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ABSTRACT 

In this paper, a two level finite difference scheme 
of Crank-Nicholson type is constructed and used 
to numerically investigate nonlinear temperature 
distribution in biological tissues described by 
bioheat transfer equation of Pennes’ type. For 
the equation under consideration, the thermal 
conductivity is either depth-dependent or tem-
perature-dependent, while blood perfusion is 
temperature-dependent. In both cases of depth- 
dependent and temperature-dependent thermal 
conductivity, it is shown that blood perfusion 
decreases the temperature of the living tissue. 
Our numerical simulations show that neither the 
localization nor the magnitude of peak tempera-
ture is affected by surface temperature; however, 
the width of peak temperature increases with 
surface temperature. 
 
Keywords: Bioheat Transfer Equation of Pennes 
Type; Pennes’ Bioheat Transfer Equation; Modified 
Crank-Nicholson Method; Two-Level Finite     
Difference Scheme 

1. INTRODUCTION 

The evaluation of thermal conductivities in living tis-
sues is a very complex process which involves several 
phenomenological mechanisms, such as heat transfer 
due to perfusion of the arterial-venous blood through 
the pores of the tissue (blood convection), heat con-
duction in tissues, metabolic heat generation and ex-
ternal interactions, such as electromagnetic radiation 
emitted from cell phones, evaporation, metabolism, etc. 
The heat transfer mechanism in biological tissues is 
important for therapeutic practices, such as cancer hy-

perthermia, burn injury, brain hypothermia resuscita-
tion, disease diagnostics, cryosurgery, etc. 

Many of the bioheat transfer problems have been 
modeled using Pennes’ equation [1], which accounts 
for the ability of tissue to remove heat by both passive 
conduction (diffusion) and perfusion of tissue by blood. 
Perfusion is defined as the nonvectorial volumetric 
blood flow per tissue volume in a region that contains 
sufficient capillaries that an average flow description 
is considered reasonable. Pennes’ model was adapted 
by many biologists for the analysis of various heat 
transfer phenomena in a living body [2-7]. Others, 
after evaluations of the Pennes model in specifical 
situations, have concluded that many of the hypotheses 
(foundational to the model) are not valid. Then these 
latter modified and generalized the model to adequate 
systems [8-11]. To analyze nonlinear temperature dis-
tribution in living tissues, it is sometime useful to 
modify the one-dimensional (1D) Pennes’ bioheat trans-
fer equation by adding nonlinear terms, which gener-
ally account for temperature-dependent variability in 
tissue perfusion (see for example [12]). 

To treat the system of motion in living bodies, we 
have written the transient 1D bioheat transfer type 
model in a generalized form as follows [13], 
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where x  is the distance from the surface to the body 
core (in m), t  is the time (in s), kc   ,,  are the density 
(in gm/m³), specific heat (in cal/gm°C) and thermal 
conductivity of tissue (in cal/m×s×°C), respectively and 

bc , is the specific heat of blood (in cal/gm °C), b  is 
the density of blood (in gm/m³), mQ  is the metabolic 

heat production per volume, m  is the nondirectional 
mass flow (in gm×s/m³) associated with perfusion so 
that     /b m bT c T c     is the perfusion coeffi-

cient, and  txp ,  is the heat deposited per volume due *E. Kengne dedicates this work to his son Kengneson Fred Jake Sado 
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to spatially distributed heating. *
su T T   is the ele-

vated temperature (in °C) in the x -direction, where 
T  represents the temperature distribution (in °C) in 
the x -direction and sT  represents the skin’s steady 
state temperature (in °C). L  is the distance (in m) 
between the skin surface and the body core. In this 
general form, m  is a function of temperature to in-
clude the specific case of temperature dependent per-
fusion. We assume that the thermal conductivity k  
satisfies k   , where   and   are two posi-
tive constants. 

The form of the perfusion coefficient  T , which 

incorporates the heat capacity and density of blood and 
tissue, depends on the characteristics of the response. 
For a temperature response without an overshoot, the 
perfusion is defined as a spatially averaged constant, 
i.e.,   0 ,T   where 0  is the steady-state per-

fusion at a constant heat flux. With an overshoot re-
sponse, we assume that the perfusion increases with 
time because of vasodilation and capillary recruitment 
with a higher temperature. 

For Pennes’ model  ,p x t  is constant and m    

/ ,b b   where 
b  is the blood perfusion rate. In 

this case the second term on the right-hand side of the 
state Eq.1 describes the heat transport between the tissue 
and the microcirculatory blood perfusion. In biological 
modeling, the nondirectional mass flow m  associated 

with perfusion is of form m  /b b    F T  */u and 

 ,p x t  is null, where  F T  is a function which can 

be chosen as a polynomial function of the temperature. 
The model used in this paper is the following 

nonlinear bioheat transfer equation 
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which is a special case of Eq.1 In this equation b  

and 1  are referred to as the temperature independent 

(basal) perfusion component and the temperature de-
pendent (vasodilation and angiogenesis) perfusion 
component, respectively. This model is based on a 
one-dimensional Pennes bioheat transfer equation and 
is modified to account for temperature-dependent 
variability in tissue perfusion [12]. Assuming the 
metabolic heat production mQ  to be constant and 

denoting ,/*
bbm cQuu   we obtain the following 

simplified form of Eq.2. 
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where ,/1 c   ,/ cc bbb    and .0/1  c  

Then the perfusion coefficient is   .uu    Be-
side the differential equation, initial and boundary 
conditions determine the temperature distribution. 

Eq.3 can be written, in steady-state form, as 
x
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The first integral of Eq.4 is given by 
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where   is a constant of integration. Eq.5 is an el-
liptic ordinary differential equation. This equation can 
be solved using Weierstrass’ elliptic function method 

[14]. For either 23 /2    or   3200 / 2343 ,  
its particular solutions are 
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respectively, where  mxcn ,  denotes the Jacobi ellitic 

cosine function with modulus m. 
Mathematically, solving bioheat transfer equation 

requires knowledge of both the initial and boundary 
conditions applicable to the case under study. The ini-
tial conditions describe the state of the biological sys-
tem at time, 0t  while the boundary conditions give 
information both on the surface 0x and at depth 

.Lx   In this work, we use the following initial and 
boundary conditions. The initial condition is that a 
biological tissue has a uniform temperature at the 
steady-state temperature of the biological tissue as in  

 .;0 xuut b                    (6) 

Boundary conditions include a constant temperature 



A. Lakhssassi et al. / Natural Science 2 (2010) 131-138 

Copyright © 2010 SciRes.                                                                    OPEN ACCESS 

133

on the tissue surface whereas no heat flow is assumed 
at the boundary :Lx   

   
            0,0

,
,,0 




 t
x

tLu
utu surf      (7) 

surfu  being the surface temperature of the biological 

tissue. 
Restricting ourselves to nonnegative  , ,u x t  we 

follow Zhao et al. [15] and construct a two level finite 
difference scheme for (3) which has the same order of 
accuracy. As in [15] our scheme requires only one ini-
tial condition and is also unconditionally stable and 
convergent. The rest of the paper is organized as fol-
lows: in Section 2 we construct a finite difference 
scheme for the modified Pennes Eq.3 and prove its 
solvability. Numerical experiments are reported in 
Section 3, while a brief summary of the results is done 
in Section 4. 

2. NUMERICAL SCHEME 

The main difficulties in numerical solving the bioheat 
transfer Eq.3 are the nonlinearity due to the perfusion 
term and the different material properties of the tissue. 
Using a modified Crank-Nicholson method (see the 
description below), we are able to integrate the heat 
equation efficiently. Within this approach, the approxi-
mate elevated temperature nu  at time nt  is con-
structed by a combination of previous elevated tempera-
ture 1nu   at time 1.nt   

For the numerical computation of the nonlinear heat 
transfer Eq. 3 with initial and boundary conditions (6) 
and (7) we use h  to represent the space mesh and   to 
represent the time step so that x  will be incremented by 

h  and t  by .  We choose an integer N  and h  
such that .Nh L  We construct a finite difference 
scheme for (3) by using the second-order central differ-
ence scheme in space and a scheme of Crank-Nicholson 
[16] type in time. In what follows, n

ju  denotes the ap-

proximate elevated temperature at time nt  at depth :jx  

 , .n n
j ju u x t  If x  denotes the central difference 

operator, the discretization scheme is then 
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The difference scheme then takes the form  
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where  ., ntjhxkk n
j

n
j   The truncation error of 

this difference schemes in of order  22 hO  for each 

interior grid point   1,, ntx n
j   and .0 Nj   In 

matrix form, the difference scheme (8) reads 
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nLQ  (left-hand side matrix depending on n ) and 
nRQ  

(right-hand side matrix depending on n ) are both 
square tridiagonal matrices of dimension N+1 of the 
form  
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Theorem (on the solvability of system (9)). System 
(9) is unconditionally solvable for each time step .n  

Proof. It is sufficient to show that matrix 
nLQ  is  

inversible. From the expression for 
nLQ  we have 
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So that matrix 
nLQ  is diagonally dominant. By Ger- 

shgorin’s theorem [17] we conclude that the matrix 
nLQ  

is invertible. This proves the theorem. 
 
3. NUMERICAL EXPERIMENTS 
 
For the numerical experiments we use mL 01208.0  

and 4200000/1  [18]. Because our main aim in this 
work is the impact of the nonlinear term on the tem-
perature distribution, we will work with different choices 
of nonlinear coefficient .  As initial elevated tempera-

ture  ,xuB  we use one of the functions     10uxuB  

 uxx /exp   and     ,/exp1/0
uB xxuxu   where  

0u  and ux  are two constants. The thermal conductiv-

ity of tissue k  is taken to be either a function of ,x  

namely,   9.01.11210000 2  xxxk  or a linear func-

tion of the elevated temperature, namely, ,10 ukkk   

with 0.4574k0   and  0.001403k1   (see [19]). To 

analyze the effects of the blood perfusion, we used   
the following three couples   ,  of parameters 

   ,01.0,009.0 ,010.0005,0.0  and  .02.0,005.0  

3.1. Effects of Blood Perfusion, Thermal 
Conductivity, and Initial Elevated  
Temperature 

To analyze the effects of the blood perfusion, we used 
the following three couples   ,  of parameters 

     ,01.0,009.0 ,010.0005,0.0  and  .02.0,005.0  The ca- 

lculation results of the influences of the blood perfu-
sion, the thermal conductivity, and the initial elevated 
temperature on the temperature distribution are shown 
in Figures l-4. Figures 1 and 3 and Figures 2 and 4  
are obtained with the initial conditions   01

Bu x u  

 1 exp / ux x   , respectively, with 1 / 200,ux   

01 6,u   and 02u  12.928.  For all these figures, we used 

 0 .surf Bu u  Plot (a) gives the elevated temperature 

profile along the x  direction at time 5.2 ,t s  while 

plot (b) shows the elevated temperature profile along the 
t  direction at depth .01148.0 mx   Plots (c) and (d) 

are obtained with    , 0.005, 0.02    and show the 

elevated temperature along the x -direction for different 
times t  and along the t -direction for different depths 
x , respectively. Plots (e) and (f) show the elevated tem-
perature for temperature-dependent (plot (1)) and 
depth-dependent (plot (2)) thermal conductivity .k  

Here, we used the parameter    , 0.005, 0.02     

Figures 1 and 2 give the elevated temperature when 
the thermal conductivity of tissue k is a function of dis-
tance x. In Figure 1(a) and (b), as well as in Figure 2(a) 
and (b), the results show that the higher the blood perfu-
sion is, the lower is the elevated temperature. In other 
words, to decrease the temperature in the living tissue, it 
is sufficient to increase the blood perfusion.  

As in the case of x -dependent thermal conductivity, 
plots (a) and (b) of Figures 3 and 4 show that, in the 
case of temperature-dependent thermal conductivity, the 
higher the blood perfusion is, the lower is the elevated 
temperature. We may then conclude from Figures 1-4 
that the effect of the blood perfusion is to decrease the 
temperature in the living tissue. 

Figures 1(c) and (d) and Figure 3(c) and (d) show 
that the peak temperature is a decreasing function of 
both depth and time. When the initial temperature of the 
living tissue is a decreasing function of depth x (Figures 
1 and 3), a phenomenon of heating (in the sense that the 
temperature is almost above the initial temperature) is 
observed both in depth and time, and the peak tempera-
ture at any depth is above the initial temperature (see 
plots (c) and (d) of Figures 1 and 3). To the contrary, a
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Figure 1. Effect of blood perfusion on the temperature in the case of depth-dependent ther-
mal conductivity of tissue ,)]200exp(1[6)()0,( Cxxuxu B  with decreasing initial 

temperature. Plots of the first row show the temperature elevation for different blood perfu-
sion while plots of the second give the temperature elevation for the same blood perfusion at 
different time t (c) and at different depth x (d). 
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Figure 2. Effect of blood perfusion on the temperature in the case of depth-dependent thermal 
conductivity of tissue with increasing initial temperature   928.12)0,(  xuxu B  

.)]200exp(1[ 1 Cx    Plots of the first row show the temperature elevation for different blood 
perfusion while plots of the second and third row give the temperature elevation for the same 
blood perfusion at different time t ((c) and (e)) and at different depthx ((d) and (f)). Plots (e) and (f) 
of the third row indicate the elevated temperature obtained when using temperature-dependent and 
depth-dependent thermal conductivity, respectively. 

 

 

 

 

Figure 3. Effect of blood perfusion on the temperature in the case of temperature dependent 
thermal conductivity of tissue with decreasing initial temperature    xuxu B)0,(  

.)]200exp(1[928.12 Cx  Plots of the first row show the temperature elevation for different 
blood perfusion while plots of the second and third row give the temperature elevation for the 
same blood perfusion at different time t ((c) and (e)) and at different depth x ((d) and (f)). Plots 
(e) and (f) of the third row indicate the elevated temperature obtained when using tempera-
ture-dependent and depth-dependent thermal conductivity, respectively. 
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Figure 4. Effect of blood perfusion on the temperature in the case of temperature-dependent ther-
mal conductivity of tissue with increasing initial temperature .)]200exp(1/[928.12)( CxxuB   

Plots of the first row show the temperature elevation for different blood perfusion while plots of 
the second row give the temperature elevation for the same blood perfusion at different time t (c) 
and at different depth x (d). 

 

 
Figure 5. Effect of surface temperature on the temperature distribution, location, magnitude, 
and width of peak temperature. 

 
cooling phenomenon (in the sense that the temperature is 
almost below the initial temperature) is observed when 
the initial temperature increases as a function of depth 
x  (Figures 2 and 4). 

Plots (e) and (f) of Figure 2 and Figure 3 show that 
the elevated temperature, numerically obtained in the 
case of temperature-dependent thermal conductivity (pl- 
ots (1)) is larger than the one obtained in the case of 
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depth-dependent thermal conductivity (plots (2)). 

3.2. Effect of Surface Heating 

The effects of surface heating (when the surface of the 
living tissue is maintained at different constant tempera-
ture) on the temperature distribution and on the location 
of the peak temperature have been studies and observed 
when the initial temperature is either a decreasing func-
tion of depth x  (Figure 5(a) and (b)) or an increasing 
function of depth x  (Figure 5(c) and (d)). The plots   
of this figure are obtained with 1/ 4200000   and  
( , ) (0.005,0.02).    Figure 5(a) gives the depth at 
which the temperature peak occurs at a given time while 
Figure 5(b) gives the time at which the temperature peak 
at a given depth occurs. Figure 5(a) shows that the tem-
perature peak does not depend on the surface tempera-
ture. These two plots also show that the magnitude of 
peak temperature does not depend on the surface tem-
perature: the magnitude of peak temperature is the same 
for all three surface temperatures. As we can see from 
Figures 5(c) and (d), the depth (Figure 5(c) and the 
time (Figure 5(d) from which the variation of the tem-
perature suddenly changes do not depend on the surface 
temperature. Many other information about the tempera-
ture distribution in the living tissue can be obtained from 
Figure 5. For example, it is seen from plots (a) and (b) 
that the width of the peak temperature increases with the 
surface temperature: the higher the surface temperature is, 
the higher is the width of the peak temperature. 
 
4. CONCLUSIONS 
 
In this work, we present a numerical investigation of a 
1D bioheat transfer equation with either depth-dependent 
or temperature-dependent thermal conductivity and with 
temperature-dependent blood perfusion. An implicit un-
conditional numerical scheme of the Crank-Nicholson 
type is constructed and used to solve the nonlinear bio-
heat transfer equation with given initial and boundary 
conditions. We found that blood perfusion decreases the 
temperature in living tissue. It is also shown that the lo-
calization and the magnitude of peak temperature do not 
depend on the surface temperature, while its width in-
creases with surface temperature. The computation pre-
sented in this paper can be used to predict the tempera-
ture distribution in living tissue during many bioheat 
transfer processes. The method used in this paper has 
potential to provide the temperature distribution in tissue 
in the absent of heat flux. 
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