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ABSTRACT 

The analytical solutions of the non-steady-state 
concentrations of species at a planar micro-
electrode are presented. These simple new ap-
proximate expressions of concentrations are 
valid for all values of time and possible values 
of rate constants. Analytical equations are given 
to describe the current when the homogeneous 
equilibrium position lies heavily in favour of the 
electroinactive species. Working surfaces are 
presented for the variation of limiting current 
with a homogeneous kinetic parameter and 
equilibrium constant. Moreover, in this work we 
employ the Homotopy perturbation method to 
solve the boundary value problem. 

Keywords: Planar Electrode; CE Mechanism; 
Mathematical Modelling; Reaction/Diffusion  
Equation; Homotopy Perturbation Method 

1. INTRODUCTION 

One of the major achievements in electroanalytical 
chemistry in the 1980s was the introduction of micro-
electrodes, i.e., electrodes whose characteristic dimen-
sion is on the order of a few m  (the radius in the case 
of disc and hemispheres, band width in the case of bands, 
etc.). Microelectrodes have become more commonly 
used in electrochemistry to probe kinetics of fast chemi-
cal reactions [1]. In this work, we are interested in find-
ing the mass transport limiting current response for the 
CE mechanism at a microelectrode. For each mechanism, 
the electroinactive species A is in dynamic equilibrium 
with the electroactive species B via a homogeneous 
chemical step. The decay of species A is described by 
the first order forward rate constant fk  and the reverse 
of this process is described by the rate constant bk , 
which is first order for the CE mechanism. All species 
are considered to have an diffusion coefficient D . 

Oldham [2] made use of an analytical expression of 

CE mechanism at a hemispherical electrode. Lavagnini 
et al .[3] employed the hopscotch method and a confor-
mal map to numerically simulate CE mechanism at a 
planar electrode. Values of limiting current were ana-
lysed for a range of equilibrium constants and rate con-
stants. There have been many previous theoretical de-
scriptions of the diffusion limiting current for the CE 
mechanism. In Reference [4], Fleischmann et al. dem-
onstrate that Neumann’s integral theorem can be used to 
simulate CE mechanism at a disc electrode. However, to 
the best of the author’s knowledge, no purely analytical 
expressions for the non-steady-state concentrations of 
these CE mechanisms have been reported. The purpose 
of this communication is to derive approximate analyti-
cal expressions for the non-steady-state concentrations 
of the species for all values of 1m , 2m , 1k , 2k , 3k  
and 4k  using Homotopy perturbation method.  

 
2. MATHEMATICAL FORMULATION OF 

THE BOUNDARY VALUE PROBLEM 

As a representative example of the reaction-diffusion 
problems considered, the standard CE mechanism 

2A B  B e products   

has been chosen, with initial and boundary conditions 
corresponding to the potential step for all planar elec-
trodes. Under stead-state conditions, the local concentra-
tions of the species do not change. Therefore the mass 
transport equations are set equal to zero. We consider the 
differential equations with diffusion described by the 
concentration of the two species leads to the following 
equations [5] 

2

2
0f b

a a
D k a k b

t x

 
   

 
           (1)  

2

2
0f b

b b
D k a k b

t x

 
   

 
            (2)  

where a  and b  denote the concentration of the spe-
cies A and B . x and t stand for space and time, respec-
tively. f  and b  are described the forward and 
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backward rate constants respectively. The boundary 
conditions reduce to 

0 00;    ;    t a a b b               (3) 

;    ;    s sx l a a b b                (4) 

0 0;    ;    x a a b b              (5) 

where 0a  and 0b  are the bulk concentrations of the 
species A  and B , sa and sb  denote the concentra-
tions at electrode surface .The flux j can be described as 
follows: 

j D 
x l

b

x 




              (6)  

The current density is defined as:   

i nFj                     (7) 

Where n is the number of electrons and F is the Faraday 
constant. Using the following dimensionless parameters 
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we obtained the dimensionless non-linear reaction diffu-
sion equations for planar electrode as follows 
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The initial and boundary conditions becomes: 

0;    1;T u   1v               (11) 

1 21;    ;    X u m v m                 (12)  

;    1;   1X u v              (13)  

The dimensionless current is as follows: 

1
0

 ( )X

il
v X

nFADb
              (14) 

 
3. ANALYTICAL SOLUTION OF THE 

CONCENTRATIONS AND CURRENT 
USING HOMOTOPY PERTURBATION 
METHOD 

Recently, many authors have applied the Homotopy 
perturbation method to various problems and demon-
strated the efficiency of the Homotopy perturbation 
method for handling non-linear structures and solving 
various physics and engineering problems [6-9]. This 
method is a combination of homotopy in topology and 
classic perturbation techniques. Ji-Huan He used the 
Homotopy perturbation method to solve the Lighthill 

equation [10], the Duffing equation [11] and the Blasius 
equation [12]. The idea has been used to solve non-linear 
boundary value problems [13], integral equations 
[14-16], Klein–Gordon and Sine–Gordon equations [17], 
Emden –Flower type equations [18] and many other 
problems. This wide variety of applications shows the 
power of the Homotopy perturbation method to solve 
functional equations. The Homotopy perturbation 
method is unique in its applicability, accuracy and effi-
ciency. The Homotopy perturbation method [19] uses the 
imbedding parameter p as a small parameter, and only a 
few iterations are needed to search for an asymptotic 
solution. By applying Laplace transformation to the par-
tial differential Eqs.9 and 10 and using the condition 
Eq.11, the following diffential equations in Laplace 
space are obtained: 
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Now the boundary conditions become  

1 1
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m m
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where s  is the Laplace variable and an overbar indi-
cates a Laplace-transformed quantity. The set of expres-
sions presented in Eqs.15-18 defines the initial and 
boundary value problem in Laplace space. The Homo-
topy perturbation method method has overcome the 
limitations of traditional perturbation techniques, so a 
considerable deal of research has been conducted to ap-
ply the homotopy technique to solve various strong 
non-linear equations. 

The Homotopy perturbtion method [20-22] is used to 
give the approximate analytical solutions of coupled 
non-linear Eqs.15 and 16. Using this method (see Ap-
pendix – A and B) the approximate solutions of the 
Eqs.9 and 10 are 
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The Eqs.19 and 20 satisfies the boundary conditions 
Eq.11 to Eq.13. These equations represent the new ap-
proximate analytical expressions for the concentration 
profiles 1 2 1 2 3,   ,   ,   ,   m m k k k  and 4k .The third term in 
the Eqs.19 and 20 are in opposite sign when 1 3 k k  
and 2 4  k k  or 0 0  a b . Also the dimensionless 
concentration u  and v  are equal when 1 2 m m  
(ratio of concentration at electrode surface for the bulk 
concentration) and 0 0  .a b The current density is 

 2
3 1 4 2

0.56419
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m T
k m k m

T T
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
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         (21) 
 
4. DISCUSSION 

Eqs.19 and 20 are the new and simple approximate 
analytical expressions of concentrations of the isomers 
calculated using Homotopy perturbation method for the 
initial and boundary conditions Eqs.11-13. The closed 
analytical expression of current is represented by the 
Eq.21. The dimensionless concentration profiles of u  
and v  versus dimensionless distance X  are given in 
Figures 1-4 and Figures 5-8 respectively. From these 
figures, we can see that the value of the concentration 
u  and v  decreases when T  increases and attains the 
steady- state value at 40X  . When the rate constants 
are small (less than 1) and 1 2m m  the concentration 
decreases slowly and reaches the minimum value and 
then increases in Figures 1 and 5. From Figures 2, it is 
inferred that the concentration u  attains the 
steady-state value at 5X  . Also, when all the parame-
ters are small and 1T  , the concentration attains 
maximum value at 4X   in Figures 3 and 4. For large 
value of parameters 3 4 1,  ,k k m and 2m , the concentra-
tion v  decreases when T  increases in Figures 6. For 
the small values of parameter and time T  ( 1T  ), 
there is no significance different in the concentration. 
(Refer Figures 7(a,b), Figures 8(a,b). The dimen-
sionless current   versus T  for various values of 3k  
and 4k  is given in Figures 9 and 10. From these figures 
the value of current decreases as the time T and 4k  
increases. But the value of current increases when 3k  
increases. 

5. CONCLUSIONS 

In this work, the coupled time dependent linear dif- 
 

 
Figure 1. Normalized concentration u at mi-
croelectrode. The concentrations were com-
puted using Eq.19 for some value of 1 1m  , 

2 1m   and for various values of T and the 

reaction/diffusion parameter 1 0.001 k  and 

2 0.005k  . 

 

Figure 2. Normalized concentration u at micro-
electrode. The concentrations were computed 
using Eq.19 for some value of 1 0.5m  , 

2 1m   and for various values of T and the re-

action/diffusion parameter 1 1 k  and 2 5k  . 

 
(a) 
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(b) 

 
(c) 

Figure 3. Normalized concentration u at micro-
electrode. The concentrations were computed us-
ing Eq.19 for some fixed value of 

1 20.1,    1m m   and the reaction/diffusion pa-

rameter 
1 1k   and 

2 0.1k   for various values 

of (a) 0.1T  ; (b) 1T  ; (c) 10T  . 

 
(a) 

 
(b) 

 
(c) 

 

 
(d) 

Figure 4. Normalized concentration u at mi- 
croelectrode. The concentrations were com 
puted using Eq.19 for some fixed value  
o f  1 20.001, 0.005m m  a n d  t h e  r e a c - 

tion/diffusion parameter 1 0.005k   and  

2 0.001k   for various values of (a) 0.1T  ;  

(b) 1T  ; (c) 10T  ; (d) 100T  . 

 
Figure 5. Normalized concentration v  at mi-
croelectrode. The concentrations were computed 
using Eq.20 for some value of 1 21, 1m m   

and for various values of T and the reac-
tion/diffusion parameter 3 0.01 k  and 

4 0.05k  . 
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Figure 6. Normalized concentration v at mi-
croelectrode. The concentrations were computed 
using Eq.20 for some value of 

1 21, 0.5m m   

and for various values of T and the reac-
tion/diffusion parameter 1 5k  and 2 10k  . 

 
ferential equations at planar electrode have been solved 
analytically. In the first part of the paper, we have de-
rived the analytical expressions of the concentrations of 
the species for all values of rate constants for planar 
electrode. In the second part of the paper we have pre-
sented approximate analytical expressions corresponding 
to the species A  and B  in terms of the kinetic pa-
rameters 1k , 2k , 3k  and 4k  based on the Homotopy 
perturbation method. In addition, we have also presented 
an analytical expression for the non-steady state current. 
The kinetics of this homogeneous step can in principle 
be studied by observing how the limiting current re- 
 

 
(a) 

 

 
(b) 

 
(c) 

Figure 7. Normalized concentration v  at micro-
electrode. The concentrations were computed us-
ing Eq.20 for some value of 1 21,   0.1m m   

and the reaction/diffusion parameter 

3 40.1,   1k k   and for various values of (a) 

0.1T  ; (b) 1T  ; (c) 10T  . 
 

 
(a) 

 

 
(b) 

 

 
(c) 
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(d) 

Figure 8. Normalized concentration v  at 
microelectrode. The concentrations were com-
puted using Eq.20 for some value of 

1 20.001, 0.005m m  1 20.001, 0.005m m   

and the reaction/diffusion parameter 

3 40.001,   0.005 k k  and for various values 

of (a) 0.1T  ; (b) 1T  ; (c) 10T  ; (d) 
100T   

 

 

Figure 9. Plot of the dimensionless current,   verses time. The current were calculated 

using Eq.21 for the fixed value of 3 1k   and 

for various values of the reaction/diffusion 
parameter 4k . 

 
Figure 10. Plot of the dimensionless current,   

versus time. The current were calculated using 
Eq.21 for the fixed value of 4 1k  and for various 

values of the reaction/diffusion parameter 3k . 

sponds to changes in electrode size. Further, based on 
the outcome of this work it is possible to calculate the 
concentration and current at cylindrical and hemispheri-
cal electrode for CE mechanism. 
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APPENDIX A 

Solution of the Eqs 9 and 10 using Homotopy pertur-
bation method. 

In this Appendix, we have used Homotopy perturba-
tion method to solve Eqs.9 and 10. Furthermore, a 
Homotopy was constructed to determine the solution of 
Eqs.9 and 10. Taking laplace transform Eqs.9 and 10 we 
have  

2 2

1 22 2
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dX dX
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The boundary conditions are   
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The approximate solutions of Eqs.A1 and A2 are  
2 3
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2 3
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Substituting Eqs.A5 and A6 into Eqs.A1 and A2 and 
comparing the coefficients of like powers of p  
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Solving the Eqs.A7 to A10, and using the boundary 
conditions (A3) and (A4), we can find the following 
results 
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According to the Homotopy perturbation method, we 
can conclude that 

0 0 1
1

( ) lim ( ) ..........
p

u X u X u u
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0 10
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After putting Eqs.A11 and A12 into Eq.A15 and 
Eqs.A13 and A14 into Eq.A16. Using inverse Laplace 
transform, the final results can be described in Eqs.19 
and 20 in the text. The remaining components of  nu x  
and ( )nv x

 
be completely determined such that each 

term is determined the previous terms. 
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APPENDIX B: NOMENCLATURE AND UNITS 
Symbol Meaning Usual dimension 

a  Concentration of the species A mole cm-3 

b  Concentration of the species B mole cm-3 

0a  Bulk concentration of the species A mole cm-3 

0b  Bulk concentration of the species B mole cm-3 

l  Thickness of the planar electrode cm 

f  Forward rate constant sec-1 

b  Backward rate constant sec-1 

aD  Diffusion coefficient of the species A cm2sec-1 

bD  Diffusion coefficient of the species B cm2sec-1 

j  Flux of the species mole cm-2 sec-1 

F Faraday constant C 
n  Number of electrons None 
t  Time sec 
u  Normalized concentration of the species A None 
v  Normalized concentration of the species B None 
J  Dimensionless flux None 

T  Dimensionless time None 
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k
 Dimensionless rate constants None 

1m 2m  Constant None 
  Dimensional current None 

 


