparsely cultivated as a minor green leafy vegetable crop in kitchen, market and 
truck gardens in many states of south India. Leaves are fleshy, sour, alternate, elliptic-ovate, broadly ovate, en-
tire, acute or obtuse, and cordate at base with long petiole. It has vegetable and medicinal uses. It has always 
contributed to the nations nutritional and health security. Sorrel is a well known commodity of Indian cuisine. It 
is eaten fresh [3] or cooked [4]. It was considered a dietary complementary plant, since it is a rich source of β 
carotenes [5]. It is a good source of minerals like Na, K, Ca, Fe, and Mn in different organs at different stages of 
development from flowering to fruiting stages during spring, autumn and winter seasons [6]-[8]. The genus Ru-
mex includes many edible plant species that have medicinal importance for the treatment of some most danger-
ous diseases [9] [10]. Sorrel is a valuable potent medicinal herb possessing antimicrobial, antiinflammatory, an-
tidiarrhoeal and antioxidant properties.  

This plant is an environmental weed, with the potential to have a significant impact on the natural flora and 
fauna in areas where it grows. This is a wild edible plant [3]. It can grow in a moist moderately fertile well 
drained soil in sunny position [11]. It is found in wild state in West Punjab, Trans-Indus Hills, Afghanistan, Per-
sia and North Africa. Sorrel has been an important traditional leafy vegetable crop of India. It is grown in garden 
lands at any time of the year in the Bombay presidency. India is one of the most important countries of sorrel 
production. Although sorrel occurs frequently in wild state, it has not yet grown all potentially suitable habitats. 
The sorrel production scenario in India till 1980’s was quite dismal due primarily to low production and produc-
tivity. Efforts have been made to augment the domestic production by introducing sorrel cultivation in non-  
traditional areas from 1990 onwards in India. In order to effectively plan and manage this crop, it is necessary to 
investigate its potential geographical distribution nationwide. A comprehensive inventory of its distribution does 
not currently exist. Understanding the potential spread of any underutilized and underexploited species such as 
sorrel is essential for land managers to promote its commercial cultivation. Identification of potential new 
growing areas is the most important aspect of sorrel cultivation under climate smart agriculture. Identification of 
potential new growing areas for sorrel plays a vital role in strengthening the leafy vegetable industry and helps 
the country to reap the benefits with enhanced level of leafy vegetable basket diversification.  

Species distribution models (SDMs) are the predictive models that estimate the relationship between species 
records at sites and the environmental and/or spatial characteristics of those sites [12] and are widely used for 
many purposes in biogeography, conservation biology and ecology [13] [14]. SDMs provide useful information 
for exploring and predicting species distributions [15]. Habitat suitability models provide a tool for researchers 
and managers to understand the potential extent of a species spread [16] [17]. Modeling techniques that require 
only presence data are extremely valuable [13]. Habitat suitability models can fill data gaps in survey records 
and can highlight priority locations for future surveying and monitoring [18]. Maximum entropy (MaxEnt) 
modeling is one of a suite of habitat suitability modeling techniques requiring only presence locations [19]. 
MaxEnt’s predictive performance is consistently competitive with the highest performing methods [20]. MaxEnt 
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uses a background sample in computing the maximum entropy distribution [19]. MaxEnt is a machine learning 
method that compares presence locations to environmental variables at those locations and then across the study 
area using principles of maximum entropy to generate predictions of suitable habitat in un-sampled regions [17]. 
It is user-friendly, produces robust metrics to evaluate model fit and has proven effective in predicting habitat- 
specific species at small spatial extents [21]. Presence only method like MaxEnt is appropriate for modeling 
species with unstable distributions such as environmental weed species because true absence data can be diffi-
cult to obtain. If a species is absent at a location, it could either be because it has not yet invaded or because the 
location is unsuitable, and these two options are often indistinguishable for invasive species. MaxEnt has many 
advantages as compared to other ecological niche models in predicting the potential distribution of species. Ear-
lier researchers have described MaxEnt as estimating a distribution across geographic space [19] [22]. 

Our goal was to provide agriculture planners of India, a preliminary state-wise climate suitability map depict-
ing the potential new growing areas using MaxEnt niche modeling approach, for sorrel in India. The method 
presented in this manuscript and made accessible in MaxEnt provides a forward step. 

2. Materials and Methods 
We are interested in predicting potential habitat distribution of sorrel from a set of occurrence localities (occur-
rence data), together with a set of environmental variables (climate data) using MaxEnt model in the lines of 
vegetable Roselle [23] and Indian spinach [24]. 

2.1. Occurrence Data 
Each occurrence locality is simply a latitude-longitude pair denoting a site where the species has been observed; 
such geo-referenced occurrence records often derive from specimens in natural history museums and herbaria 
[25] [26]. The occurrence locations of sorrel were mainly based on two extensive exploration surveys by the Na-
tional Bureau of Plant Genetic Resources Regional Station, Rajendranagar in collaboration with Vegetable Re-
search Station, Dr. Y. S. R. Horticultural University, Rajendranagar during 2010-2011. Following random sam-
pling strategy, crop presence data of sorrel was collected from 21 points covering four districts of Andhra Pra-
desh and two of Karnataka, India (Table 1). The geographical coordinates (longitude and latitude) of occurrence 
locations were recorded using a Global Positioning System (Garmin GPS-12) Receiver. Using the above source, 
a total of 21 distributional localities (n = 21 records) of sorrel were compiled into a database to generate a pre-
liminary, state-wise Indian national-level map of potential distribution for sorrel, thus making use of the best 
available data. 
 
Table 1. Sorrel (Rumex vesicarius L.) presence locations used for MaxEnt analysis. 

S. No. 
Geographic coordinates 

S. No. 
Geographic coordinates 

Latitude (˚N) Longitude (˚E) Latitude (˚N) Longitude (˚E) 

1 18.7691 84.4086 12 15.7009 78.0834 

2 18.6539 84.3041 13 15.5335 78.4335 

3 18.5665 84.2035 14 15.4338 78.4176 

4 18.3596 83.8735 15 15.4339 78.5167 

5 18.2693 84.0058 16 14.6841 77.6509 

6 18.5720 83.7970 17 14.2510 77.6837 

7 18.3133 83.5706 18 13.8176 77.5000 

8 18.4629 83.3143 19 13.3340 77.0842 

9 18.5411 83.3270 20 14.7167 76.7500 

10 18.5858 83.3657 21 15.1333 76.9167 

11 18.4961 83.2785    
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2.2. Climate Data 
We obtained 19 bioclimatic data layers from the WorldClim dataset [27] at 1 km spatial resolution to represent 
current climatic conditions. The WorldClim dataset was generated using an interpolation technique using alti-
tude and monthly temperature and precipitation records from 1950 to 2000. The 19 bioclimatic variables that 
define general trends, seasonality and extremes are considered biologically more meaningful than simple 
monthly or annual averages of temperature and precipitation in defining a species’ ecophysiological tolerances 
[28] [29]. 

2.3. MaxEnt Analysis 
MaxEnt provides species distribution information based only on known presences (recorded occurrences). 
MaxEnt performs extremely well in predicting occurrences in relation to other common approaches, and it is al-
so designed to integrate with GIS software such as Arc products, thus making data input and predicted (mapped) 
output easier to handle. MaxEnt works by finding the largest spread (maximum entropy) in a geographic dataset 
of species presences in relation to a set of “background” environmental variables.  

We used MaxEnt software (version 3.2.19) [19], a set of environmental variables and a dataset of occurrence 
data for training and testing for MaxEnt analysis. The algorithm runs either 1000 iterations of these processes or 
until convergence. This model produced prediction values ranging from 0 to 100, representing cumulative 
probabilities of occurrence. Predictions were mapped in DIVA-GIS (version 5.2) [30].  

2.4. Statistical Analysis of MaxEnt Model 
MaxEnt runs were performed using 30% of the points chosen randomly as the test data and the remaining 70% 
as the training data. Default settings were used in MaxEnt so that the complexity of the model varied depending 
upon the number of data points used for model fitting. Two measures of model skill were used: the area under 
the ROC (receiver operating characteristic) curve (AUC) and the defined thresholds. 

3. Results and Discussion 
Knowledge of species occurrence is a prerequisite for efficient and effective conservation and management. 
Unfortunately, knowledge of species occurrence is usually insufficient, so models that use environmental pre-
dictors and species occurrence records are used to predict species occurrence. Predicting the occurrence of sorrel 
is often difficult because sampling data insufficiently describe species occurrence and important environmental 
conditions and predictive models insufficiently describe relations between species and environmental conditions. 
The availability of detailed environmental data, together with inexpensive and powerful computers, has fueled a 
rapid increase in predictive modeling of geographic distributions. For some species, detailed occurrence (pres-
ence) data are available, allowing the use of a variety of standard statistical techniques. Many methods are used 
to predict species occurrence. In this paper, we attempted the use of the MaxEnt method for modeling Rumex 
vesicarius L. species geographic distributions with presence-only data.  

3.1. Analysis of Worldwide Climate Suitability Map Generated Using MaxEnt Model 
Figure 1 is a map of the worldwide geographical distribution of sorrel generated using MaxEnt model. The in-
formation available about the target distribution of sorrel landraces often presents itself as a set of real-valued 
variables, called “features”, and the constraints are that the expected value of each feature should match its em-
pirical average. The program starts with a uniform probability distribution and works in cycles adjusting the 
probabilities to maximum entropy. It iteratively alters one weight at a time to maximize the likelihood of reach-
ing the optimum probability distribution. The probability distribution of sorrel landraces is the sum of each 
weighted variable divided by a scaling constant to ensure that the probability value ranges from 0 to 1. Warmer 
colors show areas with better predicted conditions. White dots show the presence locations used for training, 
while violet dots show test locations. The red color indicates areas with a high probability of occurrence for sor-
rel, the blue and green represent moderately high probability of occurrence, the yellow color represents low 
probability of occurrence and the white indicates areas not suitable for sorrel. In fact, this worldwide climate 
suitability map can be used in the countries that lack precise coordinates of sorrel occurrences and generate a  
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Figure 1. The worldwide geographical distribution map of sorrel generated using MaxEnt model. 

 
preliminary climate suitability map of sorrel because it may be too late to wait for the precise coordinates of 
sorrel occurrences to generate a perfect climate suitability map. 

3.2. Analysis of State-Wise Indian National Level Climate Suitability Map Generated Using 
MaxEnt Model and DIVA-GIS 

The preliminary climate suitability map using MaxEnt model for sorrel cultivation in India was generated using 
MaxEnt and DIVA-GIS (Figure 2). We classified climatic zones in terms of their suitability for sorrel cultiva-
tion, based on the existence probability determined using the MaxEnt model. The geographical ranges of the 
excellent area (0.7087 - 1.0), optimum area (0.5315 - 0.7087), suitable area (0.3543 - 0.5315), less suitable area 
(0.1772 - 0.3543) and unsuitable area (0.0 - 0.1772) are shown in the climate suitability map of sorrel with dif-
ferent colours (Figure 2). The image uses colours to indicate predicted probability that conditions are suitable, 
with red indicating high probability (0.71 to 1.0) of suitable conditions for the sorrel, green indicating conditions 
typical of those where the species is found and lighter shades of green indicating low predicted probability of 
suitable conditions. The highest probability (0.7087 - 1.0) of distribution of these sorrel landraces is represented 
by red colour. The excellent area in this study is slightly southward, and it includes most parts of Andhra Pra-
desh, Karnataka and Orissa. These states had the potential regions for introducing and cultivating the sorrel lan-
draces and for planning in-situ on-farm conservation sites in the light of climate change scenario. In addition, 
most of the northern, western, north-eastern regions had unsuitable areas. The potential impact of climate 
changes on agricultural crop production varies spatially and depends on crop specific biophysical constraints 
[31]. Because of sorrel’s extensive adaptation would prove vital in meeting the food, nutritional and economic 
security of the people, use of MaxEnt model is highly warranted in preserving the important sorrel landraces.  

3.3. Evaluation of Quality of MaxEnt Model 
The first step in evaluating the models produced by the two algorithms was to verify that both performed signif-
icantly better than random. For this purpose, we first used a threshold-dependent binomial test based on omis-
sion and predicted area. However, it does not allow for comparisons between algorithms, as the significance of 
the test is highly dependent on predicted area. Then we used threshold-independent receiver operating characte-
ristic analysis, which characterizes the performance of a model at all possible thresholds by a single number, the 
area under the curve, which may be then compared between algorithms.  

3.3.1. Receiver Operating Characteristic (ROC) Curve 
The “30” we entered for “random test percentage” command the program to randomly set aside 30% of the 
sample records for testing. This allows the program to do some simple statistical analysis. Much of the analysis  
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Figure 2. Climate suitability map of sorrel cultivation in India using MaxEnt software and DIVA-GIS. 

 
used the use of a threshold to make a binary prediction, with suitable conditions predicted above the threshold 
and unsuitable below. The following picture (Figure 3) shows the omission rate and predicted area as a function 
of the cumulative threshold. The omission rate is calculated both on the training presence records (70% of pres-
ence records) and on the test records (30% of presence records). The omission rate should be close to the pre-
dicted omission, because of the definition of the cumulative threshold. Figure 3 shows how testing and training 
omission and predicted area vary with the choice of cumulative threshold. Here, we see that the omission on test 
samples (sky blue line) is a very good match to the predicted omission rate (black line), the omission rate for test 
data drawn from the MaxEnt distribution itself. The predicted omission rate is a straight line (black line), by de-
finition of the cumulative output format. In some situations, the test omission line (sky blue line) lies well below 
the predicted omission line (black line), while in some other situations the test omission line (sky blue line) lies 
well above the predicted omission line (black line): a common reason is that the test and training data are not 
independent, for example if they derive from the same spatially auto-correlated presence data. MaxEnt model 
was significantly better than random in binomial test of omission and predicted area curve. Because we have 
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Figure 3. Omission and predicted area for MaxEnt model on the first random partition of occurrence records 
of sorrel. 

 
only occurrence data and no absence data, “fractional predicted area” (the fraction of the total study area pre-
dicted present) is used instead of the more standard commission rate (fraction of absences predicted present). 

MaxEnt also calculates an area under the receiver operating characteristic curve to evaluate the performance 
or the simulation accuracy of the model [32]. A ROC plot was built by plotting the sensitivity values and the 
false positive fraction for all available probability thresholds [33]. The area below the ROC curve, i.e. the value 
of the area under the curve, a threshold-independent measure of model performance, indicates the predictive ac-
curacy of the model and determines how well a model discriminates between presence locations and other loca-
tions in the area of interest. AUC values can range between 0.5 and 1.0, with 0.5 indicating no discrimination 
ability; values below 0.7 are low, values between 0.7 and 0.9 are useful in some cases, and values > 0.9 indicate 
high discrimination [34]. The value of AUC indicates the following degrees of predictive accuracy [34]: 0.50 - 
0.60 (fail), 0.60 - 0.70 (poor), 0.70 - 0.80 (fair), 0.80 - 0.90 (good), and 0.90 - 1.0 (excellent). A model with 
AUC values approaching 1.0 is usually considered a good model, while AUC values close to 0.5 are considered 
no better than random. 

The picture (Figure 4) is the receiver operating characteristic curve for the training and test data. We calcu-
lated an AUC for the training dataset and an AUC for the test data we withheld for this model. In this study, the 
AUC value for the training data was 0.993 and the AUC value for the test data was 0.985, indicating a high level 
of accuracy for the MaxEnt predictions (Figure 4). Note that the specificity is defined using predicted area, ra-
ther than true commission. This implies that the maximum achievable AUC is less than 1. If test data is drawn 
from the MaxEnt distribution itself, then the maximum possible test AUC would be 0.987 rather than 1; in prac-
tice the test AUC may exceed this bound. From the AUC values of this study, it is evident that MaxEnt model 
had high discrimination between presence locations and other locations in the area of interest. Further, from the 
AUC values of this study, it is also evident that this MaxEnt model had excellent degree of predictive accuracy. 
MaxEnt model was significantly better than random in receiver operating characteristic analyses. Earlier study 
also indicated very high model accuracy (test AUCs 0.945) for a MaxEnt model constructed to predict occur-
rence of several invasive plant species in riparian areas along Nebraska’s North Platte River using local envi-
ronmental layers assembled at a 30 m cell resolution [35]. In general, the AUC inaccuracies were most apparent 
in imbalanced samples and smaller samples. Caution is required in the use of AUC measures unless the sample 
size is very large and also point out that while it would be nice to have a simple rule of thumb to determine if a 
sample is sufficiently large [36]. 
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Figure 4. ROC curve of sensitivity versus specificity for MaxEnt model on the first random partition of 
occurrence records of sorrel. 

3.3.2. Threshold 
Some common thresholds and corresponding omission rates are as follows (Table 2). Since test data are availa-
ble, binomial probabilities were calculated exactly if the number of test samples is at most 30, otherwise using a 
normal approximation to the binomial. These are 1-sided P-values for the null hypothesis that test points are 
predicted no better than by a random prediction with the same fractional predicted area. The “Balance” threshold 
minimizes 6* training omission rate + 0.04* cumulative threshold + 1.6* fractional predicted area. 

3.3.3. Strengths and Weaknesses of MaxEnt Model 
The efficacy of predictive models is based on the quantity and quality of the occurrence data. Recently, several 
comparative analyses have investigated the efficacy of different methods for modeling species’ distributions. 
MaxEnt modeling has frequently outperformed a number of other approaches that rely on presence-only data [19] 
[37], it is relatively insensitive to spatial errors associated with location data [13], and it can produce useful 
models with as few as five locations [38] [39]. MaxEnt is robust to small sample sizes but it is affected by the 
way background data points are selected [40] [41]. Specifically, it is possible to run model with small numbers 
of sample localities in MaxEnt [20] [42]. In the present study, the dataset used consist of relatively small num-
bers of sample localities (n = 21). The number of occurrence localities may be too low to estimate the parame-
ters of the model reliably [26]. Therefore, we ought to add more distribution records so that we can obtain more 
reliable prediction results. On the other hand, it is important to make use of the knowledge of a species’ natural 
history, and patterns of habitat use to examine the prediction results by MaxEnt. A current land cover classifica-
tion derived from remotely sensed data can be used to exclude highly altered habitats by humans [43]. More re-
search is needed into how models perform with biased datasets like those generally available for crop species 
across large spatial extents. Most of our data were compiled from disparate efforts, each with unique sampling 
goals and strategies. We cannot differentiate between poorly sampled areas, areas that could be invaded but have 
not been yet, and true absence areas. Sampling incompleteness and uncertainty aggravate the issues related to 
assessing sampling bias. The preliminary climate suitability map developed in this study can be refined to dis-
trict scales by integrating more detailed species occurrence data collected using scientifically designed field 
surveys [44] and higher resolution predictor variables. The MaxEnt modeling approach can be used in its present 
form for identifying potential new growing areas for sorrel in India with presence-only datasets, and merits fur-
ther research and development. 
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Table 2. Common thresholds and corresponding omission rates for sorrel. 

Cumulative 
threshold 

Logistic  
threshold Description Fractional 

predicted area 
Training  

omission rate 
Test omission 

rate P-value 

1.000 0.007 Fixed cumulative value 1 0.108 0.000 0.000 1.609E−6 

5.000 0.031 Fixed cumulative value 5 0.049 0.000 0.167 1.55E−6 

10.000 0.089 Fixed cumulative value 10 0.026 0.071 0.167 7.615E−8 

9.989 0.089 Minimum training presence 0.027 0.000 0.167 7.759E−8 

13.692 0.153 10 percentile training presence 0.020 0.071 0.167 1.783E−8 

9.989 0.089 Equal training sensitivity and specificity 0.027 0.000 0.167 7.759E−8 

9.989 0.089 Maximum training sensitivity plus specificity 0.027 0.000 0.167 7.759E−8 

2.073 0.013 Equal test sensitivity and specificity 0.083 0.000 0.000 3.289E−7 

2.073 0.013 Maximum test sensitivity plus specificity 0.083 0.000 0.000 3.289E−7 

1.335 0.010 Balance training omission, predicted  
area and threshold value 0.099 0.000 0.000 9.28E−7 

11.074 0.103 Equate entropy of thresholded and  
original distributions 0.024 0.071 0.167 4.747E−8 

4. Conclusion 
We examined the performance of MaxEnt, the presence-only SDM, which typically had been used to model 
plant and animal distributions in the natural environment, as a tool for modeling relative land suitability for 
sorrel. Our goal of using MaxEnt modeling approach to map the state-wise potential possible distribution areas 
of sorrel in India was successfully achieved. MaxEnt model was significantly better than random in both bino- 
mial tests of omission and receiver operating characteristic analyses. The AUC was almost higher, indicating 
better discrimination of suitable versus unsuitable areas for the species. The results indicate that sorrel will 
potentially be able to colonize five states viz., Andhra Pradesh, Karnataka, Maharashtra, Orissa and West Bengal 
in India. This preliminary state-wise climate suitability map will be useful for designing state-wise planning for 
sorrel based farming systems in India. Further, our approach can be used in other countries that lack precise 
coordinates of sorrel occurrences and generate a preliminary climate suitability map of sorrel because it may be 
too late to wait for the precise coordinates of sorrel occurrences to generate a perfect climate suitability map. 
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