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ABSTRACT 
A novel geometric approach is proposed for the development of the wave-particle notions. 
This approach is based on a comparison of the two geometries with different sizes of an in-
finitesimal point. It is assumed that the smaller is object mass, the larger is the size of the 
infinitesimal point in comparison with the point of the geometry of macro world. Within 
this approach, the smaller is object mass, the larger is the uncertainty of its position from 
the viewpoint of macro objects (macro geometry). This approach provides a natural expla-
nation of Heisenberg’s indeterminancy principle. Formally, this approach appears as an 
unusual operation with an infinitesimal value (point). However, it should be noted that un-
usual operations (though with infinitely large values) are already known in physics. These 
are unattainability of the absolute zero of temperature and unattainability of the maximal 
velocity of movement. Interconnection of the two geometries with different sizes of infini-
tesimal values is possible with the help of the direct and inverse Weierstrass transformation. 
At present, diffraction effects are described using the wave notions about the light and 
Fourier transform. The diffraction of light is usually registered at a distance not less than 1 - 
3 metres between the screens in one of which there is a slit or several slits. This distance is 
about 106 times longer than the wavelength of the radiation. In the present work, an ap-
proach is proposed that allows one to describe the light fluxes at short distances between the 
screens with the help of Fourier and Weierstrass transforms. 

 

1. INTRODUCTION 
According to Heisenberg’s indeterminancy principle, the geometry of micro world does not differ 

from our usual macro geometry but the uncertainty of the simultaneous determination of such corpuscu-
lar characteristics as coordinate (x) and pulse (p), pulse time and energy etc. is introduced. Any pair of 
these characteristics is connected by relation ΔхΔр ≥ h, where h is the Planck constant. This relation 
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shows that the smaller is the error of the determination of one of the values (x or p), the larger is the error 
for another one. This approach is generally accepted [1]. Two approaches were proposed almost a hundred 
years ago to describe the movement and properties of the objects with such features: matrix mechanics by 
Heisenberg, and wave mechanics by Schrödinger. Both of these approaches lead to the same results [2]. 
However, in Heisenberg’s matrix mechanics the problem is in excluding all non-observable quantities (ve-
locities and trajectories of particles, for example electrons) keeping only observables (discrete transitions 
in atoms). However, within this approach it is impossible to establish the physical sense of calculation it-
self, while solving Schrödinger’s wave equation one obtains the wave function; the squared function is the 
probability for a particle to occur in a definite site of the space and time. In other words, the wave function 
allows visualizing atomic processes as the wave phenomena. The wave function and its square may be 
plotted, which makes it understandable for human perception. This is what defined the extensive devel-
opment of Schrödinger’s wave mechanics. 

However, another interpretation is possible when the space of microparticles differs from usual geo-
metry by the increased value of infinitesimal (point). The description of the movement of micro objects is 
usual, but indistinctness arises as a result of the transfer of information about movement into the geometry 
with a smaller infinitesimal value (to the macro level). With this approach, the difference between the ob-
jects in two geometries is reduced to different sharpness of figures or images. This is how image blurring 
arises during the transformation from micro geometry into macro. This allows us to explain Heisenberg’s 
indeterminancy principle in a natural way. The most important feature is that this geometric approach is 
more fundamental (it is based on comprehensible geometric statements) than the wave-particle duality. 
However, this approach assumes a paradoxical change of the idea of infinitesimal. In other words, it is 
proposed to assign the attribute of infinitesimal geometrically to a finite quantity (illegible point). This 
approach allows us to describe the interference of light at close distances from the screen. 

2. UNATTAINABILITY OF THE INFINITE AND FINITE 
Only infinitely large or infinitely remote quantities possessed unattainability in classical physics, be-

cause it is impossible to reach infinitely large values. In early representations, body temperature could have 
any values from −∞ to +∞. However, Lord Kelvin proposed to transfer the minimal temperature to a finite 
value (−273.15˚C) and accept this value to be equal to zero. In this case, many thermodynamic expressions 
are written in a simpler form. In fact, this approach is the transfer of an infinitely remote value (−∞ for 
temperature) to the zero of Kelvin’s scale. This approach also automatically transfers unattainability of the 
infinitely far point into the zero of Kelvin’s scale, and this value becomes unattainable. An additional effect 
of this transfer is a decrease in the heat capacity of bodies almost to zero while temperature approaches the 
zero of Kelvin’s scale. Otherwise unattainability of Kelvin’s zero would be impossible. According to this 
approach, a body may be cooled to a temperature approaching the zero of Kelvin’s scale but this final (fi-
nite) value cannot be achieved. This is the manifestation of unattainability attribute.  

Another finite unattainable value for anybody with non-zero mass is the velocity of light. Ancient 
philosophers (with rare exception) thought that the velocity of light is infinite. The fact that the velocity of 
light is a finite value was established for the first time by O. Roemer in 1676 on the basis of the observa-
tions of a satellite of Jupiter. The Earth rotating around the Sun may approach Jupiter or move away from 
it. A consequence is the difference in the times of shadowing of Jupiter’s satellite. This effect allowed one 
to determine the velocity of light for the first time. Further on, the velocity of light was determined more 
precisely many times with the help of special devices allowing more accurate measurements of the distance 
and time.  

In 1905, Einstein developed the Special Theory of Relativity (SR) to adjust the laws of classical me-
chanics and electrodynamics. According to this theory, the velocity of light measured in any inertial refer-
ence system is the same and independent of the motion of the system and the irradiator. According to SR, 
the velocity of light is the maximal velocity with unattainability attribute. The consequences of unattaina-
bility for the maximal velocity are the following statements: relativistic law of velocity composition, time 
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dilation, and a decrease in the linear size of a moving body with respect to the chosen inertial system. 
Otherwise unattainability of the finite velocity of light would be impossible. According to SR, the velocity 
of any body may be very close to the velocity of light in vacuum but this limit cannot be exceeded.  

3. UNATTAINABILITY INFINITELY SMALL 
These two examples illustrate the simplicity of nature description with the help of so unusual ap-

proximations of infinitely large values to finite values. From the viewpoint of philosophy, not only infi-
nitely large values but also infinitesimals possess unattainability. For instance, mathematical zero is reci-
procal of infinitely large value. The attribute of the unattainability of the infinitely small was suggested in 
the aporias of the ancient Greek philosopher Zeno (for example, about Achilles and the tortoise). So, the 
idea of rendering unattainability to a small value is quite reasonable. It was demonstrated in [3, 4] that this 
approach allows theoretical substantiation of quantum effects during the transformation of data between 
the two geometries differing from each other by the values of infinitesimals.  

The mathematical interconnection between the displays of two geometries with different infinitesim-
als may be built with the help of the direct and inverse integral Weierstrass’ transformations [5]: 
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At present, computer numerical modeling with the help of Weierstrass transformation may be carried 
out with the help of computers. Solutions of some problems of light diffraction with the help of the 
integral Weierstrass transformation were described in [3, 4].  

4. DESCRIPTION OF LIGHT DIFFRACTION BY INTEGRAL TRANSFORMS 
Diffraction was explained in literature [6-9]. Let us use Figure 40 from [6] and Figure 6.2 from [7]. 

We see that the diffraction patterns are registered at a distance of 2 - 3 m from the first screen with a slit. 
Diffraction result is easily explained with the help of the wave representation of light. However, nothing is 
written about diffraction at a distance shorter than 1 m. We will try to calculate diffraction effects (light 
fluxes) for the distances within this range. If the distance between the screens is short, the general picture 
of the light flux should depict the shapes and dimensions of slits (corpuscular approach). For longer dis-
tance between the screens (1 m and longer), diffraction effects should be manifested (the wave approach). 
To simulate the corpuscular approach, we will use Weierstrass transformation with the index in the core of  

the integral transformation 
( )2

4
x t L

σ
− − ∗

∗
, where L is the distance between the screens (m), σ is the rela-

tive size of an infinitesimal point. It was accepted in calculations that 14 mx
σ

−= . 

The application of Weierstrass transformation to the model with two slits is shown in Figure 1 (plot 
a). This is a corpuscular contribution into the light flux. It follows from Figure 1 that total intensity gets 
smoothed out and scattered as the distance from the first screen increases (m—metres). To describe dif-
fraction, we will use Fourier transform (Figure 2). 

The joint picture of the light flux on the registering screen was determined as a linear sum of corpus-
cular and wave scattering taking into account the total energy of incoming light. It was found that the 
corpuscular contribution decreases with an increase in the distance between the screens, while the wave 
contribution increases (Figures 3-5).  

It follows from Figures 3-5 that using the integral Fourier and Weierstrass transformations it is 
possible to describe the light flux at a shorter distance between the screens than the distance described in 
textbooks. This approach is based on the idea that the motion of micro objects may be described by 
another geometry differing from the classical one by an increased size of the infinitely small point.  
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Figure 1. a—0 m; b—0.01 m; c—0.05 m; d—0.1 m; 
e—0.2 m; f—0.5 m; g—0.8 m. 

 

 
Figure 2. A symmetrical original with two slits and 
normalized square cosine of Fourier transform. 
This is the wave contribution into the light flux.  

 

 
Figure 3. a—0 m; b—0.01 m; c—0.05 m; d—0.1 m; 
e—0.2 m; f—0.5 m; g—0.8 m; h—1 m. 
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Figure 4. a—0 m; b—0.01 m; c—0.05 m; d—0.1 
m; e—0.2 m; f—0.5 m; g—0.8 m; h—1 m. 

 

 
Figure 5. a—0 m; b—0.01 m; c—0.05 m; d—0.1 
m; e—0.2 m; f—0.5 m. 

5. CONCLUSION 
A new approach is proposed in the present work to explain the specific features of the microworld. 

This approach is based on the ideas of different metrics for infinitesimal in two geometries. This approach 
allows a simple explanation of Heisenberg uncertainty principle. An interconnection between two geome-
tries with different infinitely small values may be established through the integral Weierstrass transform. It 
is demonstrated that the description of light interference requires both the corpuscular (Weierstrass 
transform) and wave (Fourier transform) description of light fluxes. This approach allows us to describe 
light fluxes at any distance from a screen with slits. This agrees with the approach proposed by D. Bohm 
[10], who separated the wave function into the corpuscular and wave components. Very paradoxically, but 
this also allowed him to describe light fluxes at any distance from the screen with slits. 
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