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Abstract 
The complementary relationship for estimating evapotranspiration (ET) is a 
simple approach requiring only commonly available meteorological data; 
however, most complementary relationship models decrease in predictive 
power with increasing aridity. In this study, a previously developed Granger 
and Gray (GG) model by using Budyko framework is further improved to es-
timate ET under a variety of climatic conditions. This updated GG model, 
GG-NDVI, includes Normalized Difference Vegetation Index (NDVI), preci-
pitation, and potential evapotranspiration based on the Budyko framework. 
The Budyko framework is consistent with the complementary relationship 
and performs well under dry conditions. We validated the GG-NDVI model 
under operational conditions with the commonly used remote sensing-based 
Operational Simplified Surface Energy Balance (SSEBop) model at 60 Eddy 
Covariance AmeriFlux sites located in the USA. Results showed that the Root 
Mean Square Error (RMSE) for GG-NDVI ranged between 15 and 20 
mm/month, which is lower than for SSEBop every year. Although the magni-
tude of agreement seems to vary from site to site and from season to season, 
the occurrences of RMSE less than 20 mm/month with the proposed model 
are more frequent than with SSEBop in both dry and wet sites. Another find-
ing is that the assumption of symmetric complementary relationship is a defi-
ciency in GG-NDVI that may introduce an inherent limitation under certain 
conditions. We proposed a nonlinear correction function that was incorpo-
rated into GG-NDVI to overcome this limitation. As a result, the proposed 
model produced much lower RMSE values, along with lower RMSE across 
more sites, as compared to SSEBop. 
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1. Introduction 

According to the U.S. Geological Survey (USGS) Famine Early Warning Systems 
Network [1], the rate and amount of evapotranspiration (ET) plays a considera-
ble role in the monitoring of water loss from agricultural lands. As noted by Se-
nay et al. [2], ET may be used to show the current vegetation condition com-
pared to the historical records. This comparison has the potential to help identi-
fy vegetation stress in time and space. ET estimation methods can be divided in-
to two types: (1) ground-based ET methods that use standard meteorological 
data; and (2) ET models that use remote sensing data that must be combined 
with retrieval algorithms to estimate ET. 

McMahon [3] classified the ground-based ET methods into six classes on the 
basis of application: 1) potential evapotranspiration (ETP); 2) reference evapo-
transpiration; 3) actual evapotranspiration; 4) open water evaporation; 5) lake/ 
storage evaporation; and 6) pan evaporation. We have focused on actual ET in 
this study because it can be representative of actual conditions, whereas refer-
ence evapotranspiration would require a vegetation resistance parameter and 
deep lakes would require water temperature data. In addition, we use the term 
“evapotranspiration (ET)” in this paper to include actual evapotranspiration ex-
cept in places where the term “reference (crop) evapotranspiration” is used by 
other authors. 

One approach to estimating ET with ground-based methods is the comple-
mentary relationship proposed by Bouchet [4]. The primary advantage of the 
complementary relationship is that it generally requires only meteorological da-
ta. Bouchet [4] suggested that as a surface dries, the decrease in ET is matched 
with an increase in potential evapotranspiration (ETP) as shown in Figure 1. 
Such a relationship offers a simple and attractive approach for estimating ET 
using ETP without the detailed knowledge of surface properties. Examples of 
widely known models using this concept are the Advection-Aridity (AA) model 
by Brutsaert [5], the Complementary Relationship Areal Evapotranspiration 
(CRAE) by Morton [6], and the GG model proposed by Granger [7]. These three 
models have been widely applied to a broad range of surface and atmospheric 
conditions [8] [9] [10] [11] [12]. 

Granger [13], however, argued that the symmetric relationship in Bouchet [4] 
 

 
Figure 1. A Schematic representation of the complementary relationship between ET, 
ETP, and ETW with the proposed correction function, f(G). 
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lacked a theoretical background and proved that the symmetric condition is only 
true when the temperature is near 6˚C. Hence, the author developed a new com-
plementary relationship with the psychrometric constant and the slope of the 
saturation vapor pressure curve. Later, Crago [14] showed that the radiometric 
surface temperature measurements can be successfully incorporated into Gran-
ger [13] equation. Similar to Crago [14], Anayah [15] proposed a modified ver-
sion of the GG model using Priestley [16] equation instead of Penman [17] equ-
ation. The model proposed by Anayah [15] is hereafter called the modified GG 
model. The results of the modified GG model showed a decrease in Root Mean 
Square Error (RMSE) from 20% to as much as 80% compared to the recent stu-
dies of Mu [18], Mu [19], Han [20], and Thompson et al. [21]. On the other 
hand, Kahler [10] proposed an empirical constant, b, in Bouchet [4] hypothesis 
and demonstrated that b is generally greater than 1, based on their theoretical 
and experimental evidence, while the symmetric condition of Bouchet [4] hypo-
thesis requires b = 1. More recently, Aminzadeh [22] extended the asymmetric 
complementary relationship with an analytical prediction of b for Kahler [10]. 
Furthermore, Venturini [23] [24] applied surface temperature of Moderate Res-
olution Imaging Spectroradiometer (MODIS) data into the GG model and 
showed a good agreement between their approach and measured ET. Especially, 
Szilagyi [25] developed a calibration free version of the complementary rela-
tionship. 

Prior studies show that the complementary relationship is not symmetric with 
wet environment evapotranspiration (ETW) and that the GG model can be suc-
cessfully applied to a wide range of physical and surface conditions. Specially, 
the modified GG model (Anayah [15]) provided more reliable ET estimates than 
other models. Although the modified GG model demonstrated excellent per-
formance across 34 global sites, the authors suggested that additional refine-
ments could further improve performance under dry conditions. The low per-
formance in dry conditions may be due to relative evaporation (the ratio of ET 
to ETP) in the original GG model (Granger [7]), which was empirically derived 
from 158 sites under wet conditions in Canada. Therefore, models based on the 
original GG may have difficulty predicting ET under dry conditions. To improve 
relative evaporation, Kim [26] used the Budyko model equation described by Li 
[27] to represent relative evaporation instead of using the original equation. The 
basis for this change is that the concept of relative evaporation is consistent and 
similar to that described in the Budyko framework [28] [29]. Kim [26] selected 
75 Eddy Covariance (EC) flux tower sites across the USA and compared them 
with measured ET and with other complementary relationship models. The kim 
[26] model reduced mean RMSE by 32% compared to the modified GG model 
Anayah [15] across 36 dry sites. Using Kim [26], the mean RMSE across the 59 
sites was shown to be 14 mm/month, compared to 21 mm/month with CRAE, 
28 mm/month with AA, 27 mm/month with GG, and 17 mm/month with the 
modified GG model. Moreover, the predicted ET values were more correlated 
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with estimated ET, showing a correlation coefficient of 60% compared to 37% in 
Allam [30]. 

Figure 2 presents the results obtained from Kim [26]. These results are in 
agreement with Anayah [15], which showed that the modified GG model needs 
further improvements in dry conditions, and showed the lowest mean RMSE in 
both dry and wet sites. Overall, these results indicate that, among the ground- 
based methods [26], model can be used as a powerful methodology to estimate 
ET. 

While these findings are good within the realm of complimentary methods (or 
ground-based methods), some of the more commonly used ET estimation me-
thods now use remote sensing data. If the complementary relationship and the 
corresponding methods, such as the model proposed by Kim [26], are to be ac-
cepted as operational models in field conditions, then the results should be 
compared and validated with remote sensing-based ET estimation methods. 
Taking into consideration of the improvements made with complementary rela-
tionship-based methods, this study examines the work of Kim [26] in compari-
son with a commonly used remote sensing method and measured ET data from 
60 EC flux tower sites located across the USA. 

Biggs et al. [31] grouped the remote sensing-based methods into three classes: 
vegetation-based methods, radiometric land surface temperature-based me-
thods, and triangle/trapezoid or scatterplot inversion methods. Among them, the 
radiometric land surface temperature-based methods have a number of attrac-
tive features compared to the other classes: minimal ground data, ease of imple-
mentation, and operational application over large areas. 

Radiometric land surface temperature-based methods use the fact that ET is a 
change of state in water that uses energy in the environment for vaporization 
and reduces surface temperature [32]. A subset of these methods is often called 
energy balance methods since they solve the energy balance equation. Moreover, 
these methods do not directly measure ET but must be combined with retrieval 
algorithms since data and technical requirements to solve the full energy balance 
equation can be challenging, especially in large regions. For example, the Surface 
Energy Balance Algorithm for Land (SEBAL) model [33] [34] requires the mea-
surements of wind speed, iterative calibration, and review by an expert operator. 
Mapping EvapoTranspiration at high Resolution with Internalized Calibration 
 

 
Figure 2. Comparison of RMSE (mm/month) between different complementary rela-
tionship models for 29 dry and 30 wet sites in the US. NGG and GG-NDVI refer to the 
models of Han [20] and Kim [26], respectively. 
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(METRIC) [35] needs high-quality meteorological data such as net radiation, air 
temperature, wind speed, and humidity. According to Allen [35], METRIC has 
higher accuracy for hourly reference ET than SEBAL, but the processing cost of 
METRIC is high. 

As an alternative, FWESNET (USGS) has produced ET measurements from 
MODIS using the operational Simplified Surface Energy Balance (SSEBop) 
model [2]. The SSEBop setup uses the Simplified Surface Energy Balance (SSEB) 
approach developed by Senay [36]. The SSEB approach estimates ET using ET 
fraction scaled from thermal imagery in combination with a spatially explicit 
maximum reference ET. SSEB has an advantage in that it does not require air 
temperature and the knowledge of land cover types. Instead, the method uses the 
“hot” and “cold” pixel approach of Bastiaanssen [33] to calculate the ET fraction. 
Later, Senay [37] enhanced SSEB to accommodate diverse vegetation and topo-
graphic conditions using a lapse rate correction factor. They successfully eva-
luated the results by comparing with METRIC and ET values computed from the 
water balance approach. As a result of the work by Senay [37], the enhanced 
SSEB model increased the correlation with METRIC from 0.83 to 0.90. Fur-
thermore, Senay et al. [38] proposed a revised SSEB to handle both elevation and 
latitude effects on surface temperature using the difference between Land Sur-
face Temperature (LST) and air temperature. Recently, Senay et al. [2] proposed 
an operational SSEB, renamed as SSEBop, which uses predefined boundary con-
ditions for hot and cold reference pixels so that ET can be calculated as a func-
tion of LST and reference ET. The SSEBop approach has been validated com-
prehensively by comparing with 45 EC flux tower observations [2] and then with 
both MOD16 and 60 EC flux tower observations [39]. Later, Bastiaanssenet al. 
[40] applied SSEBop to determine ET in the Nile Basin, Ethiopia, for mapping 
water production and consumption zones. SSEBop ET data is now freely availa-
ble through the USGS Geo Data Portal. 

Despite the general consensus of using SSEBop for estimating ET, a detailed 
study of SSEBop conducted by Senay et al. [2] showed that the use of reference 
ET can introduce a significant difference of up to 20% in the magnitude of ET. 
They also showed that the use of constant pre-defined differential temperature 
between the hot and cold boundary conditions can also create an inherent inac-
curacy. Thus, it is important that SSEBop ET be validated and calibrated with 
available data such as EC flux tower data before using it to model ET. 

The facts provided in the previous discussion indicate a need to further vali-
date both Kim [26] and SSEBop models in the operational application of the 
complementary relationship in estimating ET. Therefore, the objectives of this 
study are: 1) assess the validity of the ET estimation model of Kim [26] through 
a direct comparison with remote sensing methodology, which in this case is the 
SSEBop model; and 2) use the results of the first objective to identify the poten-
tial improvements required in the complementary relationship for estimating ET 
under diverse climate conditions. 
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2. Methodology and Data 
2.1. Methodology 

GG-NDVI is the most updated model using the original GG model. GG-NDVI 
uses historical annual Normalized Difference Vegetation Index (NDVI) data and 
precipitation to improve the ET estimates of the modified GG model proposed 
by Anayah [15]. We then used the SSEBop model (Senay et al. [2]) to further va-
lidate GG-NDVI in comparison to an operational remote sensing model. 

2.1.1. GG-NDVI Model 
The first complementary relationship was proposed by Bouchet [4], who post-
ulated that, as a surface dries, the actual ET decrease is matched by an equivalent 
increase in ETP. In spite of the fact that ET is negatively correlated with ETP, 
Morton [6] showed that the relationship has no defined shape. Granger [13] 
showed that the symmetrical relationship between ET and ETP only occurs 
when the temperature is near 6˚C and suggested the following complementary 
relationship formulation: 

ET ETP 1 ETWγ γ + = + ∆ ∆ 
                     (1) 

where ET, ETP, and ETW are in mm/day, γ is the psychrometric constant 
(kPa/˚C), and ∆ is the slope of saturation vapor pressure-temperature (kPa/˚C) 
relationship. Thereafter, [7] developed the GG model based on Equation (1) us-
ing the concept of relative evaporation. Recently, Anayah [15] developed the 
modified GG model using the work of Granger [7]. The performance of the 
modified GG model improves when the Priestley [16] equation shown in Equa-
tion (2) is used to calculate ETW instead of Penman [17]. 

( )ETW n soilR Gα
γ
∆
∆

= −
+

                     (2) 

where α is a coefficient equal to 1.28, n soilR G−  is net radiation (mm/day), and 

soilG  is soil heat flux density (mm/day). Note that soil heat flux density is neg-
ligible compared to net radiation when calculated at daily or monthly time-scale 
[9]. 

ET is then estimated as a fraction of ETW using Equation (3): 

2ET ETW
1

G
G

=
+

                         (3) 

where G is the relative evaporation parameter derived from [7]. They proposed a 
unique relationship with a parameter called relative drying power (D). The 
unique relationship between G and D are described in Equations (4) and (5), re-
spectively. 

8.045

ET 1
ETP 1 0.028e DG = =

+
                  (4) 
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a

a n

ED
E R

=
+

                           (5) 

where aE  is drying power of air (mm/day) given in Equation (6). 

( )( )0.35 1 0.54a s aE U e e= + −                    (6) 

where U is wind speed at 2 m above ground level (m/s), which is adjusted using 
the work of Allen [41]; se  is saturation vapor pressure (mmHg); and ae  is 
vapor pressure of air (mmHg). 

The performance of the GG model, including the modified GG model pro-
posed later, decreased with increasing aridity. A possible reason is G in Equation 
(4), which was empirically derived from 158 sites representing wet environments 
in Canada. To improve the parameter G, GG-NDVI model (Kim [26]) used the 
latest version of the Fu equation (Li [27]). In particular, the Fu [42] equation is 
one of the formulations of the Budyko curve [43] and it is consistent with the 
complementary relationship [28] [29]. The corresponding analytical formulation 
of the Fu equation is given in Equation (7). 

1

ET 1 1
ETP ETP ETP

P P ϖ ϖ  = + − +  
   

                  (7) 

where P is precipitation (mm) and ETP is estimated using Penman [17]. Para-
meter ϖ is a constant and represents the land surface conditions of the basin, 
especially the vegetation cover [27]. Furthermore, Li [27] showed that ϖ is li-
nearly correlated with the long-term average annual vegetation cover that can 
help improve ET estimates. Reference Yang et al. [44] showed that vegetation 
cover defined by M is calculated using Equation (8). 

min

max min

NDVI NDVI
NDVI NDVI

M −
=

−
                     (8) 

where NDVImin and NDVImax are chosen to be 0.05 and 0.8, respectively. An op-
timal 𝜛𝜛 value for the basin can be derived through a curve fitting procedure 
that minimizes RMSE between the measured and predicted evaporation ratio 
[27]. 

Li [27] proposed parameterization that is simply a linear regression between 
optimal ϖ and the long-term average M given as 

a M bϖ = × +                         (9) 

where a and b are constants that are found for each site. 
To incorporate Equation (7) into the modified GG model, Kim [26] used the 

work of Yang [28] and Zhang et al. [29]. According to Zhang et al. [29], the Fu 
equation showed that the rate of change of ET with precipitation increases with 
ETP but decreases with precipitation. This is similar to the complementary rela-
tionship proposed by Bouchet [4]. Later, Yang [28] derived the consistency be-
tween the Fu equation and the complementary relationship using 108 dry re-
gions in China. With this theoretical background, Kim [26] used the Fu equation 
to calculate G in the modified GG model instead of Equation (4). Equation (10) 
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shows the Fu equation with the updated G now defined as newG . 
1

ET P P1 1
ETP ETP ETPnewG

ϖ ϖ  = = + − +  
   

                   (10) 

Note newG  is the updated definition of relative evaporation, G, which in-
cludes the Budyko hypothesis and the vegetation index. To estimate newG , ETP 
is required and can be estimated using Equation (11) [17]. 

( )ETP n soil aR G Eγ
γ γ
∆

− +
+ +∆ ∆

=                    (11) 

Having found newG  from Equation (11) and estimated ETW from Equation 
(2), we can estimate ET of the proposed model from Equation (12). 

2
ET ETW

1
new

new

G
G

=
+

                          (12) 

2.1.2. SSEBop Model 
The SSEBop algorithm (Senay et al. [2]) does not solve the full energy balance 
equation. This approach assumes that for a given time and location, the temper-
ature difference between the hot and cold reference values of each pixel remains 
nearly constant throughout the year under clear sky conditions. Furthermore, 
the major simplification of SSEBop is based on the knowledge that the surface 
energy balance process is mostly driven by net radiation. With this simplifica-
tion, the ET fraction, ETf, is calculated using Equation (13). 

ETf Th Ts Th Ts
dT Th Tc
− −

= =
−

                      (13) 

Here, ETf is between 0 and 1, with negative ETf values set to zero; Ts is sur-
face temperature derived from MODIS LST; Th is hot reference value 
representing the temperature of hot conditions; and Tc is the cold reference val-
ue derived as a fraction of maximum air temperature [2]. The difference between 
Th and Tc is dT with temperature units in Kelvin. 

ET is estimated using Equation (14) as a fraction of reference ET. 

oET ETf ETk= ×                           (14) 

where ETo is reference ET, which is calculated from the Penman-Monteith equa-
tion [45] [46], and k is a coefficient that scales ETo into the level of maximum ET 
experienced by an aerodynamically rougher crop. A recommended value of k for 
the United States is 1.2. 

2.2. Data 

First, we used the SSEBop ET data set from the USGS Geo Data Portal  
(http://cida.usgs.gov/gdp/, last accessed on May 23, 2016) for the period 
2000-2007 covering the United States. Second, ET data from GG-NDVI were 
generated using meteorological data and NDVI. Meteorological data required 
are temperature, wind speed, precipitation, net radiation, and elevation (pressure). 
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Among these, net radiation (Rn) was calculated using the equations recom-
mended by Allen [45], similar to the SSEBop model. Air temperature, elevation, 
and precipitation data were obtained from the Parameter-elevation Regressions 
on Independent Slopes Model (PRISM) (http://www.prism.oregonstate.edu/, last 
accessed on Nov 23, 2015). As part of the input data for the GG-NDVI method, 
we used the 16-day Normalized Difference Vegetation Index (NDVI) data from 
MODIS (http://daac.ornl.gov/MODIS/modis.shtml, last accessed on Oct 23, 
2015). 

We collected the level 4 meteorological data including latent heat flux (LE) 
from 76 AmeriFlux stations (Oak Ridge National Laboratory’s AmeriFlux web-
site, http://ameriflux.ornl.gov/, last accessed on Nov 23, 2015) then, we excluded 
those stations with actual vegetation type different from the MODIS global land 
cover product (MOD12) at any of surrounding 500 m by 500 m spatial resolu-
tion. Also, we further excluded those stations with fewer than half a year of 
measurements during 2000-2007. As a result, 60 stations were used in this study 
as shown in Figure 3. The measured monthly latent heat flux data were used to 
calculate the corresponding ET using latent heat of vaporization of water. 

We defined the climate class of each site using the aridity index of the United 
Nations Environment Programme (UNEP) proposed by Barrow [47]. The aridi-
ty index divided climate conditions to six classes: hyper-arid, arid, semi-arid, dry 
sub-humid, wet sub-humid, and humid. However, this work simplified the cli-
mate class definition to two classes, similar to the work of Anayah [15]: dry and 
wet. Using this simplification, 24 sites were identified as dry, compared to 36 
sites under the wet class. 

3. Results and Discussion 

This study was conducted in two phases. Phase 1 is the validation stage in which 
comparisons are made between the SSEBop model and measured ET to assess 
the accuracy of the remote sensing method to estimate ET. In Phase 2, a com-
parison of estimated ET from GG-NDVI with observed data will be performed 
 

 
Figure 3. Locations of 60 AmeriFlux Eddy Covariance stations used in this 
study with number. 

https://doi.org/10.4236/nr.2018.94007
http://www.prism.oregonstate.edu/
http://daac.ornl.gov/MODIS/modis.shtml
http://ameriflux.ornl.gov/


H. Kim, J. J. Kaluarachchi 
 

 

DOI: 10.4236/nr.2018.94007 98 Natural Resources 
 

to identify the weaknesses of the GG-NDVI model, especially relative to the 
complementary relationship, and appropriate corrections will be proposed. 

3.1. Phase 1: Validation of GG-NDVI 

Capturing inter-annual variations of ET estimates is important. Although such 
variations are not significant when water is unlimited, estimating these varia-
tions in water-limited conditions is essential for water resources management. In 
this phase, ET has been estimated from both SSEBop and GG-NDVI and com-
pared against measured monthly ET data from 2000 to 2007. 

Table 1 presents the yearly comparison of results between the SSEBop and 
GG-NDVI estimates. Compared with measured ET, the results indicate that the 
accuracy of SSEBop and GG-NDVI estimates show satisfactory R-square and 
RMSE values. R-square values for SSEBop and GG-NDVI are 0.65 and 0.61, re-
spectively. The results demonstrate that the ET estimates from GG-NDVI ET at 
an annual time-scale are reasonable. Figure 4, however, shows the 1:1 scatter of 
yearly variability of both models with GG-NDVI showing a tendency to unde-
restimate in the higher ET range. In contrast, SSEBop tends to overestimate ET 
in the same higher ET range. Generally, higher ET occurs mostly in wet condi-
tions, and underestimating ET in moist regions is a characteristic of the com-
plementary relationship [9] [48] [49]. 

Figure 5 shows the poor results of SSEBop with the temporal variation in Th, 
Tc, and Ts on the left and the corresponding SSEBop, GG-NDVI, and measured 
ET values on the right. For example, at Austin Cary in Florida (Figure 5(a)), 
RMSE ranged from 29 to 164 mm/month for SSEBop and 17 to 70 mm/month 
for GG-NDVI. Moreover, SSEBop showed significant deviations from measured 
ET throughout the year, and RMSE varied from 29 to 164 mm/month. Where 
SSEBop shows low RMSE values in Figure 5(a) and Figure 5(b), a possible rea-
son for these significant deviations could be the concept of ET faction (ETf) in 
SSEBop. ETf is calculated using Th, Tc, and Ts, and the Ts curve lies mostly be-
tween the boundary conditions (Th and Tc). However, Ts in Figure 5(a) is close 
 

 
Figure 4. Validation results of monthly ET estimates form SSEBop and GG-NDVI 
against AmerFlux ET data between 2000 and 2007. 
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Table 1. Comparison of monthly ET estimates between SSEBop and GG-NDVI using 
AmeriFlux data from 2000 to 2007. 

Year 
AmeriFlux mean 

(mm/month) 

R-square RMSE (mm/month) 

SSEBop GG-NDVI SSEBop GG-NDVI 

2000 43 0.82 0.79 16 15 

2001 44 0.54 0.58 23 20 

2002 41 0.73 0.67 19 16 

2003 42 0.68 0.65 21 17 

2004 42 0.68 0.60 18 18 

2005 42 0.37 0.57 28 18 

2006 41 0.61 0.55 20 18 

2007 34 0.40 0.40 18 17 

All years 44 0.65 0.61 19 18 

 

 
Figure 5. Temporal variation of 8-day average Ts, Th, Tc (left) and monthly ET estimates 
from SSEBop and GG-NDVI and measured ET at (a) Austin Cary in Florida and (b) 
Flagstaff in Arizona for 2005. 
 
to the predefined cold boundary (Tc), which brings ETf closer to 1.0, resulting in 
a corresponding ET that is close to the maximum ET. 

According to Table 1 and Figure 6, the mean RMSE of GG-NDVI ranged 
between 15 and 20 mm/month, and GG-NDVI showed lower RMSE than SSE-
Bop every year. Although the magnitude of agreement (overestimation or unde-
restimation) seems to vary from site to site and from season to season, Figure 6 
confirms that the occurrence of an RMSE less than 20 mm/month with GG-NDVI  
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(a) 

 
(b) 

Figure 6. Histogram of RMSE (mm/month) of SSEBop and GG-NDVI for (a) dry and (b) 
wet sites. 
 
is more frequent than with SSEBop in both dry and wet sites. The averages of 
RMSE across 24 dry sites for GG-NDVI and SSEBop are 19 mm/month and 22 
mm/month, respectively. For 36 wet sites, GG-NDVI and SSEBop showed an 
average RMSE of 17 mm/month and 20 mm/month, respectively. These results 
indicate that GG-NDVI ET estimates improve with wetness, which is similar to 
the previous studies of Hobbins [9], Xu [12], and Anayah [15]. 

Based on these results, we could conclude that GG-NDVI is a reliable ap-
proach for estimating ET, the novelty of GG-NDVI being that the Fu equation 
can be used to define relative evaporation in the original GG model using NDVI. 
This approach showed a reasonable match between GG-NDVI and the 60 Ame-
riFlux sites. However, GG-NDVI may not predict ET accurately when the vege-
tated cover changes significantly or is dense. For example, at Brooking in South 
Dakota, the mean RMSE of GG-NDVI was 42 mm/month, compared to 18 
mm/month with all sites, and NDVI has a large seasonal vegetation cover as 
shown in Figure 7. A possible reason is that the relationship between NDVI and 
vegetation can be biased in sparsely vegetated areas with a Leaf Area Index (LAI) 
of less than 3. According to [50], the Soil Adjusted Vegetation Index (SAVI) is 
recommended instead of NDVI when LAI is less than 3. It should be noted that 
the LAI of Brookings is about 2.5. Furthermore, prior studies of Mu [19] and 
Yuan et al. [51] have demonstrated that NDVI is insufficient to represent vege-
tation under dense vegetation conditions. Recently, Zhang [52] introduced the 
fraction of absorbed photosynthetic active radiation absorbed by vegetation (or 
fPAR) under the Budyko framework to avoid the bias of NDVI. Thus, this ina-
bility of NDVI to represent vegetation under dense conditions may be the reason 
for the decreased performance of GG-NDVI. Another possible reason according  
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Figure 7. Comparisons of monthly ET between SSEBop and GG-NDVI against measured ET (a) and 
time-series of NDVI at Brookings in South Dakota (b). 
 
to Yang et al. [44], the relative infiltration capacity and the average topographic 
slope need to be taken into consideration when using the Fu equation, especially 
in small catchments. Therefore, more work is needed to generalize the relation-
ship for the use of NDVI with changing vegetation cover within the Budyko 
framework. The next section will discuss options to improve the GG-NDVI 
model. 

3.2. Phase 2: Enhancement to GG-NDVI 

As described earlier, GG-NDVI performed slightly better than SSEBop in both 
dry and wet climate conditions, and GG-NDVI increased the predictive power 
with increasing humidity. One interesting finding is that RMSE from GG-NDVI 
increases slightly with the relative evaporation parameter as shown in Figure 8. 
Considering this observation, Phase 2 then focused on the relationship between 
the performance of GG-NDVI and Gin the context of using the complementary 
relationship. 

Within the complementary relationship, increasing G means that climate is 
becoming wetter and ET is closer to ETW. When ET equals to ETW, surface has 
access to unlimited water as shown in Figure 1. However, natural surfaces in 
even the wettest regions may not approach complete saturation, hence, ET can 
remain below its limiting value of ETW. Consequently, the magnitude of differ-
ence between ET and ETW is important in estimating ET, especially under 
highly moist conditions. A possible explanation may be that the complementary 
relationship between ET and ETP with respect to ETW is not symmetric. 
GG-NDVI has improved the performance of the original GG model, but Equa-
tion (3) still contains the value of 2, which refers to a symmetric complementary 
relationship. As explained earlier, other authors [10] [22] question the use of a 
symmetric relationship. Thus, the use of a symmetric complementary relation-
ship may have contributed to the decreased performance of GG models, both the 
modified GG model and GG-NDVI. In order to understand the relationships af-
fecting model accuracy, a correction function as a function of G is required as 
shown in Equation (17). 
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Figure 8. RMSE from GG-NDVI versus relative evaporation (G = ET/ETP). 
 

( )2
ET ETW

1
new

new

G f G
G

= × ×
+

                    (17) 

where f(G) is the correction function. We expect the correction function to be 
nonlinear, similar to an exponential function, since the magnitude of the differ-
ence between ET and ETW decreases exponentially as shown in Figure 1. In this 
work, we fitted 2772 data points to an exponential function similar to Equation 
(18). Multiple regression analysis was conducted to compute the values of the α 
and β coefficients. 

( ) e Gf G βα ⋅=                          (18) 

Regression analysis found that α is 0.7895 and β is 0.9655. Hereafter, the 
GG-NDVI model with the proposed correction function given as Equation (17) 
is called the Adjusted GG-NDVI model. 

To determine the accuracy of Adjusted GG-NDVI, comparisons were made 
between the results from the Adjusted GG-NDVI and GG-NDVI and between 
measured ET data and ET values from SSEBop. These comparisons are shown in 
Figure 9 and Table 2 across 60 sites. While ET from GG-NDVI at Blodgett in 
California (Figure 9) showed deviations from measured ET, we can see that the 
Adjusted GG-NDVI produced ET estimates close to measured ET and reduced 
mean RMSE from 33 to 22 mm/month for Mize and 17 to 10 mm/month for 
Blodgett. In Table 2, overall RMSE across 60 sites for GG-NDVI and Adjusted 
GG-NDVI were found to be 18 mm/month and 15 mm/month, respectively. 
Figure 10, which presents a histogram of RMSE from the different ET models, 
shows a significant improvement attributed to the Adjusted GG-NDVI model. 
With Adjusted GG-NDVI, 38 sites have less than 15 mm/month of RMSE, com-
pared to 26 sites with GG-NDVI. These results suggest that the use of the cor-
rection function in GG-NDVI can significantly improve accuracy in estimating 
ET. In addition, Equation (17) can be updated with the new definition of G as 

( )ET ETP 2 ETWf G+ =                          (19) 

where the value of 2f(G) can vary between 1.64 and 3.04 as G varies based on 
site-specific conditions. The new formulation of the Adjusted GG-NDVI model 
described in Equation (19) clearly shows that the relationship between ET and 
ETP is not symmetric with respect to ETW, further confirming the earlier con-
clusions that the hypothesis of Bouchet [4] needs to be extended and applied  
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Figure 9. Comparison of monthly ET values of GG-NDVI and Adjusted GG-NDVI with 
measured ET at Boldgett, California from 2000 to 2006. 
 

 
Figure 10. Comparison of RMSE values between different ET models. 
 
Table 2. Comparison of RMSE between GG-NDVI, SSEBop, and Adjusted GG-NDVI 
acorss 60 sites. 

ET model 
RMSE (mm/month) 

Minimum Mean Maximum 

GG-NDVI 7 18 48 

SSEBop 8 20 48 

Adjusted GG-NDVI 7 15 34 

 

with appropriate corrections. 

4. Summary and Conclusions 

ET estimation models using the complementary relationship are able to estimate 
ET in most instances. In particular, the model proposed by Anayah [15] showed 
excellent performance compared to recently published studies. However, the 
predictive power of this model and other similar models decreases with increas-
ing aridity [9] [12] [15]. In the case of the modified GG model proposed by 
Anayah [15], a reason may be that relative evaporation in the original GG model 
was derived using 158 sites in Canada under mostly humid conditions. To over-
come this limitation, the previously revised GG model, GG-NDVI (Kim [26]), 
used the Fu equation to describe relative evaporation on the basis that the Bu-
dyko framework can support the complementary relationship [28] [29]. The re-
sults of GG-NDVI showed improved accuracy compared to other complementary 
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relationship models but also showed the need for further refinements, especially 
under dense vegetation conditions. On the other hand, remote sensing methods 
are more common as operational models under field conditions. In order to de-
termine whether complementary methods such as GG-NDVI can compete and 
deliver accuracy similar to remote sensing methods, it is important to make ap-
propriate comparisons. The objectives of this work were therefore twofold: (1) 
evaluate the recently developed ET estimation method, GG-NDVI, to see if it 
could deliver similar accuracy to the commonly used operational remote sensing 
method, SSEBop and (2) identify the inherent weaknesses of the original com-
plementary relationship and make appropriate refinements to further improve 
the GG-NDVI model, especially under dense vegetation conditions. For this 
purpose, we selected 60 AmeriFlux sites located across the US. 

The first phase of the analysis showed that the GG-NDVI model with the Bu-
dyko framework and relative evaporation was found to work reasonably well. 
Validation with 60 AmeriFlux sites indicated similar levels of accuracy for both 
SSEBop and GG-NDVI. R-square between GG-NDVI and measured ET ranged 
from 0.40 to 0.79, overall RMSE of GG-NDVI ranged between 15 and 20 
mm/month, and GG-NDVI showed lower RMSE than SSEBop every year. Fur-
thermore, the occurrences of RMSE less than 20 mm/month with GG-NDVI 
were more frequent than SSEBop. Based on these results, we concluded that 
GG-NDVI is a reliable approach for estimating ET. 

The second phase of the analysis showed that the predictive power of GG-NDVI 
decreased with relative evaporation possibly due to the use of the symmetric 
complementary relationship in estimating ET. In order to identify the true rela-
tionship between ET and ETP with respect to ETW, an exponential correction 
function was proposed. This phase demonstrated that the inclusion of relative 
evaporation with a correction function greatly improved the performance of the 
Adjusted GG-NDVI. For example, 68% of Adjusted GG-NDVI sites had RMSE 
less than 15 mm/month compared 43% with GG-NDVI. 

In essence, this study strengthens the idea that the use of vegetation cover in-
formation in the complementary relationship has increased ET estimation pow-
er. More importantly, this work showed that the symmetric relationship typically 
assumed with the complementary relationship may not be valid. Instead, the re-
sults show that the symmetrical relationship needs to be updated with a nonli-
near correction function as proposed here. A key strength of this study is that 
the latest proposed version of the GG model, Adjusted GG-NDVI, overcomes 
limitations of both relative evaporation as proposed by Granger [7] and the as-
sumption of a symmetric complementary relationship from the work of Bouchet 
[4]. Consequently, Adjusted GG-NDVI can lead to significantly increased accu-
racy of ET estimates under diverse climate conditions while producing compa-
rable or even better results than the SSEBop operational remote sensing model. 
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Abbreviation List 

AA: The Advection-Aridity model by [5] 
CRAE: The Complementary Relationship Areal Evapotranspiration model by [6] 
ET: Evapotranspiration 
ETP: Potential Evapotranspiration 
ETW: Wet Environment Evapotranspiration 
GG: Granger and Gray Model by [7] 
GG-NDVI: The ET model developed by [26] 
METRIC: Mapping EvapoTranspiratrion at high Resolution with Internalized 
Calibration model by [35] 
Modified GG: The ET model developed by [15] 
NDVI: Normalized Difference Vegetation Index 
NGG: The Normalized GG model by [20] 
SEBAL: The Surface Energy Balance Algorithm for Land model by [33] and [34] 
SSEB: The Simplified Surface Energy Balance model by [36] 
SSEBop: The Operational Simplified Surface Energy Balance model by [38] 
RMSE: Root Mean Square Error 
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