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Abstract 
In this paper, we construct a sequence of hyperbolic systems (13) to approximate the general sys-
tem of one-dimensional nonlinear elasticity in Lagrangian coordinates (2). For each fixed ap-
proximation parameter δ, we establish the existence of entropy solutions for the Cauchy problem 
(13) with bounded initial data (23). 
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1. Introduction 
Three most classical, hyperbolic systems of two equations in one-dimension are the system of isentropic gas 
dynamics in Eulerian coordinates 
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where ρ  is the density of gas, u  the velocity and ( )P P ρ=  the pressure; the nonlinear hyperbolic system 
of elasticity 
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where v  denotes the strain, ( )f v  is the stress and u  the velocity, which describes the balance of mass and 
linear momentum, and is equivalent to the nonlinear wave equation 

( ) 0;tt xxv f v− =                                     (3) 

and the system of compressible fluid flow 
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To obtain the global existence of weak solutions for nonstrictly hyperbolic systems (two eigenvalues are real, 
but coincide at some points or lines), the compensated compactness theory (cf. [1] [2] or the books [3]-[5]) is 
still a powerful and unique method until now. 

For the polytropic gas ( ) ,P c γρ ρ=  where 1γ ≥  and c  is an arbitrary positive constant, the Cauchy 
problem (1) with bounded initial data was completely resolved by many authors (cf. [6]-[11]). When ( )P ρ  
has the same principal singularity as the γ -law in the neighborhood of vacuum ( )0ρ = , a compact framework 
was first provided in [12] [13] and later, the necessary 1H −  compactness of weak entropy-entropy flux pairs 
for general pressure function was completed in [14]. 

Under the strictly hyperbolic condition ( ) 0f v c′ ≤ <  and some linearly degenerate conditions ( ) 0vf v′′ <  
or ( ) 0vf v′′ >  as 0v ≠ , the global existence of weak bounded solutions, or pL  solutions, 1 p< < ∞  was 
obtained by Diperna [15] and Lin [16], Shearer [17] respectively. 

Without the strictly hyperbolic restriction, a preliminary existence result of the nonlinear wave Equation (3) 
was proved in [18] for the special case ( ) 1 , 1f v v v γ γ−= − >  under the assumption 0v ≥  or 0v ≤ . 

Using the Glimm’s scheme method (cf. [19]), Diperna [20] first studied the system (4) in a strictly hyperbolic 
region. Roughly speaking, for the polytropic case ( ) 1F c γρ ρ −= , Diperna’s results cover the case 1 3γ< < . 

Since the solutions for the case of 3γ >  always touch the vacuum, its existence was obtained in [21] by 
using the compensated compactness method coupled with some basic ideas of the kinetic formulations (cf. [10] 
[11]). The existence of the Cauchy problem (7) for more general function ( )F ρ  was given in [22] under some 
conditions to ensure the 1H −  compactness for all smooth entropy-entropy flux pairs. 

If all smooth entropy-entropy flux pairs satisfy the 1H −  compactness, an ideal compactness framework to 
prove the global existence was provided by Diperna in [15]. For the above three systems (1)-(2) and (4), we can 
prove the 1H −  compactness only for half of the entropies (weak or strong entropy). 

2. Main New Ideas 
In [14] (see also [23] for inhomogeneous system), the author constructed a sequence of regular hyperbolic systems 
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to approximate system (1), where 0δ >  in (5) denotes a regular perturbation constant and the perturbation 
pressure 

( ) ( ) ( ) ( )1 2 2

2 1, d 2 d .tP P t t P P t t
t t

ρ ρ

δ δ

δρ δ ρ δ− ′ ′= = −∫ ∫                    (6) 

The most interesting point of this kind approximation is that both systems (5) and (1) have the same entropies 
(or the same entropy equation). In [14], the 1H −  compactness of weak entropy-entropy flux pairs was also 
proved for general pressure function ( )P ρ . 

Let the entropy-entropy flux pairs of systems (1) and (5) be ( ) ( )( ), , ,u q uη ρ ρ  and 
( ) ( ) ( )( ), , , ,au q u q uη ρ ρ δ ρ+  respectively. Then by using Murat-Tartar theorem, we have 

( ) ( )2 11 2 2 1 1 2 1 2 2 1 1 22 1
,a a a aq q q q q q q qη η δ η η η η δ η η− + − = − + −                (7) 
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for any fixed 0δ ≥ , where the weak-star limit is denoted by ( ) ( )limw u uε εη η− =  as ε  goes to zero. 
Paying attention to the approximation function (6), we know that 

( ) ( )( ) ( ) ( )( ), , , or , , ,a au q u u q uη ρ δ ρ η ρ ρ                         (8) 

are the entropy-entropy flux pairs of system 
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or system 
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respectively. 
If we could prove from the arbitrary of δ  in (7) that 

1 2 2 1 1 2 2 1q q q qη η η η− = −                               (11) 

and 

2 1 2 11 2 1 2 ,a a a aq q q qη η η η− = −                            (12) 

where h  denotes the weak-star limit ( ), ,lim ,w h uε δ ε δρ−  as ,ε δ  tend to zero, then we would have more 

function Equations (12) to reduce the strong convergence of ( ), ,,uε δ ε δρ  as ,ε δ  tend to zero. 
Between systems (2) and (4), we have the following approximation 

( )

( ) ( ) ( )2
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which has also the same entropy equation like system (2). If we could prove (11) and (12) from (7), then 
similarly we could prove the equivalence of systems (2) and (4). Moreover, we have much more information 
from system (13) to prove the existence of solutions for system (2) or (4). 

Systems (13) and (2) have many common basic behaviors, such as the nonstrict hyperbolicity, the same 
entropy equation, same Riemann invariants and so on. 

3. Main Results 
By simple calculations, two eigenvalues of system (13) are 

( ) ( ) ( ) ( )1 21 , 1u v p v u v p vλ δ δ λ δ δ′ ′= − − − = + − −               (14) 

with corresponding right eigenvectors 

( )( ) ( )( )T T

1 21, , 1,r p v r p v′ ′= − − = −                           (15) 

and Riemann invariants 

( ) ( ) ( ) ( ), d , , d .
v v

z u v u p s s w u v u p s s′ ′= − − = + −∫ ∫               (16) 

Moreover 
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Any entropy-entropy flux pair ( ) ( )( ), , ,v u q v uη  of system (13) satisfies the additional system 

( ) ( ) ( )1 , 1 .v v u u v uq u v p v q v uδ η δ η δ η δ η′= + − = − +                 (19) 

Eliminating the q  from (19), we have 

( ) .vv uup vη η′= −                                    (20) 

Therefore systems (13) and (2) have the same entropies. From these calculations, we know that system (13) is 

strictly hyperbolic in the domain ( ) 1, : 0x t v
δ

 < < 
 

 or ( ) 1, :x t v
δ

 > 
 

, while it is nonstrictly hyperbolic on 

the domain ( ) 1, :x t v
δ

 = 
 

 since 1 2λ λ=  when 
1v
δ

= . 

However, from (17) and (18), for each fixed δ , both characteristic fields of system (13) are genuinely  

nonlinear in the domain ( ) 1, : 0x t v
δ

 < ≤ 
 

 if ( ) ( )0, 0p v p v′ ′′< >  or in the domain ( ) 1, :x t v
δ

 ≥ 
 

 if  

( ) ( )0, 0p v p v′ ′′< < . In the first case ( ) ( )( )0, 0p v p v′ ′′< > , we have an a-priori L∞  estimate for the 
solutions of system (13) 

1 1
1 ,c v u M
δ

≤ ≤ ≤                                  (21) 

because the region 

( ) ( ) ( ) 1, : , , , ,R v u w v u M z v u M vδ δ
 = ≥ − ≤ ≤ 
 

 

is an invariant region, where 1 0 ,c c≤  ( 0c  is given in Theorem 1), M  and 1M  are positive constants 
depending on the initial date, but being independent of δ . In the second case ( ) ( )( )0, 0p v p v′ ′′< < , we have 
the L∞  estimate 

1 1
1 ,v M u M
δ
≤ ≤ ≤                                 (22) 

because the region 

( ) ( ) ( ) 1, : , , , ,R v u w v u M z v u M vδ δ
 = ≤ ≥ − ≥ 
 

 

is an invariant region. 
In this paper, for fixed 0δ > , we first establish the existence of entropy solutions for the Cauchy problem 

(13) with bounded measurable initial data 

( ) ( )( ) ( ) ( )( )0 0,0 , ,0 , .v x u x v x u x=                             (23) 

In a further coming paper, we will study the relation between the functions equations (11) and (12), and the 
convergence of approximated solutions of system (13) as δ  goes to zero. 
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Theorem 1 Suppose the initial data ( ) ( )( )0 0,v x u x  be bounded measurable. Let (I):  

( ) ( ) ( )0 0
1< 0, > 0, ,p v p v c v x
δ

′ ′′ ≤ ≤  

where 0 0c >  is a positive constant, or (II): ( ) ( ) ( )0
10, 0,p v p v v x
δ

′ ′′< < ≥ . Then the Cauchy problem (13)  

with the bounded measurable initial data (23) has a global bounded entropy solution. 
Note 1. The idea to use the flux perturbation coupled with the vanishing viscosity was well applied by the 

author in [24] to control the super-line, source terms and to obtain the L∞  estimate for the nonhomogeneous 
system of isentropic gas dynamics. 

Note 2. It is well known that system (2) is equivalent to system (1), but (1) is different from system (4) 
although the latter can be derived by substituting the first equation in (1) into the second. However, (4) can be 

considered as the approximation of (2). In fact, let 
1 ,v x yρ δ
δ

= − =  in (13). Then (13) is rewritten to the form 
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 
+ + = 
 

                                  (24) 

for some nonlinear function ( ),g ρ δ . 
Note 3. For any fixed 0δ > , the invariant region Rδ  above is bounded, so the vacuum is avoided. However, 

the limit of Rδ , as δ  goes to zero, is the original invariant region of system (2) because v  could be infinity 
from the estimates in (21). 

In the next section, we will use the compensated compactness method coupled with the construction of Lax 
entropies [25] to prove Theorem 1. 

4. Proof of Theorem 1 
In this section, we prove Theorem 1. 

Consider the Cauchy problem for the related parabolic system 
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                      (25) 

with the initial data (23). 
We multiply (25) by ( ),v uw w  and ( ),v uz z , respectively, to obtain 

( )
( )

2
2 ,

2
t x xx x

p v
w w w v

p v

ε
λ ε

′′
+ = +

′−
                               (26) 

and 
( )
( )

2
1 .

2
t x xx x

p v
z z z v

p v

ε
λ ε

′′
+ = −

′−
                                (27) 

Then the assumptions on ( )p v  yield 

2t x xxw w wλ ε+ ≥                                        (28) 
and 

1t x xxz z zλ ε+ ≤                                         (29) 

if ( ) ( )0, 0p v p v′ ′′< > ; or 
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2t x xxw w wλ ε+ ≤                                        (30) 
and 

1t x xxz z zλ ε+ ≥                                         (31) 

if ( ) ( )0, 0.p v p v′ ′′< <  
If we consider (28) and (29) (or (30) and (31)) as inequalities about the variables w  and z , then we can get  

the estimates ( ) ( ), , , ,, , ,w v u M z v u Mε δ ε δ ε δ ε δ≥ − ≤  by applying the maximum principle to (28) and (29) (or  

( ) ( ), , , ,, , ,w v u M z v u Mε δ ε δ ε δ ε δ≤ ≥ −  by applying the maximum principle to (30) and (31)). Then, using the  

first equation in (25), we get , 1vε δ

δ
≤  or , 1vε δ

δ
≥  depending on the conditions on ( )0v x . Therefore, the  

region 

( ) ( ) ( ) 1, : , , , ,R v u w v u M z v u M vδ δ
 = ≥ − ≤ ≤ 
 

 

or 

( ) ( ) ( ) 1, : , , , ,R v u w v u M z v u M vδ δ
 = ≤ ≥ − ≥ 
 

 

is respectively an invariant region. Thus we obtain the estimates given in (21) or (22) respectively. 

It is easy to check that system (13) has a strictly convex entropy when 
1v
δ

≤  or 
1v
δ

≥  

( )
2

d d .
2

v su p sη τ τ′= − ∫ ∫                                 (32) 

We multiply (4.1) by ( ),v uη η   to obtain the boundedness of 

( ) ( ) ( )T2, , ,x x x xv u v u v uε η⋅∇ ⋅                              (33) 

in ( )1
locL R R+× . Then it follows that 

( ) 2 2
x xp v v uε ε′− +                                         (34) 

is bounded in ( )1
locL R R+× . Since ( ) ( ) ( )1 20 C p v Cδ δ′< ≤ − ≤  for some bounded constants ( ) ( )1 2,C Cδ δ   

when 
1v
δ

≤  or 
1v
δ

≥ , we get the boundedness of 

( )2 2 1, inx x locv u L R Rε ε +×                                  (35) 

for any fixed 0δ > . 
Now we multiply (4.1) by ( ) ( )( ), , ,v uv u v uη η , where ( ),v uη  is any smooth entropy of system (13), to obtain 

( ) ( ) ( ) ( ) ( ) ( )T2, , , , , , ,x x x xt x xxv u q v u v u v u v u v uη εη ε η+ = + ⋅∇ ⋅               (36) 

where ( ),q v u  is the entropy-flux corresponding to ( ),v uη . Then using the estimate given in (35), we know  
that the first term in the right-hand side of (36) is compact in ( )1,

locW R R− ∞ +× , and the second is bounded in  

( )1
locL R R+× . Thus the term in the left-hand side of (36) is compact in ( )1

locH R R− +× . 
Then for smooth entropy-entropy flux pairs ( ) ( )( ), , , , , , 1, 2,i iv u q v u iη δ δ =  of system (13), the following 

measure equations or the communicate relations are satisfied 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 2 1,

1 2 2 1, , , ,

,

, , , , ,

x t

x t x t x t x t

q q

q q

δ

δ δ δ δ

ν η δ δ η δ δ

ν η δ ν δ ν η δ ν δ

−

= −
                  (37) 
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where ( ),x t
δν  is the family of positive probability measures with respect to the viscosity solutions ( ), ,,v uε δ ε δ  

of the Cauchy problem (25) and (23). 
To finish the proof of Theorem 1, it is enough to prove that Young measures given in (37) are Dirac meas- 

ures. 
For applying for the framework given by DiPerna in [5] to prove that Young measures are Dirac ones, we 

construct four families of entropy-entropy flux pairs of Lax’s type in the following special form: 

( ) ( ) ( ) ( )1 1 11 1 1
1 2 2

, , ,
e , ;kw

k k k

b v k c v k d v k
a v q

k k k
η η λ

   
= + = + +   

   
                 (38) 

( ) ( ) ( ) ( )2 2 22 2 2
2 2 2

, , ,
e , ;kw

k k k

b v k c v k d v k
a v q

k k k
η η λ−
− − −

   
= + = + +   

   
             (39) 

( ) ( ) ( ) ( )3 3 32 2 2
3 1 2

, , ,
e , ;kz

k k k

b v k c v k d v k
a v q

k k k
η η λ

   
= + = + +   

   
                (40) 

( ) ( ) ( ) ( )4 4 41 1 1
4 1 2

, , ,
e , ,kz

k k k

b v k c v k d v k
a v q

k k k
η η λ−
− − −

   
= + = + +   

   
             (41) 

where ,w z  are the Riemann invariants of system (13) given by (16). Notice that all the unknown functions 
( ), 1, 2,3, 4i ia b i =  are only of a single variable v . This special simple construction yields an ordinary 

differential equation of second order with a singular coefficient 1 k  before the term of the second order 
derivative. Then the following necessary estimates for functions ( ) ( ) ( ) ( ), , , , , ,i i i ia v b v k c v k d v k  are obtained 
by the use of the singular perturbation theory of ordinary differential equations: 

( ) ( )2 20 , , ,i ia v M b v k M< ≤ ≤                                         (42) 

( ) ( )( ) ( )2 2 20 , , or , 0 , ,i i ic v k M M c v k d v k M< ≤ − ≤ < ≤                  (43) 

uniformly for 1
10 c v
δ

< ≤ ≤  or 1
1 v M
δ
≤ ≤ , where 1,2,3,4i =  and 2M  is a positive constant independent 

of k . 
In fact, substituting entropies ( ) ( )( )1

1 1e ,kw
k a b k kη ρ ρ= +  into (20), we obtain that 

( ) ( )
( )

( ) ( )
( )

1
1 1 1 1 12 2 0.

2 2

p v p v bk p v a a a p v b b
kp v p v

 ′′ ′′ ′′
 ′ ′ ′′ ′ ′− − + + − − + =
 ′ ′− − 

           (44) 

Let 

( ) ( )
( )1 12 0

2

p v
p v a a

p v

′′
′ ′− − =

′−
                            (45) 

and 

( ) ( )
( )

1
1 1 12 0.

2

p v ba p v b b
kp v

′′ ′′
′′ ′ ′+ − − + =

′−
                         (46) 

Then 

( )1 0.a p v′= − >                                    (47) 

The existence of ( )1 ,b v k  and its uniform bound ( )1 2,b v k M≤  on 1
10 c v
δ

< ≤ ≤  or 1
1 v M
δ
≤ ≤  with  
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respect to k  can be obtained by the following lemma (cf. [26]) (also see Lemma 10.2.1 in [15]): 
Lemma 2 Let ( ) [ ]2 0,Y x C h∈  be the solution of the equation 

( ), , 0,F x Y Y ′ =  

and functions ( ) ( ), , , , , ,f x y z F x y zλ  be continuous on the regions  

( ) ( ) ( ) ( )0 , ,x h y Y x l x z Y x m x′≤ ≤ − ≤ − ≤  

for some positive functions ( ) ( ),l x m x  and 0 0λ λ> > . In addition, 

( ) ( ), , , , , ,f x y z F x y zλ ε− ≤  

( ) ( )2 1 2 1, , , , ,F x y z F x y z M y y− ≤ −  

( ) ( )2 1

2 1

, , , ,F x y z F x y z
L

z z
−

≥
−

 

for some positive constants , Mε  and L . 
If ( ) ( ),y x y x λ=  is a solution of the following ordinary differential equation of second order: 

( ), , , 0,y f x y yλ λ′′ ′+ =  

with ( ) ( )0 0y Y=  and ( )0y′  being arbitrary, then for sufficiently small 0, 0λ ε> >  and  
( ) ( )0 0P y Y′ ′= − , ( )y x  exists for all 0 x h≤ ≤  and satisfies 

( ) ( ), exp ,P N Mxy x Y x
M L M L
ελ λ    − < + +        

 

where ( )
0
max .

x h
N Y x

≤ ≤
=  

Furthermore, we can use Lemma 2 again to obtain the bound of 1b′  with respect to k  if we differentiate 
Equation (46) with respect to v . 

By the second equation in (19), an entropy flux 1
kq  corresponding to 1

kη  is provided by 

( ) ( )1 1 1 11 1
2 2

1 1
e ,kw

k k

v a a v b b
q

k k
δ δ δ δ

λ η
′ ′− − − − 

= + + 
 

                   (48) 

where 

( ) ( ) ( )
( )

( )1 1

1
1 0

2

v p v
v a a p v

p v

δ
δ δ δ

′′−
′ ′− − = − − − <

′−
                    (49) 

if ( )1 , 0v p v
δ

′′≤ >  or ( )1 , 0v p v
δ

′′≥ < , and ( ) 1 11v b bδ δ′− −  both are bounded uniformly on 1
1,v c
δ

 ∈   
 or 

1
1 ,v M
δ
 ∈   

. 

In a similar way, we can obtain estimates on another three pairs of entropy-entropy flux of Lax type. Hence, 
Theorem 1 is proved when we use these entropy-entropy flux pairs in (38)-(41) together with the theory of 
compensated compactness coupled with DiPerna’s framework [15]. 

5. Conclusions 
In this paper we have looked at the general system of one-dimensional nonlinear elasticity in Lagrangian 
coordinates (2). 

We construct a hyperbolic approximations to this which are parameterized by δ . They all have the same 
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entropies as the original system. Under suitable assumptions we are able to establish uniform compactness 
estimates, and then obtain the existence of entropy solutions for the Cauchy problem. 
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