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ABSTRACT 

This paper presents the analytical and numeri-
cal solutions for a rotating variable-thickness 
solid disk. The outer edge of the solid disk is 
considered to have free boundary conditions. 
The governing equation is derived from the ba-
sic equations of the rotating solid disk and it is 
solved analytically or numerically using finite 
difference algorithm. Both analytical and nu-
merical results for the distributions of stress 
function and stresses of variable-thickness solid 
disks are obtained. Finally, the distributions of 
stress function and stresses are presented and 
the appropriate comparisons and discussions 
are made at the same angular velocity. 
 
Keywords: Rotating, Solid Disk, Variable 
Thickness, Analytical Method, Finite Difference 
Method 

1. INTRODUCTION 

The theoretical and experimental investigations on the 
rotating solid disks have been widespread attention due 
to the great practical importance in mechanical engi-
neering. Rotating disks have received a great deal of 
attention because of their widely used in many me-
chanical and electronic devices. They have extensive 
practical engineering application such as in steam and 
gas turbines, turbo generators, flywheel of internal com- 
bustion engines, turbojet engines, reciprocating engines, 
centrifugal compressors and brake disks. The problems 
of rotating solid disks have been performed under vari-
ous interesting assumptions and the topic can be easily 
found in most of the standard elasticity books [1,2]. For 
a better utilization of the material, it is necessary to al-
low variation of the effective material or thickness prop-
erties in one direction of the solid disk. 

The problems of rotating variable-thickness solid disks 

are rare in the literature. Most of the research works are 
concentrated on the analytical solutions of rotating iso-
tropic disks with simple cross-section geometries of 
uniform thickness and specifically variable thickness. 
The solution of a rotating solid disk with constant thick-
ness is obtained by Gamer [3,4] taking into account the 
linear strain hardening material behavior. The inelastic 
and viscoelastic deformations of rotating variable- 
thickness solid disks have been presented in the litera-
ture [5-8]. Eraslan [5], and Eraslan and Orcan [6] have 
analytically studied rotating disks of exponentially 
varying thickness and of linearly strain hardening mate-
rial. Eraslan [7] has presented the stress distributions in 
elastic-plastic rotating disks with elliptical thickness pro- 
files using Tresca and von Mises criteria. Zenkour and 
Allam [8] have developed analytical solution for the 
analysis of deformation and stresses in elastic rotating 
viscoelastic solid and annular disks with arbitrary cross- 
sections of continuously variable thickness. 

As many rotating components in use have complex 
cross-sectional geometries, they cannot be dealt with 
using the existing analytical methods. Numerical meth-
ods, such as the finite element method [9], the boundary 
element method [10] and Runge-Kutta’s algorithm [11], 
can be applied to cope with these rotating components. 
You et al. [11] have numerically studied rotating solid 
disks of uniform thickness and constant density as well 
as annular disks of variable thickness and variable den-
sity. In a recent paper, Zenkour and Mashat [12] have 
presented both analytical and numerical solutions for the 
analysis of deformation and stresses in elastic rotating 
disks with arbitrary cross-sections of continuously vari-
able thickness. 

In this article, a unified governing equation is firstly 
derived from the basic equations of the rotating variable- 
thickness solid disk and the proposed stress-strain rela-
tionship. The analytical solution for rotating solid disk 
with arbitrary cross-section of continuously variable 
thickness is presented. Next, the finite difference method 
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(FDM) is also introduced to solve the governing equa-
tion. A comparison between both analytical and numeri-
cal solutions is made. Finally, a number of application 
examples are given to demonstrate the validity of the 
proposed method. 

2. BASIC EQUATIONS 

As the effect of thickness variation of rotating solid 
disks can be taken into account in their equation of mo-
tion, the theory of the variable-thickness solid disks can 
give good results as that of uniform-thickness disks as 
long as they meet the assumption of plane stress. The 
present solid disk is considered as a single layer of vari-
able thickness. After considering this effect, the equation 
of motion of rotating disks with variable thickness can 
be written as 

  2 2d
0,

d rhr h h r
r            (1) 

where r  and   are the radial and circumferential 
stresses, h is the variable thickness of the disk, r is the 
radial coordinate,   is the material density of the ro-
tating solid disk and   is the constant angular velocity. 

The relations between the radial displacement u and 
the strain components are irrespective of the thickness of 
the rotating solid disk. They can be written as 

d
, ,

dr

u u

r r                 (2) 

where r  and   are the radial and circumferential 
strains, respectively. The above geometric relations lead 
to the following condition of deformation harmony: 

 d
0.

d rr
r                (3) 

For the elastic deformation, the constitutive equations 
for the variable-thickness solid disk can be described 
with Hooke’s law 

, ,r r
r E E

 


   
 

 
          (4) 

where E is Young’s modulus and   is Poisson’s ratio. 
Introducing the stress function   and assuming that the 
following relations hold between the stresses and the 
stress function 

2 21 d
, .

dr r
hr h r
              (5) 

Substituting Eq.5 into Eq.4, one obtains 

2 2

2 2

1 1 d
,

d

1 1 d
.

d

r r
E hr h r

r
E h r hr

  

  

        
        

       (6) 

3. FORMULATION AND ANALYTIC 
ELASTIC SOLUTION 

The substitution of Eq.6 into Eq.3 produces the fol-
lowing confluent hypergeometric differential equation 
for the stress function ( ) :r  

 

2
2

2

2 3

d d d
1

d dd

d
1 3 0.

d

r h
r r

h r rr

r h
h r

h r

 

   

   
 

      
 

     (7) 

The boundary conditions for the rotating solid disk are 

at 0,

0 at .
r

r

r

r b
 


 

 
             (8) 

The thickness of the solid disk is assumed to vary 
nonlinearly through the radial direction. It is assumed to 
be in terms of a simple exponential power law distribu-
tion according to the following case: 

  0 e ,

kr
n

bh r h
   
                (9) 

where 0h  is the thickness at the middle of the disk, n 
and k are geometric parameters and b is the outer radius 
of the disk (see Figure 1). The value of n equal to zero 
represents a uniform-thickness solid disk while the value 
of k equal to unity represents a linearly decreasing vari-
able-thickness solid disk. For small k and large n (k = 0.7 
or 1.5 and n = 2) the profile of the solid disk is concave 
while it is convex for large k and small n (k = 2.5 and n = 
0.5). It is to be noted that the parameter n determines the 
thickness at the outer edge of the solid disk relative to 

0h  while the parameter k determine the shape of the 
profile. 

Introducing the following dimensionless forms: 

 

   

   

   

2
0

1 2 2

1 2 2

/

3 ,

1
,

, , ,

1
, , .

r

r

R r b

b

R r
bh

E




  



   

   



  

 








         (10) 

Then, Eq.7 may be written in the following simple 
form 

   
2

2 3
2

d d
1 1 e 0.

dd

kk k nRR knR R kn R R
RR

  
      

(11) 

The general solution of the above equation can be  
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(a) 

 
(b) 

 
(c) 

Figure 1. Variable-thickness solid disk profiles for (a) k = 0.7 
and n = 2, (b) k = 1.5 and n = 2 and (c) k = 2.5 and n = 0.5. 
 
written as 

       
      
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, 1 ,
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e d
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i j i j

R
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R R M R C F W
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  
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


 

(12) 

where 1C  and 2C  are arbitrary constants,   is a 

dummy parameter, ,i jM  and ,i jW  are Whittaker’s 
functions 

       , ,, , , , , ,k k
i j i jM R M i j nR W R W i j nR   (13) 

in which 

1 1
, , 0.

2
i j k

k k


           (14) 

In addition, the function  F R  is given in terms of 
Whittaker’s functions by 

           
2 2

2

, 1, , 1,

e
.

1

kk n R

i j i j i j i j

R
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 


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(15) 

The substitution of Eq.12 into Eq.5 with the aid of the 
dimensionless forms given in Eq.10 gives the radial and 
circumferential stresses in the following forms: 

       
      
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(16) 

 
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d
e .

d 3

knR R
R

R



 

 


        (17) 

Here, the first derivative of the stress function  R  
with respect to R may be given easily by using Eq.12. 
Note that the first derivatives of Whittaker’s functions 

,i jM  and ,i jW  can be represented by 

     

   

       
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1,2

1
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d

d

,

d
.

d

k
i j i j

i j

k
i j i j i j

k
M R nR i M R

R R

i j M R

k
W R nR i W R W R

R R





 

   

    

 (18) 

Finally, the stress function  R  and consequently 
the stresses  1 R  and  2 R  may be determined  
completely after applied the dimensionless of the 
boundary conditions given in Eq.8. 

4. FINITE DIFFERENCE ALGORITHM 

The resolution of the elastic problem of rotating solid 
disk with variable thickness is to solve a second-order 
differential equation, Eq.11, under the given boundary 
conditions    0 1 0     such that  1 0   2 0 . 
Eq.11 can be written in the following general form: 

      ,p R q R s R              (19) 

where the prime ( )  denotes differentiation with re-
spect to R and 
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 
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,

1
,
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knR
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R

kn R
q R

R
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
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
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 

             (20) 

It is clear that the above problem has a unique solution 
because    , ,p R q R  and  s R  are continuous on 
[0,1] and   0q R   on [0,1]. The linear second-order 
boundary value problem given in Eq.19 requires that 
difference-quotient approximations be used for ap-
proximating   and  . First we select an integer 

0N   and divided the interval [0,1] into  1N   
equal subintervals, whose end points are the mesh points 

,iR i R   for 0,1,..., 1,i N   where  1/ 1R N   . 
At the interior mesh points, ,iR  1, 2,..., ,i N  the dif-
ferential equation to the approximated is 

           .      i i i i i iR p R R q R R s R   (21) 

If we apply the centered difference approximations of 
 iR  and  iR  to Eq.21, we arrive at the system 

(see Eq.22): 
for each 1,2,..., .i N  The N equations, together with 
the boundary conditions 

0

1

0,

0,N 

 

 
                 (23) 

are sufficient to determine the unknowns ,i  
0,1,2,..., 1i N  . The resulting system of Eq.22 is ex-

presses in the tri-diagonal N N -matrix form: 

,A B                   (24) 

where 

2
,

, 1

, 1

, ,

2

2 ( ) ( ), 1, 2,..., ,

1 ( ), 1,2,..., 1,
2

1 ( ), 2,3,..., ,
2
0, 1, 2,..., 2, 3, 4,..., , 2,

( ) ( ), 1, 2,..., .

i i i

i i i

i i i

i j j i

i i

A R q R i N

R
A p R i N

R
A p R i N

A A i N j N j i

B R s R i N





    


   


  

      

  
(25) 

The solution of the finite difference discretization of 
the two-point linear boundary value problem can there-
fore be found easily even for very small mesh sizes. 

5. NUMERICAL EXAMPLES AND 
DISCUSSION 

Some numerical examples for the rotating variable- 
thickness solid disks will be given according the ana-
lytical and numerical solutions  0.3  . According to 
Eq.10, the stress function  , the radial stress 1  and 
the circumferential stress 2  determined as per the 
analytical solution are compared with those obtained by 
the numerical FDM solution. 

The results of the present investigations for the stress 
function   are reported in Table 1 for rotating vari-
able-thickness solid disk with k = 2.5 and n = 0.5. For 
this example, N = 9, 19, 39 and 79, so R  has the cor-
responding values 0.1, 0.05, 0.025 and 0.0125, respec-
tively. The FDM gives results compared well with the 
exact solution, especially for small values of R . The 
relative error between the exact method and the FDM 
with 0.0125,R   may be less than 41.3 10 . 

Richardson’s extrapolation method is applied here 
with 0.1,0.05,0.025,R   and 0.0125 and the obtained 
results are listed in Table 2. These extrapolations are 
given, respectively by 

   
1

4 0.05 0.1
Ext ,

3
i i

i

R R     
         (26a) 

   
2

4 0.025 0.05
Ext ,

3
i i

i

R R     
      (26b) 

   
3

4 0.0125 0.025
Ext ,

3
i i

i

R R     
    (26c) 

2 1
4

16Ext Ext
Ext ,

15
i i

i


            (26d) 

Table 2 shows that all extrapolations results are cor-
rect to the decimal places listed. In fact, if sufficient dig-
its are maintained, the approximation of 4Ext i  gives 
results those agree with the exact solution with maxi-
mum difference error of 91.0 10  at some of the mesh 
points. Additional results for the stress function   are 
reported for rotating variable-thickness solid disk with k 
= 0.7 and n = 2 in Table 3 and with k = 1.5 and n = 2 in 
Table 4. Once again, the FDM gives results compared 
well with the exact analytical solution, especially for 
small values of R . 

Now the least square method and curve fitting are 
used for the discrete results of the stress function  . So, 
one can get easily the radial and circumferential stresses 

 

           2 2

1 11 2 1 ,
2 2i i i i i i i

R R
p R R q R p R R s R 

                        
           (22)
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Table 1. Dimensionless stress function   of a rotating variable-thickness solid disk (k = 2.5, n = 0.5). 

FDM 
iR  

0.1R   0.05R   0.025R   0.0125R   
Analytical 

0 0 0 0 0 0 

0.0125 

0.0250 

0.0375 

0.0500 

0.0625 

0.0750 

0.0875 

0.1000 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

0.010333909 

--- 

--- 

--- 

0.005341761 

--- 

--- 

--- 

0.010398523 

--- 

0.002632275 

--- 

0.005253982 

--- 

0.007852303 

--- 

0.010414946 

0.001317819 

0.002634312 

0.003947918 

0.005270818 

0.006560297 

0.007856045 

0.009142869 

0.010419072 

0.001318247 

0.002635012 

0.003948803 

0.005258119 

0.006561453 

0.007857295 

0.009144132 

0.010420449 

0.1125 

0.1250 

0.1375 

0.1500 

0.1625 

0.1750 

0.1875 

0.2000 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

0.019984044 

--- 

--- 

--- 

0.015367662 

--- 

--- 

--- 

0.020049282 

--- 

0.012929711 

--- 

0.015384444 

--- 

0.017767073 

--- 

0.020065635 

0.011683316 

0.012934026 

0.014169696 

0.015388799 

0.016589850 

0.017771346 

0.018931799 

0.020069727 

0.011684731 

0.012935466 

0.014171142 

0.015390252 

0.016591293 

0.017772771 

0.018933196 

0.020071091 

0.2125 

0.2250 

0.2375 

0.2500 

0.2625 

0.2750 

0.2875 

0.3000 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

0.028132394 

--- 

--- 

--- 

0.024349525 

--- 

--- 

--- 

0.028175489 

--- 

0.022268320 

--- 

0.024363514 

--- 

0.026339842 

--- 

0.028186218 

0.021183663 

0.022272149 

0.023333741 

0.024367011 

0.025370546 

0.026342953 

0.027282855 

0.028188899 

0.021184986 

0.022273424 

0.023334964 

0.024368176 

0.025371649 

0.026343989 

0.027283820 

0.028189791 

0.3125 

0.3250 

0.3375 

0.3500 

0.3625 

0.3750 

0.3875 

0.4000 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

0.034048816 

--- 

--- 

--- 

0.031439588 

--- 

--- 

--- 

0.034060453 

--- 

0.029891894 

--- 

0.031446504 

--- 

0.032840118 

--- 

0.034063288 

0.029059753 

0.029894109 

0.030690687 

0.031448230 

0.032165512 

0.032841338 

0.033474542 

0.034063994 

0.029060568 

0.029894846 

0.030691343 

0.031448803 

0.032166002 

0.032841742 

0.033474861 

0.034064227 

0.4125 

0.4250 

0.4375 

0.4500 

0.4625 

0.4750 

0.4875 

0.5000 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

0.037107585 

--- 

--- 

--- 

0.035964469 

--- 

--- 

--- 

0.037087271 

--- 

0.035107098 

--- 

0.035963207 

--- 

0.036623899 

--- 

0.037082122 

0.034608596 

0.035107288 

0.035559047 

0.035962888 

0.036317868 

0.036623085 

0.036877677 

0.037080832 

0.034608743 

0.035107349 

0.035559023 

0.035962780 

0.036317677 

0.036622811 

0.036877324 

0.037080400 

0.5125 

0.5250 

0.5375 

0.5500 

0.5625 

0.5750 

0.5875 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

0.037375156 

--- 

--- 

--- 

--- 

0.037331532 

--- 

0.037366529 

--- 

0.037182291 

--- 

0.037231777 

0.037329791 

0.037374198 

0.037364369 

0.037299729 

0.037179570 

0.037003958 

0.037231269 

0.037329209 

0.037373544 

0.037363648 

0.037298942 

0.037178902 

0.037003051 
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0.6000 0.036832186 0.036786324 0.036774810 0.036771929 0.036770967 

0.6125 

0.6250 

0.6375 

0.6500 

0.6625 

0.6750 

0.6875 

0.7000 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

0.032936503 

--- 

--- 

--- 

0.035291940 

--- 

--- 

--- 

0.032876919 

--- 

0.036140911 

--- 

0.035278284 

--- 

0.034185494 

--- 

0.032862001 

0.036483294 

0.036137738 

0.035734998 

0.035274868 

0.034757198 

0.034181892 

0.033548911 

0.032858271 

0.036482282 

0.036136679 

0.035733896 

0.035273729 

0.034756025 

0.034180690 

0.033547685 

0.032857027 

0.7125 

0.7250 

0.7375 

0.7500 

0.7625 

0.7750 

0.7875 

0.8000 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

0.025353741 

--- 

--- 

--- 

0.029540441 

--- 

--- 

--- 

0.025296129 

--- 

0.031308165 

--- 

0.029525248 

--- 

0.027515416 

--- 

0.025281728 

0.032110047 

0.031304368 

0.030441421 

0.029521449 

0.028544751 

0.027511682 

0.026422653 

0.025278128 

0.032108789 

0.031303102 

0.030440152 

0.029520183 

0.028543493 

0.027510437 

0.026421427 

0.025276927 

0.8125 

0.8250 

0.8375 

0.8500 

0.8625 

0.8750 

0.8875 

0.9000 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

0.014247568 

--- 

---  

--- 

0.020171897 

--- 

--- 

--- 

0.014209433 

--- 

0.022828123 

--- 

0.020159404 

--- 

0.017281209 

--- 

0.014199988 

0.024078628 

0.022824727 

0.021517051 

0.020156281 

0.018743148 

0.017278432 

0.015762966 

0.014197627 

0.024077458 

0.022823594 

0.021515961 

0.020155240 

0.018742161 

0.017277507 

0.015762106 

0.014196841 

0.9125 

0.9250 

0.9375 

0.9500 

0.9625 

0.9750 

0.9875 

1.0000 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

0 

--- 

--- 

--- 

0.007463350 

--- 

--- 

--- 

0 

--- 

0.010922960 

--- 

0.007458083 

--- 

0.003814000 

--- 

0 

0.012583344 

0.010921087 

0.009211874 

0.007456766 

0.005656864 

0.003813309 

0.001927282 

0 

0.012582635 

0.010920462 

0.009211340 

0.007456327 

0.005656526 

0.003813078 

0.001927164 

0 

 
Table 2. Dimensionless stress function   of a rotating variable-thickness solid disk using Richardson’s extrapolation method with 
different values of ΔR (k = 2.5, n = 0.5). 

iR  1Ext i  2Ext i  3Ext i  4Ext i  Analytical 

0.0 0 0 0 0 0 

0.1 0.010420061 0.010420421 0.010420447 0.010420444 0.010420449 

0.2 0.020071028 0.020071086 0.020071091 0.020071090 0.020071091 

0.3 0.028189855 0.028189794 0.028189792 0.028189790 0.028189791 

0.4 0.034064332 0.034064233 0.034064229 0.034064227 0.034064227 

0.5 0.037080500 0.037080406 0.037080401 0.037080400 0.037080400 

0.6 0.036771037 0.036770972 0.036770969 0.036770967 0.036770967 

0.7 0.032857058 0.032857029 0.032857028 0.032857028 0.032857027 

0.8 0.025276926 0.025276927 0.025276928 0.025276927 0.025276927 

0.9 0.014196825 0.014196839 0.014196840 0.014196840 0.014196841 

1.0 0 0 0 0 0 
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Table 3. Dimensionless stress function   of a rotating variable-thickness solid disk (k = 0.7, n = 2). 

FDM 
Analytical 

0.0125R   0.025R   0.05R   0.1R   
iR  

0 0 0 0 0 0.0 

0.003891568 0.003891627 0.003891774 0.003892229 0.003893631 0.1 

0.006897877 0.006898133 0.006898890 0.006901872 0.006913732 0.2 

0.008971625 0.008972022 0.008973209 0.008977938 0.008996897 0.3 

0.010102762 0.010103227 0.010104619 0.010110178 0.010132490 0.4 

0.010321685 0.010322155 0.010323563 0.010329193 0.010351793 0.5 

0.009683519 0.009683947 0.009685228 0.009690352 0.009710919 0.6 

0.008256930 0.008257280 0.008258329 0.008262527 0.008279371 0.7 

0.006116796 0.006117044 0.006117787 0.006120761 0.006132695 0.8 

0.003339509 0.003339638 0.003340026 0.003341577 0.003347797 0.9 

0 0 0 0 0 1.0 

 
Table 4. Dimensionless stress function   of a rotating variable-thickness solid disk (k = 1.5, n = 2). 

FDM 
Analytical 

0.0125R   0.025R   0.05R   0.1R   
iR  

0 0 0 0 0 0.0 

0.005416705 0.005416605 0.005416315 0.005415269 0.005412300 0.1 

0.009932747 0.009933554 0.009935982 0.009945759 0.009985706 0.2 

0.013033300 0.013034871 0.013039590 0.013058534 0.013135277 0.3 

0.014512487 0.014514484 0.014520482 0.014544543 0.014641868 0.4 

0.014415043 0.014417117 0.014423346 0.014448330 0.014549332 0.5 

0.012959495 0.012961364 0.012966973 0.012989467 0.013080378 0.6 

0.010460010 0.010461482 0.010465900 0.010483617 0.010555201 0.7 

0.007259771 0.007260750 0.007263688 0.007275470 0.007323059 0.8 

0.003682061 0.003682530 0.003683938 0.003689581 0.003712369 0.9 

0 0 0 0 0 1.0 

 
since we have   as a continuous function of R. The 
distributions of the stress function, radial and circum-
ferential stresses are presented in Figure 2. The numeri-
cal FDM solution is compared with the exact analytical 
solution for the rotating variable-thickness solid disk 
with k = 2.5 and n = 0.5. It can be seen that the FDM can 
describe the stress function and stresses through the 
thickness of the rotating solid disk very well enough. 

For the sake of completeness and accuracy, additional 
results for the stress function and stresses are presented 
in Figures 3-5 for different values of the geometric pa-
rameters k and n. Figure 3 shows the stress function   

through the radial direction of the rotating solid disk 
with k = 2.5, n = 0.5; k = 0.7, n = 2 and k = 1.5, n = 2. 
Similar results for the radial 1  and the circumferential 

2  stresses are plotted in Figures 4 and 5. Figure 3 
shows that the stress function   increases as k in-
creases and this irrespective of the value of n (see also 
Tables 3 and 4). Figures 4 and 5 show that k = 2.5, n = 
0.5 gives the largest stresses. The intersection of the two 
cases k = 0.7, n = 2 and k = 1.5, n = 2 may be occurred at 
R = 0.1 for the radial stress and at R = 0.15 for the 
circumferential stress. 

It is clear that, the FDM gives stress function and,  



A. M. Zenkour et al. / Natural Science 3 (2011) 145-153 

Copyright © 2011 SciRes.                                                                    OPEN ACCESS 

152 

 

Figure 2. Stress function Ф, radial stress σ1 and circumferen-
tial stress σ2 for the variable-thickness solid disk. 
 

 

Figure 3. Stress function Ф of the variable-thickness solid disk 
for different values of k and n. 
 

 

Figure 4. Radial stress σ1 of the variable-thickness solid disk 
for different values of k and n. 

 

Figure 5. Circumferential stress σ2 of the variable-thick- ness 
solid disk for different values of k and n. 
 
consequently, stresses with excellent accuracy with the 
exact analytical solution. In most cases of rotating vari-
able-thickness solid disks, the analytical solutions are 
not available. In these cases, one can trustily use the pre-
sent FDM solutions. 

6. CONCLUSIONS 

The rotating solid disk with variable thickness is 
treated herein. By introducing a suitable stress function, 
the governing equation is derived from the equation of 
motion of rotating disk, compatibility equation and the 
proposed stress-strain relationship. Both the analytical 
and numerical solutions are presented. The calculation of 
the rotating solid disk is turned into finding the solution 
of a second-order differential equation under the given 
conditions at the center and the outer edge of the disk. 
The numerical solution is based upon the finite differ-
ence method. The governing equation is solved analyti-
cally with the help of Whittaker’s functions and a num-
ber of numerical examples are studied. The results of the 
two solutions at different disk configurations are com-
pared. The proposed FDM approach gives very agree-
able results to the analytical solution and so it may be 
used for different problems that analytical solutions are 
not available. 
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