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Abstract 
A scalar equilibrium (SE) is defined for n-person prescriptive games in normal form. When a deci-
sion criterion (notion of rationality) is either agreed upon by the players or prescribed by an ex-
ternal arbiter, the resulting decision process is modeled by a suitable scalar transformation (util-
ity function). Each n-tuple of von Neumann-Morgenstern utilities is transformed into a nonnega-
tive scalar value between 0 and 1. Any n-tuple yielding a largest scalar value determines an SE, 
which is always a pure strategy profile. SEs can be computed much faster than Nash equilibria, for 
example; and the decision criterion need not be based on the players’ selfishness. To illustrate the 
SE, we define a compromise equilibrium, establish its Pareto optimality, and present examples 
comparing it to other solution concepts. 
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1. Introduction 
Game theory is the study of strategic interactions among agents called players. Ultimately it involves a solution 
concept to describe, predict, or prescribe the choices of these players [1]. Modern game theory [2] [3] is predo-
minantly noncooperative and assumes that any joint rational action by the players must necessarily be a Nash 
Equilibrium (NE) [4] [5]. In other words, rational players are assumed to be selfish. They act in their individual 
self-interest in the sense that each player considers his best responses to the possible joint actions of the other 
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players. The result is that no player can improve his expected payoff in an NE by unilaterally changing his pure 
or mixed strategy. Various refinements of the NE (see [2] [3], for example) have been proposed, yet the NE does 
not suffice for all strategic interactions. Social dilemmas [6] [7] illustrate that selfish behavior may conflict with 
group interests. For example, in Prisoner’s Dilemma each player can do better by cooperating. 

In this paper we consider one-shot, n-person games in normal form. A player is considered rational if his 
strategy choices are consistent with some underlying decision-making criterion. For example, instead of being 
greedy, a player may be satisfied with a certain level of payoff. To provide a theoretical framework for such cas-
es, we define a scalar equilibrium (SE) in which a scalar transformation modeling the decision criterion assigns 
scalar values in [0,1] to the outcome of each joint action of the players. An SE is a joint action maximizing these 
scalar values. 

SEs address three problematic areas of noncooperative game theory.   
1) SEs do not require that rationality be defined by selfish behavior. 
2) An SE consists of pure strategies for each player, as opposed to mixed strategies that are difficult to interp-

ret and implement [8]. 
3) NEs are difficult to compute [9], while SEs can be quickly obtained by simply finding the maximum of a 

finite number of scalar values. 
SEs are particularly applicable (a) when all players have the same notion of rationality or (b) when an external 

arbiter dictates each player’s strategy according to some predetermined decision criteria. In case (a) the SE is 
descriptive or predictive—or possibly normative in the sense that it suggests actions for the players. In case (b), 
which is emphasized here, the SE is prescriptive.  

The paper is organized as follows. In Section 2 we formally define the SE. In Section 3 we illustrate SEs with 
the compromise equilibrium (CE) and establish its Pareto optimality. In Section 4 we present some examples of 
two-person games and compare the CE with other solution concepts. Finally, in Section 5 we offer conclusions 
and discuss future research. 

2. Scalar Equilibrium 

Let ( ) ( ), , ,i ii N i N
N S u A

∈ ∈
Γ =  denote an n-person, one-shot prescriptive game in normal form, where  

{ }1, ,N n=   is the set of players, iS  is the finite set of pure strategies for player ,i  ( )iu s  is the von Neu- 

mann-Morgenstern (VMN) utility of player i  for a pure strategy profile ( )1
1

, ,
n

n i
i

s s s S S
=

= ∈ =∏  for all  

players, and ( ) ( ) ( )( )1 , , .nu s u s u s=   A is an arbiter who assigns strategies for the players in their one-shot.  

A need not be a person. The arbiter could be a common decision criterion applied by the n players. The arbiter 
could be a licensing agreement for the licensees of a patent, for example. It could be a computer algorithm for 
making real-time decisions on a website where the players have agreed to its terms and conditions. In the current 
regulatory spirit, it could also be a policy imposed by a national governmental agency on some segment of the 
population. In other words, an arbiter is a prescriptive agent. 

Regardless, A’s decision criterion for assigning strategies can be represented by an ordinal utility function  
( ) 1:AT u S R→  (see [10] [11]) that induces a preference relation A≤  on ( ).u S  For ,s s S′ ′′∈  we write  

( ) ( )Au s u s′ ′′<  if ( ) ( ) ,A AT u s T u s′ ′′<       ( ) ( )Au s u s′ ′′=  if ( ) ( ) ,A AT u s T u s′ ′′=        and ( ) ( )Au s u s′ ′′≤   

if either ( ) ( )Au s u s′ ′′<  or ( ) ( ).Au s u s′ ′′=  A is said to be indifferent between s′  and s′′  if  

( ) ( ) .A AT u s T u s′ ′′=        Thus A may be considered rational in the sense that A≤  is complete and transitive.  

Definition 2.1. The pure strategy profile *s  is an SE for Γ  if and only if ( ) ( )*
A AT u s T u s ≤      for all 

.s S∈  Thus *s  is an SE if it maximizes the scalar composite function AT u°  over .S  
If Γ  has multiple SEs resulting from ties in the maximization of Definition 3.1, it is assumed that A will 

choose one *s  from the SEs by some further mechanism. 

3. Compromise Equilibrium 
The compromise equilibrium CE for Γ  is now presented as an example of an SE. Since iS  is a finite set of 
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pure strategies for each player, ( )iu s  is bounded. We write ( )maxi is S
M u s

∈
=  and ( )mini is S

m u s
∈

=  for 

1, , .i n=   Now for all s S∈  define the transformation ( ) 1:AT u S R→  by 

( ) ( )
1

1
.

1

n
i i

A
i i i

u s m
T u s

M m=

− +
=   − +∏                                 (1) 

Note that ( )0 1AT u s< ≤    for all .s S∈  The number 1 in the numerators of Equation (1) prevents 
 

( )AT u s    from being 0 for an s S∈  for which ( )i iu s m=  for some i, while the 1 in the denominators pre-
vent a division by 0 for an i for which .i im M=  

The intuition behind Equation (1) is explained as follows. If we maximize the function ( )1
1

..., ,
n

n i
i

f z z z
=

=∏   

over the region 0 1, 1, , ,iz i n< ≤ =   the maximum is given by * 1, 1, , .iz i n= =   Similarly, maximizing Equa- 

tion (1) yields a CE *s  for which the terms 
( )*

i i

i i

u s m

M m

−

−
 are large and close in value for those i  for which  

.i iM m>  Otherwise ( )* .i i iu s M m= =  Thus if an arbiter A applies Equation (1), the players with i iM m>   

will receive payoffs in roughly the same percentile of their payoff ranges. If maximizing ( )AT u s    is the deci- 

sion criterion for all players (with ties broken by some further mechanism), the outcome can be construed as an 
equitable compromise between the players’ selfishness and unselfishness. A CE, however, differs substantially 
from the Rabin’s fairness equilibrium [12] for two players and from other notions of fairness as presented in 
[13]. 

Any CE is also a Pareto optimum [14] of ( ) ,u S which is essential for a solution concept to an n-person game 
[15]. For example, a pure NE not Pareto optimal cannot be a joint rational solution since an alternate strategy 
profile can improve some players’ payoffs without diminishing anyone’s.  

Definition 3.1. The pure strategy profile s S′′∈  dominates s S′∈  if and only if ( ) ( )i iu s u s′ ′′≤  for  

1, ,i n=   and ( ) ( )j ju s u s′ ′′<  for some .j  A pure strategy profile *s S∈  is Pareto optimal for Γ  if *s   
is not dominated by any .s S∈  

Lemma 3.2. For any , ,Ss s′ ′′∈  if s′′  dominates ,s′ then ( ) ( ) .A AT u Ts u s′ ′′      <  

Proof. Let , ,Ss s′ ′′∈  and suppose that s′′  dominates .s′  From Definition 3. 1 it follows that  
( ) ( )i iu s u s′ ′′≤  for all 1, ,i n=   and ( ) ( )j ju s u s′ ′′<  for some index j. Thus for 1, ,i n=   

( ) ( )1 1
0 ,

1 1
i i i i

i i i i

u m u m
M m

s
M m

s− + − +
< ≤

′

−

′

− + +

′
                            (2) 

and for j  

( ) ( )1 1
0 .

1 1
j j j j

j j j j

u m u m
M m

s
M m

s− + − +
< <

′

−

′

− + +

′
                            (3) 

Together Equation (2) and Equation (3) give 

( ) ( )
1 1

1 1
,

1 1

n n
i i i i

i ii i i i

u m u m
M m M m

s s

= =

− + − +
<

− +

′ ′

+ −

′
∏ ∏  

so ( ) ( ) .A AT u s T u s′ ′′<        


 

Theorem 3.3. If *s  is a CE for ,Γ  then *s  is Pareto optimal for .Γ  
Proof. Let *s  be a CE for .Γ  We prove the contrapositive. If *s  is not Pareto optimal, there exists  

Ss′∈  that dominates *.s  From Lemma 3.2 it follows that ( ) ( )* ,A AT u s T su  ′  <     so *s  is not a CE  

for .Γ  

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4. Examples 
We now present two examples for 2n =  to illustrate the CE. For 2,n >  calculations using Equation (1) are 
similar. In the examples, we compare the CE to any pure NE, where each player’s action selfishly maximizes his 
payoff for the action of the other player. We also compare CEs to any mutual-max outcome [12], where each 
player unselfishly maximizes the payoff for other player’s action. Finally, we compare CEs to maximin out-
comes [2] in which each player’s action maximizes his minimum payoff resulting from the actions of the other 
players.  

Example 4.1. Consider the Prisoner’s Dilemma (PD) payoff matrix of Figure 1, where D denotes the action 
“Defect” and C denotes “Cooperate”. The pure NE is (D, D), the mutual-max outcome is (C,C), and the max-
imin outcome is (D, D). The matrix of values calculated from Equation (1) is shown in Figure 2, from which the 
Pareto optimum (C, C) is the unique CE. Note that the mutual-max outcome and the CE are the same. 

Example 4.2. Consider now the discoordination game [16] given by Figure 3. Players 1 and 2 approach each 
other. Player 1’s incentive is to veer right (R) or left (L) in the opposite direction from Player 2’s move. Howev-
er, Player 2’s incentive is to encounter Player 1. There is no pure NE or mutual-max outcome for this game. The 
maximin outcome is (R, R). The CE scalar values are shown in Figure 4, with the unique CE being the Pareto 
optimum (R, R). The maximin outcome is the same as the CE.  

5. Conclusions 
In this paper the general notion of a scalar equilibrium SE is defined for an n-person, one-shot game in normal 
form. The advantages of an SE include flexibility in the decision criteria for decision makers, the selection of 
pure strategies for the players, and the speed of computing an SE. An SE is most applicable when the games are 
prescriptive, i.e., when an arbiter A assigns the players’ actions for their one shot. 

The compromise equilibrium CE is presented here as a special case of an SE. Significantly, a CE is also a Pa-
reto optimal pure strategy profile for the VNM utilities. It may be interpreted as a reasonable tradeoff of payoffs 
 

 
                                       Figure 1. PD payoff matrix. 
 

 
                                     Figure 2. Scalar values for Figure 1. 
 

 
                                     Figure 3. Discoordination game. 
 

 
                                   Figure 4. Scalar values for Figure 3. 
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imposed on the players by the arbiter A. Future research should explore other SEs. For example, one might de- 
fine a transformation ( )AT u s    to obtain an SE approximating a pure NE when one does not exist. 
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