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Abstract 
It is often necessary for astronomers to interpret observational data in terms of periodic variation, 
or an additive combination of periodic variations. This paper shows how statistics relating to pe-
riodic variation—the frequency, amplitude and phase - may be inferred from raw observational 
data and, just as importantly, it provides estimates for the accuracy of such statistics in terms of 
the observational error. Formulae are given to enable the extraction of these statistics, together 
with error bounds that apply. Their use is illustrated by synthetically derived data which also 
serve to demonstrate, by Monte-Carlo methods, the veracity of these formulae. 
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1. Introduction 
The photometric and astrometric observations of many astronomical systems display a periodic component; 
examples include pulsating variable stars, rotating asteroids, double star systems, superhumps in the light curves 
of dwarf novae. In order to be able to draw conclusions about such systems it is of particular importance to de-
duce the frequency (or period) of the oscillation, together with an estimate for the accuracy of the derived fre-
quency. The shape of the light curve is generally important too; however, before the shape may be inferred, it is 
always necessary to know the period over which the observational data are to be folded. In some instances the 
oscillation may be expressed in the colour of the light rather than the brightness—for example, the movement of 
a spectral peak due to Doppler shift, and in yet others as an object’s position in the sky, but the principles in-
volved in deducing periodicity are essentially the same. Besides the frequency (or period) of the oscillation, the 
amplitude (from highest to lowest value) and phase (related to a point in time) are often of interest, and formulae 
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for these will be derived too, along with corresponding indications of accuracy. 
It is important, however, to note that these accuracies refer to the accuracy of the calculated statistics, not to 

the significance of the periodicity itself. The question of whether an imputed period is significant, or just a ran-
dom manifestation of noise in the observations, is not considered here; the reader is referred to Howarth & 
Greaves [1] for a formula for the significance of a period, based upon Koen [2]. 

Given n measurements mi at associated times ti, it is convenient first to calculate the mean of the measure-
ments and to subtract this from the measurements themselves, to give a set of measurements yi whose mean is 
now zero. That is to say,  

1
1   where n

i i iiy m n mµ µ −
=

= − = ∑  

Likewise it is convenient to subtract the mean of the times from each time to give a set of times xi whose 
mean is zero,  

1
1– where n

i i iix t n tλ λ −
=

= = ∑  

The French mathematician J. J. Fourier [3] showed that any periodic function (of mean zero and fundamental 
frequency 2πω) may be expressed as a sum of sinusoid terms, a fundamental (r = 1) and its harmonics (r>1):  

( ) 1 1cos sinr rr rZ x a rx b rxω ω∞ ∞

= =
= +∑ ∑                            (1) 

where ar and br are  parameters to be determined. Initially it will be assumed that the harmonics are all zero, that 
is ar and br will be zero for all r > 1 so the function Z(x) will be a pure sinusoid. More complicated periodic 
functions will be discussed later. 

Hence ( ) ( )cos sin sinZ x a x b x r xω ω ω ϕ= + = +                       (2) 

where r is the semi-amplitude (i.e. half peak-to-peak) and φ is the phase at x = 0; 2 2r a b= + , 1tan a
b

ϕ −= .  

The values of a and b can be estimated as follows: 
1 1

1 12 cos ; 2 sin .n n
est i i est i ii ia n y x b n y xω ω− −

= =
= =∑ ∑  

Hence r and φ may be estimated thus: 
2 2

est est estr a b= +                                    (3) 

1tan est
est

est

a
b

ϕ −=                                     (4) 

The true value of ω can be estimated as the value of ωest which maximises rest, that is such that ∂/∂ω(rest) = 0. 
The estimated frequency, fest, is then 2πωest. 

The quantity ωest can be found in a variety of ways, including the Newton-Raphson method [3], direct alge-
braic evaluation or the bisection of the ordinate [4]. It is important to realise that, given the same set of xi and yi 
data, the same ωest will be derived whichever method of calculation is adopted. The value of ωest will however 
change whenever xi and yi vary. It can be assumed that xi will be effectively immune from error (the observer’s 
clock will be generally accurate), but any change in an observational datum—if yi becomes yi + εi , say,—will 
produce a corresponding change in ωest. Changes in the observational data will also affect rest (the estimated 
semi-amplitude) and φest (the estimated phase). The following paragraphs show how the effects on the statistics 
ωest, rest and φest can be calculated from the imputed observational errors. 

Suppose now that ei is the probable error in the ith observation, that is, that ei is the standard deviation of εi. 

2. Accuracy of Estimated Frequency and Period 

To simplify the calculation that follows define ( ) 1 cosn
i iiC y xω ω

=
= ∑  and ( ) 1 sinn

i iiS y xω ω
=

= ∑ . For a  

large, randomly-timed set of data 2
1cos 2n

ii x nω
=

≈∑  and 2
1sin 2n

ii x nω
=

≈∑ , then let Q2 = C2 + S2 where Q  

≈ nrest/2. Write d dQ Q ω′ = , d dC C ω′ =  and d dS S ω′ =  noting that  1 sinn
i i iiC y x xω

=
′ = −∑  and 
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1 cosn
i i iiS y x xω

=
′ = ∑ . 

Writing 2 2d dQ Q ω′′ = , 2 2d dC C ω′′ =  and 2 2d dS S ω′′ = , we have 2
 1 cosn

i i iiC y x xω
=

′′ = −∑  and  
2

1  sinn
i i iiS y x xω

=
′′ =−∑ . These quantities will be used in the calculations that follow. 
At the best estimate for ω, 0Q′ =  and 

0CC SS′ ′+ =                                        (5) 
Differentiating this with respect to the observation yi gives: 

( ) ( )
( ) ( )

 

0
i i i i

i i i i

C y C y C C y C y C

S y S y S S y S y S

ω ω ω ω

ω ω ω ω

′ ′ ′∂ ∂ + ∂ ∂ ⋅∂ ∂ + ∂ ∂ + ∂ ∂ ⋅∂ ∂

′ ′ ′+ ∂ ∂ + ∂ ∂ ⋅∂ ∂ + ∂ ∂ + ∂ ∂ ⋅∂ ∂ =
 

Gathering the terms according to the derivative, and noting that C Cω ′∂ ∂ = , S Sω ′∂ ∂ = , C Cω′ ′′∂ ∂ = , 
S Sω′ ′′∂ ∂ =  and 2 2C CC S SS QQ′ ′′ ′ ′′ ′′+ + + = , 

( ) cos sin sin cos 0i i i i i i iy QQ C x Cx x S x Sx xω ω ω ω ω′′ ′ ′∂ ∂ + − + − =                   (6) 

The quantity which interests us is eω, the probable error in ω. As a function of ei, this is given by 

( )22 2
1

n
i iie e yω ω

=
= ∂ ∂∑                                   (7) 

If we assume that all the observational errors are all from the same distribution, and this has standard error e, 
substituting (5) into (6) gives: 

( ) ( ){ }1 2
 1 cos sin sin cosn

i i i i i iie e QQ C x Cx x S x Sx xω ω ω ω ω
−

=
′′ ′ ′= − + −∑  

For large, randomly-timed sets of data, the cross-terms in the expansion of the above expression become neg-
ligible, therefore 

( ) { }1 2 2 2 2 2 2 2 2 2 2
1 1 1 1  cos sin sin cos .n n n n

i i i i i ii i i ie e QQ C x C x x S x S x xω ω ω ω ω
−

= = = =
′′ ′ ′= ⋅ + + +∑ ∑ ∑ ∑  

Again, for large randomly-timed sets of data, the calculation can be simplified by noting again that  
2

1cos 2n
ii x nω

=
≈∑  and 2

1sin 2n
ii x nω

=
≈∑ . Also, because 1 0n

ii x
=

=∑ , 2 2
1 12n

ii x nT
=

≈∑  where T is the  

span of time over which observations were made, from first to last. So 2 2 2
1 sin 24n

i ii x x nTω
=

≈∑  and  
2 2 2

1 cos 24n
i ii x x nTω

=
≈∑ . Thus we have 

( ) ( ) ( )( ){ }( )1 2 2 2 2 22 12e e QQ n C S T C Sω
−′′ ′ ′= ⋅ + + +                 (8) 

This can be simplified still further, albeit with some loss of accuracy for smaller data sets, by noting that C′   
and S ′  will be small compared to S and C so that  

( ) ( ) ( )2 2 2 2 2 2 2 2 212 48est est estQQ C CC S SS a b n a T r n T′′ ′ ′′ ′ ′′= + + + = + ⋅ ⋅ = ⋅ ⋅ . 

Thus ( ) ( ) ( ) ( )( ){ } ( ) 11 22 2 2 248 2 12 2 2 6.est est este e r n T n T n r e T r nω

−−
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅  

In reality, the implicit prior evaluation of the mean magnitude, the phase and the amplitude gives a reduction  

by 3 of the number of degrees of freedom. Hence ( )( ) 1
3 2 6este e T r nω

−
= ⋅ ⋅ ⋅ − ⋅  is slightly more accurate for  

small values of n. 

The corresponding formula for frequency ( ) ( )( ) 1
2 π π 3 6f este e e T r nω

−
= ⋅ = ⋅ ⋅ − ⋅                  (9) 

And for the period P = 1/f the corresponding formula is ( )( ) 1
2 π 3 6P este P e T r n

−
= ⋅ ⋅ ⋅ − ⋅            (10) 
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The dimensional part of the Formula (8) (that is, e/(Trest)) agrees with the results given by Kovacs [5] who al-
so derived a 1 n  term for large n. 

Formulae (8) and (9) are deserving of a few general remarks. The errors in both frequency and period are in-
versely proportional to T, the span of the observations: that is, all other things being equal, making observations 
for, say, twice as long, will give half the error in period or frequency. Also both errors are proportional to e, the 
mean observational error, as common sense would dictate. Moreover both are inversely proportional to rest. 
Hence the accuracy in frequency or period estimation is essentially dictated by the ratio of observational error to 
oscillatory amplitude. Again this is common sense: when it comes to calculating the period, the bigger the oscil-
lation, the bigger the error one can afford when observing it. The term 1 n  (for large n) commonly occurs 
when using (assumed) statistically independent observations to calculate statistical parameters. It suggests a cer-
tain “law of diminishing returns”, in that, say, 100 times as many observations will only give 10 times the accu-
racy. If the statistical independence is compromised, the value of each individual observation will be less still. In 
the extreme case, there is clearly no advantage in repeating the same observation many times (with the same 
observational error) in a short time interval. 

3. Accuracy of the Estimated Phase 

Starting from (3), and assuming, as before, that 2
1cos 2n

ii x nω
=

≈∑  and 2
1sin 2n

ii x nω
=

≈∑ , gives  

1tan .est
C
S

ϕ −  =  
 

 

Differentiating with respect to the observation yi gives: 

( ) ( ) ( ){
}

13

2 2

d d .

cos sin

cos sin .

est i est i est i

i i

i i i i

y y y

Q Q S SS CC x C SS CC x

Q C x x Q S x x

ϕ ϕ ϕ ω ω

ω ω

ω ω

−

= ∂ ∂ + ∂ ∂ ⋅∂ ∂

′′ ′′ ′′ ′′ ′′= ⋅ + − +

′ ′− −

 

By analogy with Equation (6),  

( )22 2
1 d dn

i est iie e yϕ ϕ
=

= ∑                                  (11) 

Simplifying by removing the negligible terms as before gives 

( ) ( ) ( ) ( ){ }1 22 2 2 2 22 12e e Q Q n SS CC T Q C Sϕ

−
′′ ′′ ′′ ′ ′= ⋅ ⋅ ⋅ + + +                (12) 

With the usual substitutions for Q, Q′′ , S, C, S ′ , C′ , S ′′  and C′′  this simplifies to 

( ) ( )( )2 2este e r nϕ = ⋅ −                                  (13) 

The n – 2 term signifies the implicit loss of 2 degrees of freedom, namely the mean value and the amplitude 
of the oscillation. 

4. Accuracy of the Estimated Amplitude 

Beginning from Equation (5) and again assuming that 2
1cos 2n

ii x nω
=

≈∑  and 2
1sin 2n

ii x nω
=

≈∑ , gives rest  
= 2Q/n. Differentiating with respect to the observation yi gives: 

( )( ) ( )d d 2 sin cosest i est i est i i ir y r y r y nQ S x C xω ω ω ω= ∂ ∂ + ∂ ∂ ⋅∂ ∂ = ⋅ + . 

Again by analogy with Equation (6), ( )22 2
1 d dn

r i est iie e r y
=

= ∑                                 (14) 

Simplifying by removing the negligible terms as before gives 

( )( )2 1re e n= ⋅ −                                    (15) 

where the n–1 term signifies the implicit loss of one degree of freedom, namely the mean value. 
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5. Discussion: Non-Sinusoidal Periodic Data, and Data Having Multiple  
Periodicities 

As mentioned earlier, any periodic function may be expressed as a sum of a series of harmonic terms (see Equa-
tion (1)). Since the frequency of each term is an exact multiple of the fundamental, it would be expected that the 
cross-terms in the above formulae would all vanish for any harmonic, so they will not affect the veracity of the 
Equations (9), (10), (13) and (15). This is indeed the case and will be shown later by Monte-Carlo methods. 
Even when frequencies are present that are not exact multiples of the fundamental—as with SR variables, for 
example, when frequencies are commonly present in the ratios of about 1.5 - 2.0 and 10 - 15 [6]—the 
cross-terms are still likely to vanish; particularly if the data spans many cycles of all the frequencies that are 
present, so that the estimate of the fundamental frequency will not suffer greatly whatever the interfering fre-
quencies might be. This too will be supported by the Monte-Carlo analysis to follow. Mattei et al. [7] give many 
examples of ratios in the range 1.7 - 1.95 which lie in the first category above. If the interfering signal is itself 
continuously variable in frequency, or chaotic, then a spread of frequencies is likely to be involved, and in such 
cases it will generally be necessary to regard these as random noise which contributes to the term e; in other 
words, for the purpose of statistical error estimations, they can be handled in the same way as extra observation-
al errors. In the extreme case, e can be set equal to the standard deviation of the entire data set so that even the 
“signal” is regarded as part of the noise. When the signal is submerged in the noise, the error in using this value 
for e will be tiny, and will lead to slight overestimates of the errors in the statistics, rather than underestimates. 

As well as furnishing a ready means to compare statistics derived from observations with their catalogued 
equivalents, the methods described herein enable one to say whether the period of variation (or phase or ampli-
tude) is changing with time. It is necessary simply to divide the observations into batches, each covering a dif-
ferent time interval, then to calculate and compare the statistics from each batch. Significant changes can show 
that the system is evolving or that it is slowing down or speeding up, perhaps due to energy being radiated away 
or to the system slowly collapsing. 

6. Monte-Carlo Runs 
Monte-Carlo is a powerful mathematical technique [8] that can be used to derive results where closed formulae 
either do not exist or are too complicated to use. Apart from simple “hit-and-miss” applications, one or all of the 
input parameters are generally only estimatable by their probability distribution. Monte-Carlo analysis consists 
of running a mathematical algorithm (a sequence of equations) many times (often thousands) with a different set 
of input parameters on each occasion, as described by their probability distribution. The multitude of different 
outcomes are can then be compared and listed, and probabilities calculated for each possible outcome. The vali-
dation of the formulae that were derived earlier lends itself to a Monte-Carlo process: the input parameters are 
the set of synthetic data (constant and known) and the accompanying synthetic observational errors (variable, 
drawn from a statistically normal distribution). The outcomes are the estimates of the frequency, amplitude and 
phase, and it is these which are to be compared with the values given by the formulae in Equations (9), (13) and 
(15) above. 

Initially the synthetic data shall comprise a single periodicity without harmonics, with varying degrees of 
noise superimposed. The underlying mean of the data shall be zero, the semi-amplitude r (see Equation (2)) shall 
be fixed as 1.0, so the variation will go from +1 to –1 before the errors are applied. These values will often be in 
stellar magnitude, but need not be in general. The phase, φ, is measured in radians and shall be taken as zero and 
the frequency shall be 1 unit, giving ω = 2π. The time span shall run from –5 to +5 units, hence T, the span of 
time over which the synthetic observations were deemed to have been made, is 10 units, giving precisely 10 
complete oscillations. A huge range of time spans is, of course, possible, depending on the unit chosen, ranging 
from years (a Mira variable) to seconds (a pulsar)! Three distinct values of observational error were compared: (i) 
0.01, (ii) 0.1 and (iii) 1.0 units, with 1000 evenly spaced times chosen to cover the entire 10 unit time span. In 
practice, if a binning process is used then the observations, could, indeed, be equally spaced. Even if the times 
were randomly spaced, the same general trends would be observed, except that aliasing effects would potentially 
be present if there were serious time gaps in the data. These must be considered separately and are beyond the 
scope of the present study. In each of the sets (i) - (iii), 1000 Monte-Carlo runs were considered and the para-
meters f, φ and r were estimated for each run. When all the runs had been done, the standard deviations for these 
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parameters ef, eφ, er, were calculated to compare with the theoretical values given in Equations (9), (11) and (12). 
The results are shown below in Table 1. For illustration, Figure 1 shows a typical data from set (iii) (one of 

the 1,000 runs) with a standard observational error of 1.0. 
It can be seen from Table 1 that there is excellent agreement between the Monte-Carlo average values of each 

statistic (c) and the corresponding true value (b). This shows that the estimates obtained are essentially unbiased. 
Furthermore the standard errors obtained from the formulae (d) show excellent agreement with the correspond-
ing Monte-Carlo values (e), which serves to verify the formulae in this case. 

Two further sets of Monte-Carlo runs, denoted in Table 2 by (iv) and (v), were performed in which a further 
periodicity was added to the e = 1.0 case. Set (iv) had an additional periodicity of frequency 2 units, of semi-am- 
plitude 0.5 and phase π/2 radians. As before, 1,000 Monte-Carlo replications were performed. For illustration, 
Figure 2 shows a typical set of data with the underlying light curve (before the errors were applied) picked out 
in a solid line. Its periodic, but non-sinusoidal nature is readily discerned. An RV Tauri-type variable star, with 
its characteristically alternating deep and shallow minima, could be approximated by this data set. 

Set (v) had the same parameters as (iv) except that the added frequency was now 2.7183 units (the base of 
natural logarithms) which, not being a rational number, is not an integral or rational ratio to the fundamental. 
(Any irrational number, for example 2  or 3 , would have sufficed as the added frequency). Again, 1000 
Monte-Carlo replications were performed. For illustration, Figure 3 shows a typical set of data with the under-
lying light curve (before the errors were applied) picked out in a solid line. This time the light curve beneath the 
noise does not repeat exactly after any finite period. 

From Table 2 it can be seen that there is good agreement between the Monte-Carlo average values of each 
statistic (c) and the corresponding true value (b), though now the presence of additional frequencies skews some 
of the averages very slightly. The standard error obtained from the formulae (d) again show excellent agreement 
with the corresponding Monte-Carlo values (e), which demonstrates that harmonics of the fundamental and, in-
deed, arbitrary periodic components have little effect on the accuracy of the derived statistics relating to the 
fundamental itself. 
 

 
Figure 1. Sample Monte-Carlo run with standard error = 1.0.                              
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Table 1. Comparison of Monte-Carlo Statistics with the theoretical values.                                          

Standard deviation of noise (a) 
Statistic 

(b) 
True value 

(c) 
Monte-Carlo average 

(d) 
Formulaic standard 

error 

(e) 
Monte-Carlo derived 

standard error 

(i) e = 0.01 

f 1.0 1.0000 0.0000247 0.0000246 

φ 0.0 0.0000 0.000447 0.000436 

r 1.0 1.0000 0.000447 0.000448 

(ii) e = 0.1 

f 1.0 1.0000 0.000247 0.000246 

φ 0.0 0.0002 0.00447 0.00437 

r 1.0 1.0002 0.00447 0.00447 

(iii) e = 1.0 

f 1.0 1.0002 0.00247 0.00247 

φ 0.0 0.0020 0.0447 0.0439 

r 1.0 1.0039 0.0447 0.0447 

 
Table 2. Comparison of Monte-Carlo Statistics with the theoretical values with added periodicities present.                

Standard deviation of  
noise is e = 1.0 

(a) 
Statistic 

(b) 
True value 

(c) 
Monte-Carlo average 

(d) 
Formulaic standard 

error 

(e) 
Monte-Carlo derived 

standard error 

(iv) added frequency of 2 units 
(semi-amplitude = 0.5, 

phase = π/2) 

f 1.0 1.0000 0.00247 0.00247 

φ 0.0 0.00296 0.0447 0.0438 

r 1.0 1.0039 0.0447 0.0447 

(v) added frequency of 2.7183 
units (semi-amplitude = 0.5,  

phase = π/2) 

f 1.0 1.0000 0.00247 0.00247 

φ 0.0 −0.00618 0.0447 0.0439 

r 1.0 1.0039 0.0447 0.0447 

 

 
Figure 2. Sample Monte-Carlo run with standard error = 1.0 and added rational frequency = 2.  
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Figure 3. Sample Monte-Carlo run with standard error = 1.0 and added irrational frequency = 
2.7183.                                                                         

7. Summary of Conclusions 
This paper has shown that, given very general assumptions concerning a set of periodic data, it is possible to 
calculate, as a function of observational accuracy, likely errors for the derived period, its phase and its amplitude. 
If several sets of data have been collected each covering a different era, the statistics may be used to determine 
whether the period, phase or amplitude are changing with time. Such changes can be symptomatic of energy loss 
or evolution. The validity of such methods has been clearly shown using sets of simulated (Monte-Carlo) data. 
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