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Abstract 
We have investigated the effects of compression and quantization on atomic distri-
bution in ice Ic and in its compressed states at 77 K and 10 K, using the path integral 
molecular dynamics (PIMD) simulations over wide range of volume. It has been 
found that the high density amorphous ice (HDA) is attained by compression but 
volume range to retain ice structure is wider at 10 K than 77 K. We have discovered 
that quantum dispersion of atoms in ice Ic at 10 K induces non-zero probability that 
hydrogen-bonded H2O molecular molecules are oriented nonlinearly in the crystal 
structure, which was believed to contain exclusively linear orientation of hydrogen- 
bonded molecular pairs in this ice. It has been found that for HDA there is each 
non-zero probability of orientational disorder of hydrogen-bonded H2O pairs, of 
such uniform distribution of H atoms as observed in supercritical fluids in general, 
and of H atoms located at the O-O midpoint. The present PIMD simulations have 
revealed that these observed anomalous characteristics of atomic distribution in 
HDA are caused by both quantization of atoms and compression of the system. 
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1. Introduction 

Ice Ic is known as a cubic crystal and has the lowest density among all polymorphs of 
ice as well as ice Ih [1]. The crystalline structure of ice Ic was determined by Arnold et 
al. [2] and by Kuhs et al. [3] using neutron powder diffraction (density 0.933 g∙cm−3 
(19.3 cm3∙mol−1) at 80 K [2]), and they confirmed that the structure of ice Ic is hydro-
gen disordered as well as ice Ih. On the other hand, Mishima et al. discovered that 
compression of Ice Ih and Ic at 77 K produced amorphous state called high density 
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amorphous ice (HDA) [4] [5]. This is distinguished from low density amorphous ice 
(LDA) known as glassy water existing below the glass transition temperature. Reported 
density of HDA is 1.31 ± 0.02 g∙cm−3 (13.8 cm3∙mol−1) at 1 GPa and 1.17 ± 0.02 g∙cm−3 
(15.4 cm3∙mol−1) at zero-pressure [4] [5]. The structure of HDA and LDA was revealed 
by the neutron diffraction measurement of the partial radial distribution functions 
(RDFs) at 80 K [6], subsequently followed by their measurement of the RDFs of very 
high density amorphous ice (VHDA) [7]. Motivated by these discoveries of compressed 
amorphous states of ice Ic, a number of computer simulations have been extensively 
carried out to shed light on structures and properties of amorphous ices [8]-[22]. 

Quantum effect of H atom is considered as remarkable in low-temperature sub-
stances, and the degree of quantum dispersion is parameterized as the de Broglie ther-
mal wavelengths B2π mk Tλ =  . For instance, λ  of H atom is 2.0 Å (77 K) and 5.5 
Å (10 K), which are far longer than the O-H covalent bond distance of water molecule. 
Actually, H atoms at low temperature behave more mysteriously than classical intuition 
recalled from the ball-and-stick molecular model [23]. Accordingly, in ice polymorphs 
and amorphous states at low temperature, such quantum effect should play some 
non-negligible roles in physical properties. In fact, many of reported computer simula-
tions of ice Ic and HDA are in a category of classical mechanics, while only a few pio-
neering works of quantum simulations have been reported for these systems [24] [25] 
[26]. Among them, Gai et al. carried out path integral Monte Carlo simulation for HDA 
at 77 K using rigid molecular model SPC/E to calculate the RDFs, and they discussed 
the difference between H2O and D2O [26]. Herrero et al. performed isobaric path 
integral molecular dynamics (PIMD) simulations based on the flexible water model 
q-TIP4P/F to investigate the pressure effect on amorphization to HDA by examining 
the RDFs and other static properties [24]. Nevertheless, the exploration of quantum 
effect on the static properties of ice Ic and its compressed states is only just begin-
ning. 

The aim of the preset work is to investigate the detail of atomic distribution under 
compression of the system and quantization of atomic nuclei beyond the analysis re-
ported so far. We have thus performed path integral molecular dynamics (PIMD) si-
mulations of a series of H2O systems, for which at the beginning of the simulations the 
crystalline ice Ic structure was set at molar volume 25.7 - 9.84 cm3∙mol−1, including the 
reported experimental values of ice Ic and HDA. The compression is fulfilled by vary-
ing set volume in the present study; the simulations have been done under constant- 
temperature and constant-volume. The temperature has been set at 77 K and 10 K; 77 K 
is the temperature at which the existence of HDA was reported in the experiments, 
while at 10 K we expect quantum effect is expected to be more enhanced than 77 K. 

2. Model and Methods of Computations 

We have adopted a flexible model of water called the SPC/F2 potential [27] which is 
represented as the sum of the intra and intermolecular potential. All atoms in water 
molecules can move individually but the covalent bond in molecules is not allowed to 
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be broken. The intermolecular interaction is represented in terms of Coulombic and 
Lennard-Jones terms. 

Following the quantum-classical isomorphism based on path integral, the canonical 
partition function of a system of N atoms is written as 
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where Nν  is the number of atoms of species ν , Φ  is the SPC/F2 potential, which is 
a function of a set of N atomic coordinates ( ) ( ) ( ) ( )( )( )1 2,  , , Nτ τ τ τ=R r r r  along 
imaginary-time τ , and im  is the mass of the i-th atom. In Equation (1), W is 
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where ( ) ( )1 1P
i i

+ =r r . The second expression of Equation (1) is the primitive discretized 
form representing the classical-quantum isomorphism [28]; the partition function of a 
quantum system Equation (2) is equivalent to that of a classical system consisting of N 
necklaces, each of which is composed of P beads ( ){ }j

ir  connected with neighbors 
through springs (Hooke’s constant 2 2

im P β  ). To evaluate static properties of the 
system, Newtonian equations of motion for the beads, 
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are solved numerically. The mass of bead im′  is arbitrary but has simply been taken as 

im P  in the present study. The second term in the right side of Equation (3) is fric-
tional force coming from the first layer ( )

,1
j

iξ  of massive Nosé-Hoover-chain (MNHC) 
thermostats [29] which are attached to each bead coordinate to control kinetic energy. 
This MD evolution, i.e. PIMD, ensures that the MD time average generates Boltzmann 
distribution [ ]exp Wβ−  appearing in Equation (1). In PIMD, only static averages have 
physical meaning though sampling in configurational space is done by solving Newto-
nian equations of motion Equation (3). The spatial distribution of beads evaluated as 
such an MD average is equivalent to the diagonal element of density matrix in the 

quantum-statistical mechanical regime, ( ) ( ) ( )2
, expj j

j
x x x Eρ ψ β= −∑  where jψ  

and jE  is eigenfunction of the j-th state and the eigenenergy, respectively [30]. 
The equations of motion Equation (3) and MNHC have numerically been integrated 

following the RESPA algorithm [31]. The chain length of MNHC has been taken as 3. 
The time increment of PIMD has been taken as 1.0 × 10−17 s. Sixty four H2O molecules 
have been contained in a cubic simulation cell with constant volume. The Trotter num- 
ber P of each atom has been taken as 140 (77 K) and 900 (10 K). Although the number 
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of molecules in the box is not so many, the number of degrees of freedom to be com-
puted in PIMD is even 322560 and 2073600 for 140 and 900P = , respectively. These 
values of P have been determined to fulfill the convergence of physical properties, 
which we have checked by watching potential energy and RDFs in preliminary runs. 
The simulations have been carried out at 77 K and 10 K and at the molar volume in the 
range of 25.7 - 9.84 cm3∙mol−1 (0.700 - 1.83 g∙cm−3), which includes the experimental 
value 19.3 cm3∙mol−1 (0.933 g∙cm−3) at 80 K [2]. At the beginning of each simulation, we 
put atoms at the sites of proton-ordered ice Ic with space group I41md, which is ferroe-
lectric with all H2O dipoles pointing in the same direction [22]. The initial four million 
MD steps for equilibration were discarded, followed by one million steps’ run for which 
analysis has been carried out to present the results in this article. The periodic boun-
dary condition has been imposed while Ewald’s method has been used to correct the 
cutoff of Coulombic term. For reference, the MD simulations in the classical limit (P = 
1) has also carried out under the same conditions as PIMD. 

The potential energy of the system and the RDFs between atomic species have been 
calculated from both PIMD and classical MD simulations. In addition, we have further 
analyzed the density distribution of H atoms as a function of newly defined coordinates, 
one of which is O H O Hi j

s r r
α α

≡ − , where O Hi
r

α
 and O Hj

r
α

 is the distance between the 
-thα H atom and the adjacent i-th O atom and j-th O atom, respectively. One of these 

two O atoms is covalently bonded to the -thα H atom, while the other is not (i.e., ice 
rule). Another coordinate R is the distance between the i-th and the j-th O atoms. In 
addition, we define the angle formed by the three atoms as O H Oi jαθ ≡ ∠ . The defini-
tion of these three variables is schematically shown in Figure 1. 

3. Results and Discussions 
3.1. Potential Energy vs Molar Volume 

Figure 2 shows the plot of intermolecular potential energy interE  as a function of mo-
lar volume. In Figure 2(a), it is reasonable that interE  of PIMD at 77 K becomes the 
lowest at the experimental density 19.3 cm3∙mol−1 of ice Ic. However, in the classical 
 

 
Figure 1. The definition of coordinates, s, R, and θ . “O(i)” and “O(j)” denote the 
i-th and j-th oxygen atom, respectively, while “ αH ” is the first or second hydro-
gen atom belonging to the i-th or j-th water molecule. In the present definition, 
we do not distinguish the difference between covalent or hydrogen bond in 
which atom “ αH ” participates. Note that each atomic nucleus is divided into P 
beads in an isomorphic necklace in the quantum regime of PIMD simulation. 
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(a)                                                                    (b) 

Figure 2. The plot of intermolecular potential energy Einter as a function of molar volume. (a) 77 K; (b) 10 K. The arrows point the values 
of experimental molar volume of ice Ic (19.3 cm3∙mol−1 at 80 K [1]) and HDA (15.4 and 13.8 cm3∙mol−1 at 77 K [4] [5]). 

 
limit, in Figure 2(a), the molar volume of the lowest interE  disagrees with the experi-
mental value and is deviated to smaller value (17.3 cm3∙mol−1). In Figure 2(b), we can 
see the similar characteristics for 10 K as well, but the minimum potential energy of 
PIMD is observed both at 17.3 cm3∙mol−1. For the classical result it is seen at 17.3 
cm3∙mol−1 as well as 77 K. These results imply significant quantum effect on the rela-
tionship between energetic stability and volume of ice Ic. 

3.2. Ice Ic under the Experimental Condition 

Figure 3 shows the oxygen-oxygen RDF gOO(r) and the hydrogen-hydrogen RDF gHH(r) 
obtained from both the PIMD and classical MD calculations at 77 K and experimental 
density. The overall profile and the peak positions in the classical limit are in good 
agreement with that of ice Ic by classical MD [22]. This profile evidently indicates the 
retention of ice Ic configuration. Although gOO(r) of PIMD has the same peak positions 
as that of the classical MD, the peaks are broadened because of spatial extent of beads 
or quantum dispersion. 

In Figure 3, gHH(r) obtained from the classical MD is distinctively oscillatory, indi-
cating the well-defined location of H atoms in ice Ic. This profile is also in good accor-
dance with the RDFs obtained by Geiger et al.; in [22] the same kind of oscillatory 
RDFs indicates distinctive peaks clearly. However, gHH(r) of PIMD in Figure 3 exhibits 
smooth curve without such well-defined oscillations and it looks like the smoothed ver-
sion of its classical counterpart. This smooth gHH(r) is obviously attributed to spatial 
extension of the distribution of H atoms, caused by quantization of atomic nuclei. Al-
though at a glance this profile looks to be presentation of structural disorder of H atoms, 
it does not mean proton disorder because the SPC/F2 model does not allow H atoms to 
jump to the other sites through breaking of the O-H covalent bond. 

Figure 4 shows the contour plot of distribution of H atoms as a function of new 
coordinates R and s, defined in Section 2. In Figure 4(b), in the classical limit, there are  
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Figure 3. The radial distribution functions ( )OOg r  and ( )HHg r  of 

ice Ic at 77 K and experimental molar volume 19.3 cm3∙mol−1. Only 
intermolecular correlation has been counted. 

 

 
(a)                                                              (b) 

Figure 4. Contour plot of distribution of H atoms as a function of R and s in ice Ic at 77 K and experimental molar volume 19.3 cm3∙mol-1. 
(a) PIMD; (b) classical MD. 
 

a couple of sharp distribution maxima at 0.7s = ±  Å and 2.7R =  Å, which is equiv-
alent to O-H 1.0r =  Å and ( )O H hydrogen bond 1.7r =



 Å. This is a consequence of retention 
of well-defined ice Ic crystal structure. On the other hand, the distribution obtained 
from the PIMD in Figure 4(a) is more broadened than the classical limit, whereas the 
maxima of distribution are still located at the same two spots as the classical counter-
part. Consequently, both for the PIMD and the classical MD, the initially set configura-
tion of ice Ic is well retained. This finding is in accordance with the above-described 
discussion that gHH(r) of PIMD is a smoothed version of the classical counterpart. This 
also supports that H atoms are not disordered but simply have broadened distribution 
centered around lattice points. In conclusion, for ice Ic at 77 K and experimental den-
sity, though there is significant extension of distribution of H atoms due to quantum 
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dispersion, the crystalline structure remains in the framework of adopted model 
SPC/F2. 

3.3. Volume and Temperature Dependences of Radial Distribution  
Functions 

3.3.1. Results for 77 K 
Figure 5 shows gOO(r) calculated from PIMD simulations for each set molar volume at 
77 K and 10 K. At 77 K, in Figure 5(a1), for large molar volume than the experimental 
value there remain well-defined peaks of ice Ic. However, at 17.3 cm3∙mol−1 (Figure 
5(b1)) gOO(r) starts to collapse; non-zero distribution exists between the first and 
second peaks. The collapse of gOO(r) is further promoted as the system volume is more 
compressed (16.2 - 9.84 cm3∙mol−1). 

These RDFs obviously indicate the amorphousness or disorder of the distribution of 
oxygen atoms constituting the backbone of the whole system. Observed collapse of the 
RDFs is distinguished from such broadening of the distribution of quantized H atoms 
as observed in ice Ic in the last subsection. Rather it is certain that the present amor-
phization is caused by confinement of the system in small volume or compression. As 
seen in Figure 5(c1), gOO(r) at 77 K becomes even flatter and is uniform in the range of 
3.3 - 4.0 Å under the utmost compression, indicating that the amorphization is further 
promoted. Figure 6 shows the RDFs ( )HHg r  and ( )OHg r  at 77 K. Also in this figure, 
we can see the same tendency of amorphousness as observed in Figure 5(b1) and Fig-
ure 5(c1); in Figure 6(c), Figure 6(d) as well, the RDFs clearly exhibit smooth curves 
characteristic of amorphous structure. With connection to the potential energy profile 
in Figure 2(a), the rise of Einter at higher density is attributed to this amorphousness of 
the system. The state attained for 13.8 and 15.4 cm3∙mol−1 presently is considered as 
identical to the HDA which Mishima et al. discovered for the same density. 

3.3.2. Results for 10 K 
In the right column of Figure 5, the collapse of gOO(r) at 10 K occurs only under the 
utmost compression conditions (Figure 5(c2)). Namely, the original ice Ic structure is 
retained at molar volume 15.4 cm3∙mol−1 and more (Figure 5(a2) and Figure 5(b2)) 
though at 15.4 cm3∙mol−1 amorphization already occurs at 77 K (see Figure 5(b1) and 
Figure 5(b2)). 

Thus, the volume range to retain ice Ic structure is wider (25.7 - 15.4 cm3∙mol−1) at 10 
K than 77 K (25.7 - 19.3 cm3∙mol−1). This suggests that enhanced quantum dispersion at 
lower temperature contributes to the stabilization of ice Ic structure. It seems that the 
atoms with more stretched distribution due to quantum dispersion at 10 K behave as if 
they were more expanded cushions with which the ice structure is filled up to support 
wider volume. The RDFs ( )HHg r  and ( )OHg r  at 10 K are shown in Figure 7. In this 
figure as well, the amorphousness is seen only under utmost compression condition 
(Figure 7(c) and Figure 7(d)). However, it is noteworthy that, in Figure 7(c), gHH(r) 
for HDA at 10 K is extremely flat. Surprisingly, such uniform profile is similar to RDFs 
of supercritical fluids in general [32] [33]. This is a consequence of both the quantum  
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Figure 5. The oxygen-oxygen radial distribution function goo(r) calculated from PIMD simulations. (a1, a2) Larger volume than experi-
mental value of ice Ic; (b1, b2) Fairly compressed volume; (c1, c2) Extremely compressed volume. The three panels in the left (right) col-
umn are for 77 K (10 K). In every panel, goo(r) at the experimental molar volume 19.3 cm3∙mol−1 of ice Ic is drawn in black line for com-
parison. 
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Figure 6. The hydrogen-hydrogen radial distribution function ( )HHg r  and the oxygen-hydrogen radial distribution func-

tion ( )OHg r  for compressed states at 77 K calculated from PIMD simulations. In these functions, only intermolecular cor-

relation has been counted. The two panels in the left (right) column are ( )HHg r  ( ( )OHg r ). In every panel, the RDF for the 

experimental molar volume 19.3 cm3∙mol−1 of ice Ic is drawn in black line for comparison. 
 

dispersion of atoms and the amorphous structure of the whole system. 

3.4. Further Analysis of Distribution of H Atoms in Quantum Regime 

In order to examine the distribution of H atoms, in Figure 8 we show the contour plot 
of distribution of H atoms for the PIMD results of ice Ic and HDA. In every panel in 
this figure, the distribution of H atoms is notably spread in space and gives non-   
classical appearance. In Figure 8(a2), for ice Ic at 10 K, we can observe a couple of se-
parated spot distributions at 1.5s = ±  Å and cos 0θ = . When the O-O distance is 2.7 
Å which is the first peak distance in gOO(r) in Figure 5, this is equivalent to  

( )O H hydrogen bond 5 Å2.  r =
  and H O O 68i jα∠ =  (see Figure 1). This angle denotes that 

the O-H-O configuration of three atoms is nonlinear and the hydrogen bond is bent. 
For ice Ic at 10 K, therefore there arises non-zero probability that hydrogen-bonded 
molecular pair has nonlinear orientation rather than the linear hydrogen bond charac-
teristic of ice Ic. This is evidently caused by quantum dispersion which is enhanced by 
lowering the temperature. Such non-zero probability of nonlinear configuration has not  
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Figure 7. The hydrogen-hydrogen radial distribution function ( )HHg r  and the oxygen-hydrogen radial distribution func-

tion ( )OHg r  for compressed states at 10 K calculated from PIMD simulations. The explanation is the same as Figure 6. 

 
been reported so far in the classical MD simulations of ice Ic. We should note that, in 
spite of this probability, the system is not amorphized at this density 19.3 cm3∙mol−1 and 
retain the crystalline structure, as described in Section 3.2. Here let us discuss the 
above-described occurrence of non-linear orientation. Once a pair of hydrogen-bonded 
water molecules have nonlinear orientation, other adjacent molecules should be nonli-
nearly oriented as well to avoid rising up intermolecular potential energy. Such correla-
tion of reorientation of water molecules can be fulfilled if the correlation is collective 
and concerted. In fact, a recent neutron quasielastic scattering experiment detected 
concerted tunneling transfer of H atoms in ice Ih and Ic at 5 K [34]. Further analysis 
focusing on the possibility of orientational correlation of water molecules will be our 
next subject. 

For HDA, on the other hand, in Figure 8(b1) and Figure 8(b2) we can carefully see 
that there is no distribution at 1.5s = ±  Å and cos 0θ = , but the edge of the distribu-
tion is located around 1.2s = ±  Å and cos 0θ = . Moreover, there is no spotty distribu-
tion like ice Ic at 10 K (Figure 8(a2)) but non-zero distribution is spread continuously 
arising from smaller cosθ  toward the edge. This characteristics indicates that the po-
sition of H atoms is shifted closer to the middle of the O-O line segment than the loca- 
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Figure 8. Contour plot of distribution of quantized H atoms as a function of s and cosθ in ice Ic and HDA, obtained from PIMD simula-
tions. Each molar volume for ice Ic and HDA shown in every panel is experimental value. The two panels in the left (right) column are for 
77 K (10 K). 
 

tion of 1.5s = ±  Å and that they are distributed continuously for 90 180θ≤ ≤ , 
though the distribution is very slight. This continuous distribution therefore implies 
non-zero probability of orientational disorder of water molecules in HDA. As we have 
seen in gOO(r) in Figure 5, there is certainly the disorder of O atoms or the amorph-
ousness of the whole system of HDA. It is now clear that such amorphous structure is 
accompanied with the orientational disorder of a very small portion of water molecules. 

In Figure 8(a2), Figure 8(b1), and Figure 8(b2), we find that there is non-zero dis-
tribution also at s = 0 Å and cos 1θ = −  for HDA at 77 K and for both ice Ic and HDA 
at 10 K. This indicates the existence of H atoms located at the middle point of two ad-
jacent O atoms (one of which is covalently bonded to the H atom). Furthermore, non- 
zero density distribution of H atoms is continuously spread along s axis at cos 1θ = − , 
i.e., along the O-O line segment (for reference see Figure 1). However, it should be 
carefully noted that this does not mean the H atom transfer as the quantum mechanical 
resonance of two diabatic states 
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[ ]O-H O  O H-O↔                            (4) 

because the SPC/F2 potential employed in the present simulations does not include 
breaking of covalent bond of each individual H2O molecule [27]. It is certain that the 
present nonzero distribution at the middle point of two O atoms has been caused only 
by the compression and the quantization of atoms in the present framework of model-
ing, without taking into account of the H atom transfer. 

4. Conclusions 

We have revealed significant quantum effect on static distribution of atoms in ice Ic. At 
first, quantized ice Ic has the lowest intermolecular potential energy at the experimental 
density and temperature, while the molar volume of the minimum potential energy is 
deviated to smaller volume in the classical limit. The distribution of H atoms in ice Ic 
under the experimental condition is significantly broadened with retaining the crystal-
line structure of ice Ic. When ice Ic is cooled down to 10 K, the quantization of atoms 
produces non-zero probability that hydrogen-bonded water molecules are nonlinearly 
oriented even in ice Ic. This is also a result of quantum effect enhanced by lowering the 
temperature. In addition, there is also non-zero probability that H atoms are located at 
the middle point of two neighboring O atoms in ice Ic at 10 K. It should be noted that 
this broad distribution of H atoms does not mean such proton disorder as pointed out 
by using neutron diffraction experiments [2] [3] but is simply a consequence of quan-
tum dispersion of H atoms with retaining the ice Ic structure essentially. 

In the present simulations, setting of small molar volume or compression has in-
duced the amorphization of ice Ic. At reported experimental density by Mishima et al. 
(15.4 and 13.8 cm3∙mol−1), quantized ice Ic has also been amorphized, and the achieved 
state is considered as identical to the HDA which Mishima et al. discovered. For HDA 
at 77 and 10 K, there is non-zero distribution of H atoms spanning over OHO∠  

90  - 180=  . This suggests non-zero probability of orientational disorder of a small 
portion of water molecules in the amorphous structure. In this connection, gHH(r) un-
der utmost compression exhibits very smooth curve and converges to unity. This fea-
ture resembles that of RDFs of supercritical fluids in general. In addition, there is also 
non-zero probability of H atoms at the middle point of two neighboring O atoms in 
HDA. These features of atomic distribution in HDA are attributed to both the quantum 
dispersion of atomic nuclei and the compression of the system. 

Finally we should mention some perspectives. In relation to recent quasielastic neu-
tron scattering experiments which revealed the existence of concerted motion of H 
atoms in ice Ih and Ic [34], Benton et al. discussed the delocalization of H atoms in low- 
temperature ice to suggest the formation of even quantum liquid of protons in ice Ih 
[35]. Our findings of H atom delocalization may presumably be related to such liquid- 
like collective anharmonic motion suggested for low-temperature ice. However, no 
proton transfer mechanism has been installed in the present simulations based on the 
SPC/F2 model in which the intramolecular potential is quadratic. If a double-well-type 
adiabatic potential model representing proton transfer and quantum-mechanical re-
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sonance between diabatic states [36] were implemented in the simulation, the activa-
tion potential barrier at the O-O midpoint is lowered in the regime of temperature- 
dependent Feynman-Hibbs effective potential or centroid potential in path integral [37] 
[38]. This should result in increase of the distribution of H atoms at the middle point of 
the O-O line segment than the present result. Hydrogen atoms can then transfer from 
one potential minimum position to another minimum more easily, as in Equation (4). 
Next subject will be out to investigate how broad distribution of H atoms found pre-
sently may be connected to the dynamics of H atoms in ice and HDA on the basis of 
such a model and centroid molecular dynamics [39]. In addition, further investigation 
will be planned to pursue the compression and quantum effects in ice polymorphs such 
as ice XI, II, XV, and VIII, which exist at low temperature and high density with real 
proton order. 
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