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Abstract 
Chaos appears in the whole process of fiber-optic signal propagation with one external perturba-
tion due to the absence of damping. Via adding a proper controller, chaos cannot be suppressed 
when the controller’s strength is weak. With the increase of the controller strength, the fiber-optic 
signal can stay in a stable state. However, unstable phenomenon occurs in the propagation of the 
fiber-optic signal when the strength exceeds a certain degree. Moreover, we discuss the parame-
ters’ sensitivity to be controlled. Numerical results show that vibration, oscillation and escape can 
occur during the transmission of optic signals with different parametric regions. 
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1. Introduction 
The nonlinear Schrödinger equation 

2 0t xxiu u au u+ + =                                      (1.1) 

is widely used in many areas of physics, such as the evolution of nearly monochromatic, high intensity laser 
beam propagation and one-dimensional waves in deep wave. It also describes the evolution of the slowly vary-
ing envelope of an optical plus [1]-[3]. The NLS equation plays an important role in understanding optic fibers 
which is of importance to the fiber-based telecommunications [4]. This paper is devoted to the application of  
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system of Equation (1.1) in optic fiber-based telecommunications, where x  represents the non-dimensional 
distance along the fiber-optic, t  represents time in a dimensionless form, and a  is a real valued constant. The 
dependent variable function ( ),u x t  is a complex valued function that represents the wave profile. The insta-
bilities and chaos of Equation (1.1) have been studied in [8] [9]. 

The NLS equation is completely integrable. Many studies have been devoted to the system of Equation (1.1) 
because its characteristics might be changed under small perturbation [5]-[7] [10]. In fact, the transmission of 
fiber-optic signal will be disturbed inevitably and the signal propagation cannot exist in pure environment; it is 
always influenced by external environmental perturbations. In some certain conditions, the process of fiber-optic 
signal transmission can be depicted as the following equation, 

( ) ( )2 cos expt xxiu u au u d x ictω+ + = ,                         (1.2) 

where d  and w  are the amplitude and frequency of a certain perturbation respectively; c  is the coefficient 
of linear term. 

We focus on the following two points: The first problem is how to design a controller to suppress chaos in 
system of Equation (1.2). We can observe that there is no damping in the system of Equation (1.2). Once per-
turbed with external forcing, chaos may be occurred in system of Equation (1.2). Therefore, we will select a 
controller which has the same function with the damping. 

The second interesting problem is to analyze the parameter regions for optical fiber signals stable propagation 
of the controlled system. That is, we will discuss the parameters’ sensitivity to be controlled. For example, pa-
rameters of system of Equation (1.1) are associated with the properties of optic-fibers media, so we can obtain 
the preferable media by studying the region of parameter to reduce the influence of perturbation in the process 
of optic fiber signal propagation. 

In this paper, the system of Equation (1.2) is investigated in detail. We study the dynamical behaviors by the 
fourth-order Runge-Kutte method. Maximum Lyapunov exponents and bifurcation diagrams are used to show 
the behaviors of the system of Equation (1.2) in some certain parametric region. The organization of the paper is 
as follows. In Section 2, we study the chaotic behavior of system of Equation (1.2) and the chaos can be con-
trolled by finding an appropriate controller. In Section 3, we study the chaos control in controlled system by 
Melnikov method [11]-[15]. In Section 4, the bifurcation diagrams and the maximum Lyapunov exponents are 
given to support the theoretical analysis. Last section is the conclusion. 

2. Analysis of Perturbed System 

Supposing ( )eictu xϕ=  and substituting ( )eictu xϕ=  into Equation (1.2), one can get an elimination of the 
time dependence as follows: 

( )3 cosa c d xφ φ φ ω′′ + + = ,                           (2.1) 

where d , w  denote the amplitude and the frequency of the parametric perturbation, respectively. Here d  
and w  ( )0≥  are real parameters. 

We make the transformation 1xφ → , 2xφ′ → , then Equation (2.1) can be transformed into first-order non- 
autonomous equations 

( )
1 2

3
2 1 1

,

cos .

x x

x ax cx d xω

′ =
 ′ = − + +

                          (2.2) 

Next we will consider the chaotic behavior of system of Equation (2.2). The study is carried out by taking 
1α = , 1c = , 0.05ω =  and setting d  as the variable with the initial condition [1.0,0.0]. 

According to the bifurcation diagram and the maximum Lyapunov exponents (see Figure 1). We can observe 
that the value of Lyapunov exponents is positive, so the system easily converts to chaos even if there is a small 
perturbation. Because the system in the chaotic state is very sensitive to its initial condition and chaos often 
causes irregular behavior, chaos is undesirable. So an appropriate controller is needed to satisfy the practical ap-
plications of fiber-optic communication. 

It is not difficult to find that system of Equation (2.2) is similar to the duffing system, except the damping 
term is absent in Equation (2.2). Therefore, we will select a controller that have the same function with the 
damping. 
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(a)                                                  (b) 

Figure 1. (a) Bifurcation diagram of x  [ ]( )0,5d ∈  and (b) the maximum Lyapunov exponents corresponding to (a).            
 
We modify the perturbed system of Equation (2.2) to a controlled system as follows 

( ) ( ) ( )2
1 2cos expt xx xiu u au u d x ict k u k uω ε+ + = + + ,                (2.3) 

where 1k , 2k  and ε  are constants. Here ε  denotes the controller’s strength and the controller 1 2 xk u k u+  
has the function of damping. 

Suppose ( )eictu xϕ=  and substitute it into (2.3), then Equation (2.3) takes the form as follows: 

( ) ( )3
1 2cosa c d x k kφ φ φ ω ε φ φ′′ ′+ + = + + .                       (2.4) 

So (2.4) can be written as the following form 

( ) ( )
1 2

3
2 1 1 1 1 2 2

,

cos .

x x

x x cx d x k x k xα ω ε

′ =
 ′ = − + + + +

                     (2.5) 

Now we will study the controlled system of Equation (2.5) with 1α = , 1c = , 2d = , 0.05ω = , 1 0.1k =  
and 2 2k = − . According to the bifurcation diagram and the maximum Lyapunov exponents in Figure 2, we can 
obtain that chaos occur within ( )0,0.04ε ∈  for the controller being too weak to inhibit the chaos. The per-
turbed system of Equation (2.4) can be suppressed to the stable station with the larger ε . Moreover we cannot 
ignore the phenomenon that some limit cycles are symmetric about origin when 11.7ε > , while it is not sym-
metric when 11.7ε > . It is easy to find that the signal cannot propagate normally and might leak from the me-
dia, which is called escape. 

Remark 1. According to above analysis, the increase of the controller’s coefficient ε  makes the system sta-
ble, but the signal escape when ε  cross a certain value. 

3. Melnikov Analysis for the Perturbed System 
In this section, the chaotic thresholds of Equation (2.5) can be characterized by Melnikov theory [14] [15]. The 
complex dynamics of stable oscillators can be easily depicted. Moreover, the necessary conditions for the oc-
currence of homoclinic bifurcation can be found. 

When 0ε = , Equation (2.5) is an unperturbed system, that is, 

1 2
3

2 1 1

,

.

x x

x x cxα

′ =
 ′ = − +

                                     (3.1) 

Obviously, the unperturbed equation has the following three equilibrium points ( )1 0,0O , 1 ,0cC
a

 
−  
 

 and  
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(a)                                                        (b) 

 
(c) 

Figure 2. Bifurcation diagram and Lyapunov exponents. (a) Bifurcation diagram of x  [ ]( )0,30ε ∈ ; (b) The maximum 
Lyapunov exponents corresponding to (a); (c) Enlarge view of (b).                                                     

 

2 ,0cC
a

 
  
 

 on the 1x -axis. 

The system of the unperturbed Equation (2.5) corresponds to a planar Hamiltonian system with a potential 
function 

( ) 2 4
1 1 12 4

c aV x x x= − + .                                 (3.2) 

And the associated Hamiltonian function is 

( )
2

2 4 2
1 2 1 1,

2 4 2
xc aH x x x x h= − + + = ,                        (3.3) 

where h  is a constant. As we know, for a fixed h , the Hamiltonian function (3.2) determines a set of invariant 
curves of Equation (3.1). With h  varying, the function (3.2) determines different families of orbits of Equation 
(3.1) which corresponds to different dynamical behaviors. Via the determinant of the Jacobian matrix, the stabil-
ity of the equilibrium points can be obtained, which the potential function and the phase portrait are given in 
Figure 3(a) and Figure 3(b) with 1a = , 4c = . 

The unperturbed system of Equation (3.1) has close orbits. However, the close orbits break with adding the 
perturbation. Because the nonlinear dispersive system of Equation (3.1) is very sensitive to its initial values and 
chaos often occurs and causes irregular behaviors. When adding the external periodic perturbation, the closed 
homoclinic orbits break, and may transverse homoclinic orbits. 
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(a)                                                (b) 

Figure 3. (a) The potential function and (b) phase portrait of system of Equation (3.1) with 1a = , 4c = .                        
 
We suppose that the unperturbed homoclinic orbits are written as ( ) ( ) ( )( )0 0 1 2, ,x y x xξ ξ± ±= , and the Melni-

kov function can be given by 

( ) ( ) ( )0 2 0 0cos d sinM x r w r w Aξ ξ ξ ξ ξ ξ
∞

−∞
 = + = − ∫ ,                     (3.4) 

where ( )2 sin dA x wξ ξ ξ
∞

−∞
= ∫ , 0ξ  is the cross section time of the Poincaré map and 0ξ  can be interpreted  

with the initial time of the external perturbation. Because there exists a 0ξ  that ( )0 0M ξ = . Thus, when Equ-
ation (3.1) subjected to the external forcing, chaos may occur. 

We therefore apply the Melnikov method to system of Equation (2.2) for finding the criterion of the existence 
of homoclinic bifurcation and chaos. Compared with duffing system [12] [13], we found that the damping term 
is absent. To suppress chaos, we add the controller ( )1 1 2 2k x k xε +  to the Equation (2.2). 

For the controlled system of Equation (2.5), we note that ( )2x ξ  is a function of time from −∞  to +∞ , 
then the Melnikov function can be given by: 

( ) ( ) ( ) ( )0 2 2 0 0cos d sinM x kx r w kB r w Aξ ξ ξ ξ ξ ξ ξ
∞

−∞
 = − + + = − − ∫            (3.5) 

where ( ) 2
2 dB x ξ ξ

∞

−∞
=   ∫ , ( )2 sin dA x wξ ξ ξ

∞

−∞
= ∫ . Therefore, we discuss the chaotic threshold of the con-

trolled system of Equation (2.5). 
Thus, if 

0
rAk k
B

≤ = ,                                  (3.6) 

the following theorem can be obtained. 
The homoclinic bifurcation will occur at ( )0 ,k R r w= , 
This implies that if 0ε >  is sufficiently small, the transverse homoclinic orbits exist and system may be 

chaotic. 
We use numerical simulations to support the theoretical results of the previous section and to seek the con-

trollable area due to the complex expression of ( )0 ,k R r w= . There are several parameters, which play differ-
ent and significant roles in disturbed and controlled system. Based on the above analysis, we can obtain chaotic 
threshold of the controlled system of Equation (2.5) shown in Figure 4. The numerical results show that the 
signal cannot propagate stably unless increasing the strength of controller. So the strength of controller should 
be selected the biggest value under the frequency. With the increase of w , the chaos can be well controlled. 

4. Parameters’ Sensitivity to Be Controlled 
The controlled system has several parameters. Each of them plays different and virtual roles in the system. In 
this section, we will analyze the influence on optic-fiber signals propagation of controlled system of Equation 
(2.5) when the parameters of system of Equation (2.5) varying with the fixed controller. The second interesting 
problem is to analyze the parameter regions for optical fiber signals stable propagation of the controlled system. 
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Figure 4. Chaotic threshold of the system of Equation (3.1) in (r, w, k) 
plane with 1a = , 1c = .                                       

 
The bifurcation parameters are considered in four cases: i) setting 1α = , 2ε = , 1c = , 1 0.1k =  and 

2 2k = − , the parameter dε  is varying in range 0 150dε≤ ≤ ; ii) setting 1α = , 1c = , 2d = , 2ε = ,
1 0.1k =  and 2 2k = − ; the parameter w  is varying in range 0 2.5w≤ ≤ ; iii) setting 1α = , 0.05ω = , 

2ε = , 2d = , 1 0.1k =  and 2 2k = − , the parameter c  is varying in range 0 4c≤ ≤ ; iv) setting 1c = ,
0.05ω = , 2ε = , 2d = , 1 0.1k =  and 2 2k = − , the parameter a  is varying in range 0 4a≤ ≤ . 

Bifurcation diagrams and maximum Lyapunov exponents of system of Equation (2.5) are given in four cases 
(See Figures 5-7). 

For case i), the bifurcation diagrams of system Equation (2.5) in ( ),d x  plane and maximum Lyapunov ex-
ponents are given in Figure 5. We can find that chaos can be suppressed to the stable state comparing with Fig-
ure 1. Moreover, there are two other obvious features: 1) The cycle is not symmetric about origin with  

( )0,0.58d ∈ ; 2) Oscillation appears when 45.2d > , which is distinct with the increase of amplitude. 
Remark 2. The system can be controlled well when the perturbation’s amplitude is not too large. With the 

increase of amplitude, it is difficult to control the fiber signal and oscillation occurs. 
For case ii), the bifurcation diagrams of system of Equation (2.5) in ( ), xω  plane and maximum Lyapunov 

exponents are given in Figure 6. It is not difficult to find that chaos in system of Equation (2.5) is suppressed. 
Besides we can get other two results: 1) the limit cycle is symmetric about origin within ( )0,0.56w∈ ; 2) es-
cape appears as 0.56ω > . 

Remark 3. The system can be controlled when the frequency of perturbation is not too large. With the in-
crease of frequency, it is difficult to control. The fiber signal might be leaked from the media and escape ap-
pears. 

For case iii), after studying the bifurcation diagram and maximum Lyapunov exponents in Figure 7, it is not 
difficult to obtain the follow results: i) The behavior of the system is very well, the chaos are suppressed are 
symmetric about origin as 1.58c < ; ii) There are obvious oscillation with ( )1.58,2.68c∈ ; iii) Escapes appear 
as 2.68c > . 

Remark 4. The system can be controlled very well with c  in a certain range. It is not easy to control the 
system when c  exceed the range. And escape and vibrate of signals also occur. 

For case iv), we can obtain the following results after studying the bifurcation diagram and maximum Lya-
punov exponents in Figure 8. i) The behavior of the system is well, chaos is inhibited; ii) The cycle is not sym-
metric about origin with ( )0,0.085a∈ ; iii) The behavior of system is cycle as 0.085a > . 

Remark 5. The system is stable despite a  changes in a wide range. We can deduce that the influence of 
nonlinear term on system is weaker. 

5. Conclusion 
Inspired by the research of the duffing system [11]-[13], we notice that chaos may occur easily in this system 
due to the absence of damping in system of Equation (1.2). This phenomenon will cause the distortion in the  
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(a) 

 
(b) 

 
(c) 

Figure 5. Bifurcation diagram and the maximum Lyapunov exponents spectrum. (a) Bifurcation diagram of x  

[ ]( )0,150d ∈ ; (b) Enlarging view of (a); (c) Maximum Lyapunov exponents corresponding to (a).             
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(a) 

 
(b) 

Figure 6. (a) Bifurcation diagram of x  [ ]( )0,2.5ω∈ ; (b) Maximum Lyapunov exponents 
corresponding to (a).                                                                          
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(a) 

 
(b) 

Figure 7. (a) Bifurcation diagram of x  [ ]( )0,4c∈ ; (b) The maximum Lyapunov exponents 
corresponding to (a).                                                                          

 
process of information transmission. We modified the system of Equation (1.2) into an actually practical one by 
adding the controller, which played the same role as damping. What’s more, we discussed the sensitivity to be 
controlled and discovered the practical parameters regions. The control system will be more satisfactory in ac-
tual practice. 
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(a) 

 
(b) 

Figure 8. (a) Bifurcation diagram of x  [ ]( )0,5a∈ ; (b) Maximum Lyapunov exponents cor-
responding to (a).                                                                            
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