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ABSTRACT 

Recent numerical studies on pressure-drops in 
contraction flows have introduced a variety of 
constitutive models to compare and contrast 
the competing influences of extensional vis-
cosity, normal stress and shear-thinning. Early 
work on pressure-drops employed the constant 
viscosity Oldroyd-B and Upper Convected Max- 
well (UCM) models to represent the behavior of 
so-called Boger fluids in axisymmetric contrac-
tion flows, in (unsuccessful) attempts to predict 
the very large enhancements that were ob-
served experimentally. In more recent studies, 
other constitutive models have been employed 
to interpret observed behavior and some pro-
gress has been made, although finding a (re-
spectable) model to describe observed contrac-
tion-flow behavior, even qualitatively, has been 
frustratingly difficult. With this in mind, the 
present study discusses the ability of a well- 
known FENE type model (the so-called FENE- 
CR model) to describe observed behavior. For 
various reasons, an axisymmetric (4:1:4) con-
traction/expansion geometry, with rounded 
corners, is singled out for special attention, 
and a new hybrid finite element/volume algo-
rithm is utilized to conduct the modeling, 
which reflects an incremental pressure-correction 
time-stepping structure. New to this algo-
rithmic formulation are techniques in time 
discretization, discrete treatment of pressure 
terms, and compatible stress/velocity-gradient 
representation. We shall argue that the current 
simulations for the FENE-CR model have re-
sulted in a major improvement in the sort-for 
agreement between theory and experiment in 
this important bench-mark problem. 
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1. INTRODUCTION 

In the early days of Computational Rheology, the so- 
called Upper-Convected Maxwell (UCM) and Oldroyd-B 
models were strongly favored. This was partly due to the 
fact that they were assumed to be the ‘bottom-line’ of 
acceptable mathematical simplicity, whilst also being 
able to mimic the complex rheometrical behavior for a 
class of dilute polymer solutions known as Boger fluids, 
which became popular in the late 1970s. (A Boger fluid 
has a reasonably constant shear viscosity, a high exten-
sional viscosity as the extensional strain rate increases, 
and a high first normal stress difference, which has a 
quadratic dependence on shear rate at low to moderate 
shear rates, before becoming weaker than quadratic at 
higher shear rates.) 

It is well known that simulations for the UCM and 
Oldroyd B models failed to predict the large increases in 
the so-called Couette correction (or equivalently the 
“extra pressure difference” (epd)) in axisymmetric con-
traction flows. Interestingly, the work of Debbaut and 
Crochet [1], Debbaut et al. [2] and Binding [3] already 
provided strong hints as to the likely cause of the inade-
quacies of these models in predicting the observed in-
creases in excess pressure drop (epd) found in experi-
mental work. 

On the experimental side, Nigen and Walters [4] 
found significant differences in pressure-drop between 
Boger and Newtonian liquids with the same shear vis-
cosity for axisymmetric contraction flow. (However, no 
distinction could be drawn between corresponding pres-
sure drops for Newtonian and Boger fluids in planar 
configurations). Around the same time, Rothstein and 
McKinley [5] switched attention to axisymmetric con-
traction/expansion geometries of various contraction 
ratios (between two and eight), various degrees of re- 
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ntrant corner curvature, and covering a large range of 
Deborah numbers. In this work, large Couette correc-
tions were observed above that for a Newtonian fluid. 
These were independent of contraction ratio and re- 
ntrant corner curvature. 

So, the increase in the Couette correction for Boger 
fluids flowing in various axisymmetric contractions can 
be very high. These experimental observations clearly 
presented theoretical (computational) rheologists with 
several significant challenges, some of which have al-
ready been resolved (see for example, Phillips and Wil-
liams [6]; Aboubacar et al. [7]; Walters and Webster [8]; 
Alves et al. [9]). 

The present paper is a continuation of our previous 
works (Aguayo et al. [10]; Walters et al. [11-13], in pre-
dicting pressure-drops for Boger fluids in expansion- 
contraction flow. As a general conclusion from our ear-
lier findings (particularly those in Walters et al. [12,13]), 
our numerical simulations confirmed earlier comments 
by Binding [3] and Debbaut and Crochet [1] that, 
whereas high extensional viscosity levels can give rise to 
large increases in the so-called epd, increasing nor-
mal-stress difference levels can have the opposite effect. 
Moreover, in Walters et al. [12,13], we attempted to 
show how generalizations of the so-called White-Metzner 
model (White and Metzner [14]) can help rheologists to 
understand the competing influence of the various 
rheometrical functions on important flow characteristics. 

In this paper, a further numerical study of the 4:1:4 
expansion/contraction (adopted in Rothstein and McKinley 
[5], and Szabo et al. [15]) is made, and the effect on the 
excess pressure drop (epd) analyzed. In particular, we 
employ the FENE-type model proposed by Chilcott and 
Rallison [16], useful for its constant shear viscosity and 
bounded extensional characteristics. As in previous work, 
we attempt to relate the observed behavior of highly- 
elastic Boger fluids in complex flows to their rheometri-
cal behavior. 

1.1. Rheometrical Functions 

In this communication, we shall be referring frequently 
to two important ‘rheometrical’ flows, namely steady 
simple shear flow and extensional flow. In the former, 
there is flow only in the x direction and this depends 
simply and linearly on the y coordinate. i.e. 

x y zv y, v v 0                (1) 

where iv  is the velocity vector and   is the constant 

shear rate. 
For a non-Newtonian elastic liquid, the stress tensor 

components i k  can be conveniently written in the 

form: 
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where   is the shear stress,   is the shear viscosity 

and N1 and N2 are the so-called first and second normal 
stress differences, respectively (see, for example, Barnes 
et al. [17]). 

For a Newtonian fluid, the stress distribution simply 
involves one material constant–the coefficient of viscos-
ity   and the two normal stress differences are zero. In 

the case of a non-Newtonian elastic liquid,   can now 

be a function of the shear rate, with so-called ‘shear 
thinning’ the most commonly observed behavior. Also, 
both normal stresses are of potential importance, par-
ticularly N1. 

A typical Boger fluid would be a dilute (often a very 
dilute) solution of a high molecular weight polymer in a 
very viscous ‘Newtonian’ solvent. Usually, the shear 
viscosity is constant for such fluids; N1 is often higher 
than the shear stress σ, indicating that the fluid is in the 
“highly-elastic” category. N2 is invariably found to be 
much smaller than N1 and, in many (most) computa-
tional studies, N2 is taken to be zero. 

At this point, it is important to stress that, from a con-
tinuum mechanics standpoint, the initial dependence of 
N1 on   has to be quadratic and there is experimental 

evidence that this quadratic dependence can persist over 
a reasonable range of shear rates. However, there is also 
rheometrical evidence available that the dependence of 
N1 on   can become weaker than quadratic as the 

shear rate increases further. This is sometimes accompa-
nied by slight shear thinning. For example, in a compre-
hensive study entitled “A rheometrical study of Boger 
fluids”, Jackson et al. [18] concluded “It will be seen 
that over a range of shear rates,   is a linear function 
of   and N1 is a quadratic function of  , but that there 

is a departure from this second-order behavior at the 
high shear rates”. 

The second rheometrical flow of importance in the 
present study is that called ‘uniaxial extensional flow’, 
with a velocity field which can be expressed as 

x y z

y z
v x, v , v

2 2

     
           (3) 

where   is the so-called extensional strain rate. We can 
write the corresponding stress distribution in the form: 

( )xx yy xx zz E                     (4) 

where E  is the ‘extensional viscosity’. For a Newto-

nian fluid, 3 ,E   a result first obtained by Trouton 

over a hundred years ago (see, for example, Tanner and 
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Walters [19]). For this reason, the ratio between the two 
viscosities is called the ‘Trouton ratio TR’, and this 
clearly takes the value 3 for a Newtonian fluid. For a 
non-Newtonian elastic fluid, TR can be significantly 
higher than 3, with ‘orders of magnitude’ increases not 
uncommon. 

From the above discussion and the relevant literature, 
we can associate the following rheometrical behavior 
with Boger fluids: 

1) A reasonably constant shear viscosity . 

2) A potentially high extensional viscosity E  as the 

extensional strain rate increases. 
3) A high first normal stress difference N1, which has 

a quadratic shear rate dependence on  , at least for small 

to moderate shear rates. 
4) A second normal stress difference N2 which is 

negative and at most one tenth of the magnitude of N1. It 
is often taken as zero in computational studies. 

Clearly, any constitutive model that we use to describe 
Boger fluids has to satisfy (1)-(4), at least in a semi- 
quantitative sense. 

2. THE CONTRACTION/EXPANSION 
PROBLEM 

In conventional contraction flow, liquids are forced 
through a contraction under a pressure gradient. At spe-
cific locations on the walls, upstream and downstream of 
the contraction, pressure measurements are made. These 
locations must be far enough away from the contraction 
for the flows to be deemed to be unaffected by the con-
traction, i.e. we may consider the flows to be ‘fully de-
veloped’ and ‘Poiseuille like’ at the pressure-measurement 
stations. 

In contraction flows, there is often significant interest 
in the kinematics of the flow structure, particularly the 
vortices which provide computational rheologists with 
significant challenges (see, for example, Walters and 
Webster [8]). However, in the present work, we shall 
confine attention to the dynamics of the flow, which is 
often studied through the so-called Couette correction C, 
defined by 

  w  – – /u u d dC   p p L  p L   2           (5) 

Here, p  is the total pressure difference between the 

inlet and outlet transducers, u p  is the fully-developed 

pressure gradient in the upstream section, dp  is the 

fully-developed pressure gradient in the downstream 
section, uL  and dL  are their respective lengths, w  

is the fully-developed wall shear stress in the down-
stream channel. 

The Couette correction C is usually plotted as a func-
tion of the Deborah number 

De= w                  (6) 

  is a characteristic relaxation time and w  is the 

shear-rate at the downstream wall. 
In this paper, the Deborah number is defined as De= 

avg , where avg  is the average shear-rate in the con-

striction zone. 
An alternative measure of ‘resistance to flow’ is the 

so-called Excess Pressure Drop (epd), defined by Bind-
ing et al. [20]. 

 
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* B
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In this form, p* can be equated to the ratio of Couette 
corrections for constant-viscosity Boger and Newtonian 
fluids, with corresponding wall shear stress. 

The subscripts N and B represent the corresponding 
Newtonian and Boger fluid values, respectively, when 
these are applicable. 

In our recent computational work on contraction flows 
(Walters et al. [11-13,21]), we decided to concentrate on 
the related contraction-expansion (4:1:4) geometry, with 
rounded corners (see Figure 1). 

We did this for a number of different reasons. For 
example: 

1) We found the geometry to be far easier to handle in 
the computations than the conventional 4:1 geometry 
with sharp corners. Pressure differences were an order of 
magnitude lower for the 4:1:4 geometry than with 4:1 
geometry flows, with shorter downstream distances de-
manded to establish relaxed stress beyond the constric-
tion (see also Szabo et al. [15] for FENE results). We 
have certainly been able to reach higher values of the 
Deborah number in the simulations. Furthermore, appli-
cation of the basic numerical method was already well 
developed in the Swansea research group. 

2) Importantly, experimental data for the 4:1:4 ge-
ometry had been supplied by McKinley and his co- 
workers (see, for example, Rothstein and McKinley 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Schematic diagram of contraction-expansion  
geometry. 
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[5]). These showed the same trends as those already well 
known in the conventional 4:1 geometry. Of major im-
portance was the appearance in the Rothstein and 
McKinley experiments of substantial increases in the 
epd for increasing Deborah numbers in the case of 
Boger fluids. 

3. CONSTITUTIVE EQUATIONS 

We now need to address the question of choosing appro-
priate constitutive equations for the Boger fluids, which 
we shall concentrate on in this publication. 

Confining attention to incompressible fluids, we can 
write the Cauchy stress tensor ik  in the form: 

ik ik ikTp                    (8) 

where p is an arbitrary isotropic pressure, ik  the 

Kronecker delta, and ikT  is the so-called extra-stress 

tensor. 
Constitutive equations relate the extra-stress tensor 

ikT  to a suitable kinematic variable such as the rate- 

of-strain tensor ikd . For two specific but very different 

reasons, it is often convenient to introduce a so- called 
“stress splitting”: 

(1) (2)
ik ik ikT T T                  (9) 

and to write 1( )
ikT  as a Newtonian contribution 

(1)
12ik ikT d                  (10) 

Computational rheologists have often found that the 
introduction of the Newtonian component can greatly 
assist in the numerical simulation of complex flows, and 
experimental rheologists, particularly those working 
with Boger fluids, have also found the modification to be 
useful. They invariably associate 1  with the solvent 

viscosity. 
As an example of this stress splitting, consider the 

well-known Oldroyd B model, with constitutive equa-
tions are usually expressed in the form:  

1 0 22ik ikik ikT T d d
      

             (11) 

where the triangle denotes the usual upper-convected 
time derivative introduced by Oldroyd [22]. 

It is often convenient to write this equation in the form: 
1

02 ( )
ik ikT d  

2 2
1 02 



  ( ) ( )
ik ik ikT T (1- )d         (12) 

where 1 2   / . 

For the Boger fluids, which have been used in many 
fundamental experimental contraction-flow studies (see, 
for example, Boger and Walters [23]), the polymer con-

tribution to the total viscosity is very low. This is domi-
nated by the solvent contribution, so that β is usually in 
the range 0.9 to 0.95, or even higher. 

The important rheometrical functions for the Oldroyd 
B model are given by 

0
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(13)

 
We see that the Oldroyd B model predicts a constant 

shear viscosity 0 , a quadratic first normal stress differ-
ence N1, a zero second normal stress difference N2, and a 

potentially high extensional viscosityE . In fact, E  
reaches an infinite value at a finite value of the exten-
sional strain rate . 

As we have indicated, shear thinning is (virtually) ab-
sent in Boger fluids. Furthermore, the uniaxial exten-
sional viscosity levels can be very high indeed. These 
factors have been the main reasons for the popularity of 
the Oldroyd B model in Computational Rheology studies 
for Boger fluids. The relative simplicity of the model has 
been another factor of importance. 

However, at this point, it needs to be stressed again 
that all existing simulations for the Oldroyd B have been 
unable to predict the large increases in the Couette cor-
rection found when Boger fluids flow through axisym-
metric contraction/expansion flows (see, for example 
Walters et al. [11-13]). 

With this in mind, Walters et al. [12,13] introduced 
some new constitutive models to help elucidate the 
situation. These were in part guided by ideas put forward 
by Debbaut and Crochet (see Debbaut and Crochet [1] 
and Debbaut et al. [2]). In these papers, use was made of 
two rate-of-strain invariants, which we shall conven-
iently refer to as   and   in what follows: 

2 3d d d, / II III II  
          

(14)
 

Here, dII  and dIII  are the two nonzero invariants 

of the rate of strain tensor ikd  in their usual form: 

   1
tr

2d d, det II III2d d
        

(15)
 

The reason for the choice (14) instead of (15) has been 
fully explained by Debbaut and Crochet [1] and Debbaut 
et al. [2]. Clearly, the invariant   reduces to the usual 

shear rate in a steady simple shear flow and the invariant 
  reduces to the usual extensional strain rate in a uni-

axial extensional flow. Hence, the reason for the notation, 
Walters et al. [12,13] introduced four constitutive mod-
els that they defined as A-D, all of which have the struc-
ture introduced in Eqs.8 to 10. 
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Model A is simply the Newtonian fluid with 2( )
ikT  

given by 
2

02 1 ( )
ik ikT ( - )d               (16) 

Model D is the Oldroyd B model we have already in-
troduced in Eqs.11 and 12 with rheometrical functions 
given in Eq.13. 

Models B and C can be seen as extensions of the mod-
els GNM1 and UCM1 in the Debbaut et al. [2] papers. B 

is an inelastic model with 
1( )

ikT  given as in Eq.12 and 
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The rheometrical functions for model B are 
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i. e. the same   and E  as the Oldroyd B model, but 
with N1=0. 

Model C has viscoelastic properties with 
1( )

ikT  given 
as in Eq.12 and  
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In this case, the rheometrical functions are 

0

1 0
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(20)

 
This time it is   and N1 that match the expressions 

for the Oldroyd B model, but E  now has the Newto-
nian expression. 

Model C can be viewed as a “Generalized White- 
Metzner model” (see, for example Walters et al. [12]). 

The benefit of having the four A-D models available 
was that it allowed us the luxury of the following com-
parisons: 

1) A comparison of the simulations for models A and 
B provided an indication of the effect of extensional 
viscosity on flow characteristics, since 0   and N1= 
0 for both models. 

2) A comparison of the simulations for models A and 
C provided an indication of the effect of “normal 
stresses” on flow characteristics, with a “Newtonian” 
extensional viscosity in both. 

3) A comparison of the simulations for models B and 
C provided an indication of the relative strengths of 

normal stress and extensional viscosity effects on flow 
characteristics. 

4) A comparison of the simulations for models C and D 
(i.e. the Oldroyd B model) highlighted further the effect of 
a high extensional viscosity in the case of elastic liquids. 

5) Lastly, a comparison of the simulations for models 
B and D highlighted further the normal stress effect, 
keeping in mind however that, in this comparison, model 
B is inelastic and model D is viscoelastic. 

We felt that numerical simulations for the four consti-
tutive models (A-D) could throw considerable light on 
the influences of the various rheometrical functions on 
flow characteristics. 

We show in Figure 2 simulations for the contrac-
tion/expansion geometry provided by Walters et al. 
[12,13]. We summarize their findings here, as these have 
been fundamental and serve as a basis for the present 
study, where a number of additional factors are taken 
into account. 

The respective simulations of Figure 2 for the four 
constitutive models (A-D) demonstrate the influence of 
the various rheometrical functions on excess pressure 
drop (epd) read against increasing deformation rate (De). 
A comparison of models A to B shows the increasing 
effect that extensional-viscosity alone has on epd, as 
both models support vanishing N1. Alternatively, under 
constant extensional viscosity, a comparison of models A 
to C indicates that the increasing influence of normal 
stress difference can give rise to the opposite effect, that 
is a decrease in epd (as suggested in Binding [3]). 

3.1. Comparison of Results for Models B and D 

Taking this comparison one step further we may contrast 
the epd results for model B with those for model D 
(Oldroyd B). Here, we note that the Oldroyd B model 
reflects the same extensional viscosity as model B (an 
example of extreme strain-hardening), but with a 
non-zero normal stress difference of quadratic variation 
in shear rate (so, N1≠0). Model D is often used to ap-
proximate experimental results for Boger fluids, due to 
its constant shear viscosity and strain-hardening proper-
ties. Consistent with the above, the results again demon-
strate a decline in epd from model B to model D, this 
being associated with the associated rise in N1. We note 
in addition, that there is the usual upper limit on De at-
tainable in the simulations for model D (attributed to the 
unbounded nature of ηe). Here, there is a slight dip in 
epd before reaching the limiting value at the Newtonian 
reference line (for this level of solvent fraction, 0.9), 
which lies disappointingly short of the large positive epd 
experimental expectations reported for Boger fluids 
(Nigen and Walters [4]; Rothstein and McKinley [5]). 
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Figure 2. Normalized pressure drop (epd) vs. De(= avg ) 

for models A-D (cf. Walters et al. [12,13]), β=0.9. 
 
3.2. Comparison of Results for Models C and D 

Following this line of study, a direct comparison of epd 
results for models C and D, both of which share the same 
quadratic N1 behavior, represents the effects of extensional 
viscosity alone (recall that model C bears a constant exten-
sional viscosity). Here, once again, we discern an increase 
in epd from model C to that for model D. 

Clearly, the simulations for models A-D contained in 
Figure 2 provide insights into the possibility of provid-
ing numerical simulations which match the experimental 
data, at least in a semi-quantitative sense. However, we 
still lack definitive evidence that simulations for a (re-
spectable) constitutive equation, which would have gen-
eral acceptance, can provide the required agreement be-
tween experiment and theory. Hence the reason and mo-
tivation for the present work. 

We require a model that leads to a constant shear vis-
cosity and possesses other rheometrical features of rele-
vance to Boger-type fluids (also, vanishing N2, see 
Chilcott and Rallison [16]). For this reason, we have 
alighted on the so-called FENE-CR (Finite Extendible 
Nonlinear Elasticity-Chilcott and Rallison [16]) model, 
which we shall conveniently refer to as model E. This 
has the following constitutive equations: 

(1) (2)
ik ik ikT T T   

(1)
12ik ikT d                 (21) 

   (2)

1

1
ik

f (Tr( A )) A I
T

 



 

where the stress is expressed through a conformation 
transformation (A) as 

1 0f (Tr( A ))A A f (Tr( A ))I


           (22) 

The stretch function f (Tr( A ))  depends on L (the 

so-called extensibility parameter), and is given by: 

2

1
f(Tr(A))=

1-Tr(A ) / L
            (23) 

In this equation, ( )Tr A  is the trace operator and L 

essentially measures the size of the polymer molecule in 
relation to its equilibrium size. I is the identity tensor. 

The associated rheometrical functions are given by 

0

2
0 1

1 22

0 0 2 2 2
1 1

2 (1 )
N , N 0

3 3(1 )
2e

f

f

f f




 

 
      



 

 

  

  
   

   (24) 

where f = f(Tr(A))  is defined in Eq.23. 

The rheometrical response of the FENE-CR model is 
displayed in Figures 3 and 4. The model predicts a con-
stant shear viscosity, but the first normal stress differ-
ence (N1) is weaker than the strong quadratic form ex-
hibited by the Oldroyd-B model. One notes, however, 
that predictions for large values of the extensibility pa-
rameter (L>100) asymptote to Oldroyd-B behavior in N1 
and ηe. For small values of L (e.g. L=3), significant de-
parture in N1 is observed from an Oldroyd-B response. A 
monotonic decline in N1 is apparent with decreasing L 
(Figure 3). 

The extensional viscosity behavior of the FENE- CR 
model for low extensional strain-rates up to 0.5 is prac-
tically identical to that for the Oldroyd-B model. Beyond 
this station, the extensional viscosity for the FENE-CR 
model is capped, with the limiting level of the exten-
sional viscosity plateau depending on the elevation of L. 
This is illustrated in Figure 4, where the trend in exten-
sional viscosity for the FENE-CR model is almost flat 
for L=3. There is advancing earlier departure from 
Oldroyd-B trends with appropriate choices of L. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Normal stress data for model E (FENE-CR),   
increasing L. 
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Figure 4. Extensional viscosity data for model E (FENE-CR), increasing L. 
 

These are some of the reasons why we thought that a 
numerical study of model E in contraction/expansion 
flow would be useful. 

4. NUMERICAL BACKGROUND 

4.1. Hybrid Finite Element/Finite Volume 
Scheme 

The hybrid finite element/volume scheme employed is a 
semi-implicit, time-splitting, fractional staged formula-
tion, which draws upon finite element discretization for 
velocity-pressure approximation and finite volume for 
stress (see Webster et al. [24], Matallah et al. [25]). Un- 

der the fe construction, a two-step Lax-Wendroff scheme 
is employed, a Taylor-Galerkin variant (Donea [26], 
Zienkiewicz [27]), alongside an incremental pressure- 
correction procedure (with 0θ11). For solenoidal con-
ditions and with a forward time increment factor θ2=0.5, 
this pressure-correction scheme attracts second-order 
temporal accuracy, with its incremental form (θ1>0) 
proving superior in uniform temporal error bound at-
tainment over its non-incremental counterpart (θ1=0). 
The three-stage structure can be conveniently expressed 
(Wapperom and Webster [28]) in semi-discrete repre-
sentation on the single time step [tn; tn+1], with starting 
values [un; τn, pn, pn-1], via: 
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Here, L u , and the Reynolds number is defined 
according to convention as 0Re /U   , where ρ is the 

fluid density and U,   are characteristic velocity and 
length scale of the flow, and 0  is the total viscosity. 

Galerkin discretization may be applied to the em-
bedded Stokesian system components; the momentum 
equation at Stage 1, the pressure-correction equation at 
Stage 2 and the incompressibility satisfaction con-
straint at Stage 3 (to ensure higher order precision). An  
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nodes ()
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midside nodes (u, )

vertex nodes (p, u, )

l
(mdc)

T1

T2

T3
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T6

i
T

j

l
k

j

k

element-y-element Jacobi solution procedure is util-
ized at Stage 1 (momentum) and Stage 3 for the re-
sulting Galerkin-type Mass matrix-vector equations. 
This is an efficient and accuracy technique, requiring 
only a handful of iterations and a mixture of exact and 
numerical integration rules. This offers a space-time 
trade-off, so that huge problems may be accommo-
dated (3D, multiple relaxation times, multi-scale). At 
Stage 2, a direct Choleski decomposition is required, 
necessitating only a single matrix reduction phase 
necessary at the outset. Then, semi-implicitness is in-
troduced at Stages 1a,b on pressure and diffusive terms 
to enhance stability in the strongly viscous regime. 
Note that, pressure temporal increments invoke multi- 
step reference across three successive time levels [tn-1, 
tn, tn+1]. 

4.2. Finite Volume Fluctuation Distribution 
Scheme 

The theory may be exposed by first expressing the extra- 
stress equation in non-conservative form, with flux 
( , u.R  ) and absorbing remaining terms under the 
source (Q), one may obtain: 

t


 




R Q                (26) 

Then, cell-vertex fv-schemes are applied to this 
equation utilizing fluctuation distribution as the up-
winding technique, to distribute control volume re-
siduals and furnish nodal solution updates (Wapperom 
and Webster [29]). We consider each scalar stress 
component, ,  acting on an arbitrary volume 

l
l

   , whose variation is controlled through 

corresponding components of fluctuation of the flux (R) 
and the source term (Q), 

l l l

d Rd Qd
t
  


     

             (27) 

Flux and source variations are evaluated over each fi-
nite volume triangle (Ωl), and are subsequently allocated 
by the chosen cell-vertex distribution scheme to its three 
vertices. In this manner, by summing all contributions 
from its control volume Ωl, the nodal update is obtained 
composed of all fv-triangles surrounding node (l). The 
flux and source residuals may be evaluated over two 
separate control volumes associated with a given node (l) 
within the fv-cell T. This generates a contribution gov-
erned over the fv-triangle T, (RT, QT), and that subtended 
over the median-dual-cell zone, (Rmdc, Qmdc). For reasons 
of temporal accuracy, this procedure demands appropri-
ate area-weighting to maintain consistency, with exten-
sion to time-terms likewise. A generalized fv-nodal up-

date equation may be expressed per stress component, 
by separate treatment of individual time derivative, flux 
and source terms, and integrating over associated control 
volumes, yielding, 
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where ( ),T
T Tb R Q    lMDC

l MDC MDCb R Q   , 

T  is the area of the fv-triangle T , and T
l̂  is the 

area of its median-dual-cell (MDC). The weighting pa-
rameter, 0 1T  , directs the balance taken between 

the contributions from the median-dual-cell and the fv- 
triangle T . The discrete stencil of Eq.27 identifies 
fluctuation distribution and median dual cell contribu-
tions, area weighting and upwinding factors ( T

l - 

scheme dependent). The interconnectivity of the 
fv-triangular cells (

iT ) surrounding the sample node (l), 

the blue-shaded zone of mdc, the parent triangular fe-cell, 
and the fluctuation distribution (fv-upwinding) parame-

ters ( T
i ), for i=l, j, k on each fv-cell, are all features 

illustrated in Figure 5. 

5. NUMERICAL PREDICTIONS 

As we have indicated, the benchmark problem we wish 
to address is that of flow within a 4:1:4 axisymmetric 
rounded-corner contractions (Figure 1). In this study, 
creeping flow is assumed (Re≈10-2). We concentrate 
again on the epd defined in Eq.7, rather than the Couette 
correction, and we restrict attention to β=0.9 and 1/9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Spatial discretisation: fe-cell with four fv-subcells 
and fv control volume for node l with median-dual-cell 
(shaded). 
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5.1. Effect of Normal Stress (N1) and     
Extensional Viscosity (ηe) on epd 
Comparison of Results for Models D 
(Oldroyd B) and E (FENE-CR) 

The important new simulation results are contained in 
Figures 6-10, in which we see epd data for both the 
Oldroyd B model and variants of the FENE-CR model. 

It is clear that our simulations for the Oldroyd B 
model reach a limit at Decrit=5.1 (see Figure 8), evi-
dently due to unbounded ηe and over-strong N1; and we 
have been unable to reach higher Deborah numbers. 
Hence, unfortunately, for β=0.9, we have been unable to 
break through the epd=1.0 barrier (epd=0.999792 at De 
=5.1), whilst for β=0.95, a positive value of epd is ob-
tained. We have previously confirmed such results 
through spatial resolution with three different meshes; 
see Aguayo et al. [10]. 

This state of affairs may be contrasted with that for 
the FENE-CR model, which is bounded in extension and 
has a weakened N1 behavior (see Figure 3). As above, 
we can anticipate a lowering of epd values due to ηe 

damping and an elevation due to N1 damping. There 
must clearly be a trade-off between these two factors; 
but at least we have been able to reach relatively high 
values of De in the FENE-CR simulations. Over the 
range of De values covered in Figure 6, we see an in-
crease in epd values for L=5 of approximately 15% at 
De=10, and in the extended range covered in Figure 7 
this rises to approximately 28%. Here, in the several 
decades beyond De=10, ηe is noted to approach its limit-
ing upper plateau, so that continued further increase in 
epd can only be attributed to continual weakening of N1 

from its quadratic form. So, from a qualitative standpoint, 
much progress has been made, although it must be ad-
mitted that we are still some way from the extravagant 
increases in epd found in some of the experiments on 
Boger fluids. 

In Aguayo et al. [10] and for steady flow, it was 
shown that epd in these 4:1:4 flows can only be influ-
enced by shear and extensional contributions within 
the geometry constriction region excluding the shear 
upstream-downstream zones. Below we note just how 
important the shear component (N1) can be in this 
mixed flow region (best interpreted in a Lagrangian 
sense). One can attempt to segregate the various com-
peting factors through comparison with pairings of 
L-parameter epd data. For example, comparing data in 
Figure 6 for lower values of L={3,5} and the defor-
mation rate range 0≤De≤3.33, one can observe the 
elevating effect from L=5 to L=3 on epd of gradually 
weakening N1 (which is the dominant influence in this 
range). This outcome cannot be attributed to the de-
clining influence of ηe (see Figure 4), as if anything, 
this would have a counter-effect on epd. Subsequently, 
in the range De>3.33, extensional viscosity effects 

begin to dominate, as observed in the consistently lar-
ger epd-values for L=5; leading to upper limits at 
De=10 (above the Newtonian reference level) some 
three times larger with L=5 (epd=1.15) than for L=3 
(epd=1.05). Note, that the transition zone-point (De≈ 
3.33) is highlighted in Figure 6, where N1 and ηe in-
fluential dominance switches over. 

The same argument for domination of N1-weakening/ 
ηe-strengthening holds true for the L={3,10} and {5,10} 
data; with shifts in the transition point to De≈7 for 
L={3,10} and to De≈8.5 for L={5,10}. For L=10 data 
and in contrast to Oldroyd-B epd-data in Figure 8, 
weakening N1 behavior for the FENE-CR model ele-
vates epd up to the intersection/transition point (De≈2.5). 
Over 2.5≤De≤5, the stronger ηe of the Oldroyd model 
increasing prevails, so that larger ηe gives larger epd, a 
trend anticipated to continue as De rises (nb. Decrit=5.1, 
Oldroyd-B). In contrast, the F extension/weakening of 
N1) achieves a Decrit=9 at which the increase in epd ad-
vances to around 18%. 

Considering larger values of the extensibility parameter 
(L≥40, with larger ηe plateaux) in Figure 9, all FENE- 
CR epd results are now qualitatively similar to those-
for the Oldroyd-B model, with transition point (gov- 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 6. Normalised pressure-drop (epd) vs De(= avg ) 

for model E (FENE-CR, L=3, 5), β=0.9. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Normalised pressure-drop (epd) vs De(= avg ) 
for model E (FENE-CR, L=5), β=0.9. 

15%

5%

28%
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Figure 8. Normalised pressure-drop (epd) vs De(= avg ) for 
model E (FENE-CR, L=10) and model D (Oldroyd-B), β=0.9. 

 

erning dominance) shifting to the lower value De≈2. 
Here, relative to the Oldroyd-B epd-data, there is 

slight elevation of epd for De≤2 (N1-dominating) and 
slight suppression of epd for De>2 (ηe-dominating). 

For completeness, we include simulations for a (lower) 
value of solvent fraction β, namely β=1/9. In the early 
days of Computational Rheology, this value was favored, 
the reasoning being associated with the realization that, 
for some models such as the so-called Corotational 
Oldroyd Model, higher values of β would lead to a non- 
monotonic shear-stress/shear-rate response. It must be 
emphasized that such a restriction is not relevant to the 
Oldroyd B model and is certainly not appropriate for 
Boger fluids, where we have argued that β=0.9 (and 
higher) is more realistic. However, to enable a compari-
son to be made with some earlier studies, we include in 
Figure 10 simulations for β=1/9 (low solvent fraction, 
high polymeric contribution). 

These simulations are in general agreement with those 
of Szabo et al. [15], who also noted epd enhancement for 
L=5, β=1/9, accompanied with the explanation that…“a 
particular value of L=5 needed less stretch to achieve 
full extension” and a sink flow (pure extension) analysis 
to identify pressure drop upturn and vortex behavior. We 
observe, by inspection across L-values at fixed De for 
β=1/9, that it is the dominating influence of N1 that is 
clearly apparent with no transition points to ηe domina-
tion. Interpreted at any particular De, as L rises, N1 in-
creases in strength and epd declines monotonically. Un-
der such conditions, ηe -plateaux also rise and so would 
be anticipated to only contribute to epd-enhancement. 
Hence, the suppressive influence of N1-rise must counter 
this to generate decline in epd. 

Viewed at each L-value and rising De, earlier argu-
ments reapply governing the competing influences upon 
epd. This yields a rise of around 13% in epd for L=3 at 
De=4. In contrast, the position is adjusted accordingly 
for L=5 and L=10 data, with gradual strengthening of 
N1-influence. Hence, for L=10, one detects a local 
minimum at De=3, beyond which there is an ‘upturn’. 

 
 
 
 

 
 
 
 
 
 
 

Figure 9. Normalized pressure-drop (epd) vs De (= avg ) 

for model E (FENE-CR, L=40,50,100) and model D 
(Oldroyd-B), β=0.9. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 10. Normalised pressure-drop (epd) vs De(= avg ) 

for model E (FENE-CR, L=3-50) and model D (Oldroyd-B), 
β=1/9. 

 
However, the overall lowering of epd-level at L=10 is 
such that there is insufficient recovery for De>3 to cross 
the Newtonian reference line, as occurs with L=3 and 
L=5 epd-data. 

6. CONCLUSIONS 

The current work has covered the numerical prediction 
of the excess pressure drop (epd) for the flow of FENE- 
CR fluids through a 4:1:4 contraction/expansion geome-
try with rounded corners. A detailed study of epd and 
associated parameters has revealed some interesting and 
provocative results. 

Unlike the inadequacies of the Oldroyd B model in 
observing the experimentally observed increases in epd, 
various forms of the FENE CR model, possessing first 
normal stress differences weaker than the strong quad-
ratic form of the Oldroyd B model, are capable of pre-
dicting enhanced epd. 

We are encouraged by the fact that we have been able 
to reach epd elevations of nearly 30%, and this is clearly 
a step in the right direction. However, this is still some 
way short of some of the large epd-levels found experi-

18% 

13%
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mentally for Boger fluids. In addition, we are a little 
concerned that the various parameters in the FENE-CR 
model, such as L, are not physically representative at the 
molecular level, (something which is of course well docu-
mented in the literature), and, more importantly, that they 
have needed to be chosen so precisely in the present work 
to obtain the desired effect. This suggests some form of 
dynamic and locally rate-responsive scale would be 
more appropriate, as commended through the FENE- 
Adaptive- Length-Scale (ALS) model (Ghosh et al. [30]). 

So, there are still questions to be answered, but at least 
some progress has been (and is being) made! In the fu-
ture, this work will be extended to analyze the additional 
adjustment when shear-thinning properties are intro-
duced; and also alternative flow scenarios where energy 
related issues are pertinent, such as drag characteristics 
in flow past a sphere. 
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