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Abstract 
The review of the results of time analysis at the range of high-energy nuclear collisions (with the 
bombarding-particle energies near 0.1 - 10 GeV/nucleon) is presented. It was shown that the for-
mation of time resonances (explosions) in the decays of compound nuclei or final clots at the range 
of dense strongly overlapped energy resonances was possible. These time resonances rather well 
explain a lot of the experimental data. 
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1. Introduction 
In the wide energy region of the bombarding particles more 1 - 10 GeV/nucleon (see, for instance, [1]-[7]) and 
for the great their number (from p till 20Ne), number of targets and of the registered final fragments there are 
observed the exponentially decreasing inclusive (and sometimes non inclusive) energy spectra without structure. 
For more heavy bombarding particles such phenomena are observed also smaller energies (see, for instance, [8]). 
For the analysis of such reactions with heavy ions with energies till 1 GeV/nucleon one can use in a certain de-
gree the fireball model and also the model of intra-nuclear cascade [9] and the model of nuclear fluid [10] works 
for more high energies in the supposition of the high-dense collision-complexes formation. Between the diffi-
culties of the fireball models there is a problem, why even for high excitations (more than 100 MeV/nucleon) 
there is formed the statistical equilibrium. In [11], there was proposed other model of “time compound nucleus” 
for the alternative explanation of high-energy nuclear reactions. This model utilized the preliminary results of 
eigen states of time operator in the Hamiltonian approach [12]. It was based on the introduction of the formal 
similarity between the meta-stable states with the eigen complex energies as the eigen states of the Schroedinger 
equation and the correspondent Fourier transformations with complex eigen values for the equation with time 
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operator, canonically conjugate to the Hamiltonian. This model was only the initial step to the time-dependent 
approach and was not sufficiently justified. 

We proposed a new version of the time-evolution approach, starting not only from the principal ideas [13], 
but also from the known correspondence between the exponential decreasing of behavior of any quantity in any 
(time or energy) representation and the Lorentzian behavior of its Fourier transformation in the canonically 
conjugate (i.e. energy or time) representation and then utilizing the results, obtained in [13]-[17] for the proper-
ties of compound nuclei in the range of the non-resolved strongly overlapped energy resonances. Here we in-
troduce concretely the phenomenon of time resonance and it is explained the similarity between energy and time 
resonances. Аnd also there are analyzed the energy and time properties of compound nuclei which are connected 
with the explosions of time resonances in the evolution decay of final particles. 

2. The Theoretical Description of Time Resonances (Explosions) 
Our theoretical approach is based on [18]-[20]. So far let us choose the reaction amplitude ( )f Eαβ  and T-ma- 
trix ( )T Eαβ  in such forms 

( ) ( )exp 2n
n nf E C E iEtαβ αβ τ= − +                              (1) 

and 

( ) ( )exp 2n
n nT E T E iEtαβ αβ τ= − +                               (1a) 

Here in the certain energy region minE E< < ∞ , where τn and tn are constants (with the dimension of time), 
τn and tn define the exponential dependence on energy for the corresponding cross section and the linear depen-
dence from energy for the amplitude phase, respectively. nTαβ  is the constant or the very smooth function (in-
side E∆ ) on energy E of the final particle. A resonant structure of nTαβ  we so far do not taken evidently into 
account, supposing it the totally averaged in the limits of the energy spread (or resolution) E∆ , supposing that 

2 nE τ∆   . 
In this case it is possible to write for the wave packet of final particle in one-dimensional radial asymptotic  

limit ( ) ( ) ( )
0

, d expz t E g E T E ikz iEtβ β αβ β

∞

 Ψ = − ∫   the following equation 

( ) ( ) ( )
min

, d exp exp 2n n
E

R t E ikR E iE t tβ β β τ
∞

′ ′ ′ Ψ ≅ − + − ∫   ,                        (2) 

where Rβ  is the radius of interaction in the final channel. Utilizing the simplest rectangular form of ( )g E′ , 

( ) ( ) ( )1 2
minexp arg , for 2 2

0, for 2 and 2
E i g E E E E E Eg E

E E E E E E

− ′∆ ≤ − ∆ < < + ∆′ = 
′ ′< − ∆ > + ∆

                (3) 

where arg g  is the smooth function of E inside E∆  we obtain 

( ) ( )( )

( )( ) ( )( )

const, exp 2
2

exp 2 2 exp 2 2 .

n n
n n

n n n n

R t E i t t
t t i

E i t t E i t t

β β τ
τ

τ τ

 Ψ = − + − − +

  ⋅ ∆ − + − − −∆ − + −  



 

        (4) 

If all energies in the large interval, beginning from minE , are totally filled, i.е. 

( )
min

2 2 and
2 ,

nE E
E E E

τ + ∆ →∞


− ∆ →
                                     (5) 

then we arrive to 

( ) ( )( )min
const, exp 2

2 n n
n n

R t E i t t
t t iβ β τ

τ
 Ψ = − + − − +

 .                  (6) 

It is natural to call such behavior ( ),R tβ βΨ  be time resonance due to the Lorentzian form of factor  
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1
2n nt t iτ− +

 in (6), or explosion (for small values of nτ ). And inversely, if ( ),R tβ βΨ  has the form (6), the  

Fourier transformation ( ),R tβ βΨ  will be equal 

( ) ( ) [ ]mind , exp const exp 2 2n n nt R t iEt E iEt Eβ β τ τ
∞

−∞

Ψ = ⋅ − + +∫     .            (7) 

It is proportional to the amplitude (1). Then we-write (2) in a following way: 

( ) ( ) ( )
min

, d exp exp 2n n
E

z t E ikR E iE t tβ β β τ
∞

′ ′ ′ Ψ = − + − ∫                        (8) 

For the small energy spread ( )E E∆ ∆ , utilizing the function (3) for ( )g E′  and introducing a new varia-
ble 

( )
( )

2
2 2

n n

n n

m zi t t i
y k

m t t i
β β

β

τ
τ

 − −
′ = − 

− −  





,                       (9) 

we finally obtain: 

( )
( )

( )
( ) ( )

0

0
0

0, for ;

, 2
const exp , for

n in

n n n
n in

z v t t t

R t iE t t t i
ikr EA t z v t t t

β

β β

β

τ

 > − −
  Ψ = − − −

 ⋅ − − ∆ ≤ − −
   



     (10) 

where 

( ) 0 2 2 .n n nA t t t t z v iβ τ = − − − −    

The cross section has the following exponential form: 

( )2
const exp nf Eαβ αβσ τ= = ⋅ −                              (11) 

When Tαβ  or fαβ  has the general form like 

[ ]
1

exp 2n
n n

n
f f E iEt

ν

αβ αβ τ
=

= − +∑                              (12) 

with several terms ( )2,3,ν =  , the cross section 
2

fαβ αβσ =  contains not only exponentially decreasing  

terms, but also oscillating terms with factors ( )cos n nE t t ′ −   or ( )sin n nE t t ′ −  . In the case of 2 terms 
(ν = 2) in (2), formula (12) transforms in the following expression 

( ) ( ) ( ) ( ){ }2 21 2 1 2
1 2 1 2 1 2exp exp 2Re exp 2f E f E f f iE t t Eαβ αβ αβ αβ αβσ τ τ τ τ•= − + − + − − +        (13) 

(where the terms with E∆  can be neglected, if we suppose that n nEt Eτ∆   and n nE Etτ∆  . 
The evolution of the survival of the compound nucleus (in the time moment t after its formation) is described 

by the following function: 

( ) ( )
0

1 d
t

c

t

L t tI t= − ∫                                      (14) 

where I(t) is defined by formula [13] [19] ( )
( )
( )

,

d ,

j R t
I t

t j R t

β β

β β

∞

−∞

=

∫
 with the probability flux density  

( ) ( ), Re ,
2
ij z t z t
m z

β
β β β β

β

• ∂Ψ
= Ψ 

∂  

 . The initial moment t0 current time it is natural to choose in the moment  
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0
int  and to suppose that 0 0int = . However it is necessary to consider indeterminacy t Eδ = ∆  of the duration 

of the initial wave packet before the collision. Therefore  
0

0 nt t t t Eδ δ≅ − = − = − ∆  

In the region of the time resonance (10) the function ( )cL t  is essentially non exponential even in the appro- 
ximation 0 0t = . The qualitative form of ( )cL t  can be illustrated with help of the strongly simplified exam-
ples, utilizing (8) for the very narrow interval near nt t= , and also for all the values of t, when 

( ) ( ) ( ) 2
, Re , lim ,

z R

ij R t R t v R t
m zβ β

β
β β β β β β

β β

•

→

 ∂Ψ
= Ψ ⋅ ≅ Ψ 

∂  

                   (15) 

where v  is defined by the integral theorem on the mean value, namely by the expression 

( ) ( )
min min

d exp 2 d exp 2n n
E E

EvA E v EA Eτ τ
∞ ∞

− = −∫ ∫  .                        (16) 

Then 

( )
( )
( )

( )

( )
( )

( )

12 2

2 212 2

4, 12π
4d , d 4

n n

n
n n

n n

t tj R t
I t

t tt j R t t t t

β β

β β

τ
τ

ττ

−

+∞ +∞ −

−∞ −∞

 − + = ≅ =
− + − + ∫ ∫

             (17) 

and 

( ) ( ) ( ) ( ) ( )0

0

2

2
1 d 1 1 π arctan n n

n

y t t tc
y t

L t t I t y
τ

τ

= − −

=
= − = −    .                              (18) 

Since the curve arctan(y) has the form, depicted in Figure 1, in the case 02 nt τ → −∞  (the quantity τn is 
small) the function ( )cL t  has the form, depicted in Figure 2 (the curve 1). 
 

 
Figure 1. The function arctan(y) for 2t0/τn → –∞.           

 

 
Figure 2. Lc(t) (the curve 1) and I(t) (the curve 2).           
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In this case 

( ) ( )( )1
01 π arctan 2 π 2c

n nL t t t t τ−  = − − − +                        (19а) 

and 

( ) ( )01, when 0 0 2 and
0, when .

n nc t t с t
L t

t
τ ≤ < = − →∞= 

→∞
               (19b) 

From the simple form of Figure 2, it is easy to see that tn can be interpreted as the Poincare’ period of internal 
motion of the compound nucleus (after its formation and before its decay), when n nt τ . Such behavior of 

( )cL t  was studied in [19] [20]. 
If we precisely consider the compound-resonance structure of Tαβ , then the strongly non exponential form of 
( )cL t  and ( )I t  will take place, as it is depicted in Figure 2, for the strong overlapping of the energy reson-

ances, when 
2JS JS JSN ρΠ Π ΠΓ π                               (20) 

(ГJSП and ρJSП are the mean resonance width and level density, NJSП is the number of open channels, JSП are the 
values of the total momentum, spin and parity, respectively). The small probability of the compound-nucleus 
decay for nt t<  (inside the Poincare’ cycle) can be explained by the consequence of the multiply meta-stable 
states in the region of the overlapped energy resonances. In the case of several time resonances it can signify the 
superposition of several strongly overlapped groups of energy resonances with different values of JSП in the 
same compound nucleus or the formation of several compound nuclei with the different numbers of participating 
nucleons. 

In particular, for the inclusive energy spectra of the k-th final fragment it is possible to use the following ex-
pression 

( ) ( )

( ) ( ) ( ){ }

2 2

,
1

2 2
1 2 2 1 1 2

1

exp 2

exp 2 Re exp 2 .

inc k k n n n k
n

n k n k
n

E C it E

C E C C i t t E

σ τ

τ τ τ

=

∗

=

 = − 

= − + − − +  

∑

∑



 

     (21) 

3. The Comparison with the Experimental Data 
For the analysis of the observed experimental spectra of a single final fragment it is necessary to sum (or aver-
age) the expressions like (13) or (21) over the subfamilies of the final states (with various quantum numbers 
JSΠ, where J, L, S and Π are quantum numbers of the total momentum, orbital momentum, spin and parity, re-
spectively) and channels, sometimes coherently and sometimes incoherently. And for inclusive energy spectrum 
of k-th final fragment we will use the expression (21). 

In Figures 3-6 are represented some calculated inclusive energy spectra ( ),inc k kEσ  in the semi-logarithmic 
scale in compare with the experimental data from [8] [10] [11]. 
 

 
(a)                                                        (b) 

Figure 3. The inclusive process p + C → 7Be +X (protons of 2.1 GeV), experimental data are taken from [10]. (a) C1 = 0.04, 
C2 = 0.36 (θ = 90˚); (b) C1= 0.35, C2= 0.05 (θ = 160˚).                                                             
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Figure 4. The inclusive process 4He + Ta → t + X (720 MeV/nucleon), experimental data are taken 
from [11]. (a) C1 = 0.18, C2 = 1.02 (θ = 60˚); (b) C1 = 1.13, C2 = 0.07 (θ = 90˚).                    

 

 
Figure 5. The inclusive process 20Ne + U → p + X (1045 MeV/nucleon), experimental data are taken 
from [11]. (a) C1 = 0.35, C2 = 5.65 (θ = 90˚); (b) C1 = 5.65, C2 = 0.35 (θ = 150˚).                   

 
In Figures 3-6, θ is the detected angle of k-th fragment in emission. The values of τ1, τ2 and t2 – t1, which 

were found in [17] from the fitting of theoretical curves to the experimental data, are written in Table 1. 
Since the inclination of energy spectra is essentially increases with the angle increasing, it signifies that the 

increasing contribution of the compound-nucleus states with larger values of tn and τn is connected with the for-
mation of more heavy compound nuclei at the lesser velocity in L-system. It agrees with the observed in [9] [11] 
[19] phenomena of more clear oscillations for the intermediate emission angles. 
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Figure 6. The inclusive process 40Ar + 51V → p + X (41 MeV/nucleon); experimental data are taken 
from [8]. (а) C1 = 0.002, C2 = 0.03 (θ = 97˚); (b) C1 = 0.03, C2 = 0.022 (θ = 129˚).                   

 
Table 1. Parameters of time resonances for some inclusive spectra.                                                 

Reaction Energy of bomb. particle 
GeV/nucleon τ1, 10−23 sec τ2, 10−23 sec t2 – t1, 10−22 sec 

P + C → 7Be + X 2.1 10.45 17.0 5.95 
20Ne + Al → p + X 0.393 0.1 0.99 1.7 
4He + Ta → t + X 0.72 1.72 3.15 1.22 
20Ne + U → p + X 1.045 0.92 1.7 1.72 
20Ar + V → p + X 0.041 7.5 9.0 0.20 

132Xe + Au → p + X 0.044 6.0 7.0 1.0 
20Ne + U → p + X 0.4 1.7 2.2 0.10 
20Ne + U → d + X 0.25 4.2 7.2 0.10 

 
It is possible that for the most easy compound system (p + C), represented here, there is a superposition of the 

direct process (i.e. n = 0 instead of n = 1) and the time resonance (n = 2), since the difference t2 – t1(0) is notice-
ably larger than usually. 

Later there were performed new calculations and their comparison with the experimental data. They are re- 
presented in Figure 7, Figure 8. 

The values of τ1, τ2 and t2 – t1 in sec, which were found in [20] from the agreement of theoretical curves with 
the experimental data, are represented in Table 2 for Figure 7 and in Table 3 for Figure 8, respectively. 

4. The Explanation of the Time-Resonances Structure in the Cross Sections of 
High-Energy Nuclear Reactions in the Region of the Densely Situated Strongly 
Overlapped Energy Resonances 

How is it possible to explain the manipulations with relatively smooth energy behavior of the expressions (11) 
and (13) for the cross sections or the expressions (1) and (12) for Tαβ or fαβ, which correspond to time reson-
ances and simultaneously to the experimental data on cross sections, although really the amplitudes have to fluc- 
tuate strongly with energy in the region of strongly overlapped energy resonances for extremely high energies?  
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Figure 7. Inclusive energy spectrum of 4He + U → p + X, of 400 MeV/nucleon.                

 

 
Figure 8. Inclusive energy spectrum of 20Ne + U → p + X, of 400 MeV/nucleon.                

 
Table 2. The parameters for time resonances in the case of the inclusive spectrum of 4He + U→ p + X, of 400 MeV/nucleon 
for different angles θ.                                                                                        

θ τ1 (10−23s) τ2 (10−23s) t2 – t1 (10−23s) C1 C2 

30˚ 0.38 0.38 0.25 2.8 2.8 

60˚ 0.64 0.64 0.25 2.6 2.6 

90˚ 1.5 1.5 0.25 2.5 2.5 

120˚ 2.1 2.1 0.25 2.3 2.3 

 
At first sight, in the region of high energies the structure of energy resonances has to vanish not only due to the 
“smoothing” by energy spreads (since JSE Π∆ Γ , ( ) 1

JSρ −
Π ), but also de facto due to the strong decreasing 

of the probability of the formation of the intermediate long-living many-nucleon states. The density of the 
compound-resonances is quickly increases, beginning from the low-energy well resolved energy resonances 
where the various versions of the Fermi-gas model with the shell-model and collective-model corrections work 
rather successfully work. Only near 30 - 40 MeV/nucleon in the compound system it is possible to expect the  
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Table 3. The parameters for time resonances in the case of the inclusive spectrum of 20Ne +U→ P + X, of 400 MeV/ nucleon 
for different angles θ.                                                                                    

θ τ1 (10-23s) τ2 (10-23s) t2 – t1 (10-23s) C1 C2 

30˚ 0.25 0.25 0.25 5 5 

60˚ 0.6 0.6 0.25 4.5 4.5 

90˚ 1.2 1.2 0.25 4.2 4.2 

120˚ 1.7 1.7 0.25 3.6 3.6 

 
saturation effects and the further strong decreasing of the densities. However namely for these energies the re-
sonances of another structure can appear. These resonances are connected with the local excitations of long- 
living intermediate many-quark-gluon states of the baryon subsystems (see [21]). 

Let us consider the possibility of the abovementioned explanation of the structure of time resonances more 
attentively, limited ourselves only by the partial JSП-аmplitudes JS JST Sαβ αβ αβδΠ Π= − , where JSSαβ

Π  is the ele- 
ment of the S-matrix. 

As it was said above, for the sufficiently high energies if we neglect bound and virtual states and the threshold 
particularities we can describe the S-matrix by the many-channel S-matrix [22] and for the simplest Baz’-New- 
ton conditions (see [23]) this many-channel S-matrix 

( ) ( ) ( )
( )

( ) ( )
( )T

1

ˆ ˆ ˆ1
2

JN
J J J

J J

i
S E U U

E E i
ν

ν ν ν=

 Γ
= −  − + Γ 

∏ ,                     (22) 

where the unitary matrix ( )ˆ JU  and the projection matrixes ( )ˆ JPν  ( ( ) ( ) ( )2ˆ ˆ ˆJ J J
v v vP P P•= = , Trace ( )ˆ 1JPν = ) are 

practically do not depend on energy) acquires a such form: 

2ˆ ˆ ˆ 1
2

n n
b

n n n

i
S S a

i
ε ε
ε ε

 − − Γ
= − − − + Γ 

∏                            (22a) 

where Tˆ ˆ ˆ
bS UU=  and Tˆ ˆ ˆâ U P U= . The averaged on energy the S-matrix Ŝ

ε∆
 in this case in accordance 

with [22]: 

( )ˆ ˆ ˆ 1 exp πbE
S S a ρ

∆
= − − − Γ    

for unresolved resonances in ( 1E ρ−∆  , Γ ) and the fluctuating S-matrix ˆcS  (or S-matrix of the compound 
nucleus) is equal 

( )2ˆ ˆ exp π
2

c n n

n n n

i
S S S a

iε

ε ε
ρ

ε ε∆

 − − Γ
= − = − − Γ − + Γ 

∏              (23) 

We repeat that ˆ
bS  and â  almost do not depend on energy (slowly change with energy). For the strongly 

overlapped resonances when π 1ρΓ  . 

2ˆ ˆ
2

c n n

n n n

i
S a

i
ε ε
ε ε

 − − Γ
→  − + Γ 

∏                                 (23a) 

and the averaged over energy cross section of the processes, going through the step of formation of compound  
nucleus c

αβ ε
σ

∆
, is evidently proportional to 

2
aαβ : 

2 2c cS aαβ αβ αβ
ε

σ
∆

∼ =                                   (24) 

(here and below we continue to omit the indexes JSΠ). If the initial energy of bombarding particles is fixed and 
therefore the total energy ε  is also fixed (to within ε∆ ), the cross section (24) can be re-written in the form 

2 2c c
E

S aαβ αβ αβ
ε

σ
∆ ∆

∼ ≅ ,                               (24a) 

where E∆  is defined by ε∆  and the energy resolution of the detector of final fragments.  
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From [13] [19]) one can see that the averaged over energy time delay of compound nucleus and the variance 
of the time-delay-of-compound-nucleus distributions are defined by such general relations  

2 2arg c
c c cS

S S
E

αβ
αβ αβ αβτ

∂
=

∂



                               (25) 

and 

( ) ( )
2 222 2

2

2 2

 arg
,

c c c

c cE E

c c

E E

S E S S E
D

S S

αβ αβ αβ

αβ αβ

αβ αβ

τ τ∆ ∆

∆ ∆

∂ ∂ ∂ ∂
= + −




              (26) 

respectively (energy E is the kinetic energy of final fragment). From (23a) and (25) one can see (see also [13] 
[19]) that the mean time delay, averaged over all channels, is equal  

( )2 2
2π

4
c

n n n E

τ ρ
ε ε

∆

Γ
= =

− + Γ
∑ 

                         (27) 

in the approximation of continuum ( d
n

ρ ε→∑ ∫  for the quantities, averaged over energy). And cD αβτ  in the 

same continuum approximation 

( )22
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c E

E

a E
D

a

αβ

αβ

αβ

τ ∆

∆

∂ ∂
=


                                (28) 

if 

( )
( )22

2

2
, exp πc E

E

a E

a

αβ

αβ

τ ρ ∆

∆

∂ ∂
− Γ



                      (29) 

Now it is possible to see the mathematical similarity (even coincidence) between the cross section of com-
pound nucleus (24) under above-mentioned conditions (the Baz’-Newton condition and for the strong resonance 
overlapping when π 1ρΓ  ) and the time-resonance cross section (15) for a short time resonance. Therefore, 
returning to the expression T Sαβ αβ αβδ= −  with cS Sαβ αφ→ , defined by (23а) for strongly overlapped reson-
ances (with π 1ρΓ  ), we can re-write (28) approximately in such form 

( ) ( ) ( )
2

expc n n
na Eαχ αβσ τ∼ ∼ −                                  (30) 

(if n Eτ > ∆  for small E∆ ). And under the same conditions 

( )2 4c
nDτ τ≅                                             (31) 

(here and further we write cDτ  without indexes αβ ). 

If 2πnτ ρ   (it is possible when 1E ρ−∆  ), then ( ) ( )22 4 c
c nDτ τ τ≅   and we have a narrow time 

resonance (explosion) of the compound nucleus. 
When there are some independent non-fluctuating projectors ( )ˆ ˆ , 1, 2, ,vP P vν η= =   (η  is much lesser of 

the resonance number), it is possible to obtain at the same reasoning the result like (21) for αβσ  with оsсillat- 
ing terms. 

Under more realistic Lyuboshitz conditions of the statistically equivalent channels of the compound-nucleus 
decay [14]-[16] (see also [13] [19]), when the fluctuations of n̂P  are the same in all open channels, it is possi-
ble to show that 

2πc NTτ ρ=                                          (32) 

http://dx.doi.org/10.4236/oalib.1100886


V. S. Olkhovsky 
 

OALibJ | DOI:10.4236/oalib.1100886 11 October 2014 | Volume 1 | e886 
 

where ( )1 exp 2πT Nρ= − − Γ  and the sum of last two terms in the right part of relation (26) for cDτ  can be 
neglected in the continuum approximation. From (32) it is clear that for strongly overlapped resonances when 
π 1NρΓ   and 1T → , we have: 

2πc Nτ ρ=                                         (32а) 

In [13] [19] it was shown that under the same conditions and when bS  can be considered as independent  

from energy ε (and E), 
2c cDτ τ . If then one extend the Hauser-Feshbach formula for the compound-  

nuclear-reactions cross sections c
αβσ  into the region of high energies, then under the same conditions it is 

possible to be easily convinced in such behavior of ( )1 expc
nN Eαβσ τ−≅ ≅ −  . Under the Lyuboshitz condi- 

tions for the strongly overlapped resonances, ( )
22 4c c

nDτ τ τ≅  —and the exponential decreasing of  

energy spectra of final fragments corresponds to the narrow time resonance (explosion) of the compound nuc-
leus. There are possible also the cases when we can observe either one, or several time resonances (explosions) 
in cross sections. 

5. Conclusion 
The review of the results of papers [6]-[20], dedicated to time resonances (explosions) with utilization of the 
theoretic researches in [18]-[20] in the Simonius representation of the S-matrix [22], had been made. With rather 
simple assumptions it had been shown that in the region of the very dense overlapping resonances, the pheno-
menon of time resonances (explosions) can well explain the experimental data for high-energy nuclear collisions 
even with the presence of slight oscillations in inclusive energy spectra. 
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